JPH01177982A - Adjustable travel speed control device for moving body - Google Patents

Adjustable travel speed control device for moving body

Info

Publication number
JPH01177982A
JPH01177982A JP33469487A JP33469487A JPH01177982A JP H01177982 A JPH01177982 A JP H01177982A JP 33469487 A JP33469487 A JP 33469487A JP 33469487 A JP33469487 A JP 33469487A JP H01177982 A JPH01177982 A JP H01177982A
Authority
JP
Japan
Prior art keywords
speed
movable body
acceleration
deceleration
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33469487A
Other languages
Japanese (ja)
Inventor
Kiyonori Katabuchi
片淵 清紀
Akeshi Koike
小池 明士
Hiroshi Kawamura
博史 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33469487A priority Critical patent/JPH01177982A/en
Publication of JPH01177982A publication Critical patent/JPH01177982A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to accelerate and decelerate a movable body without spoiling safety and operationability and without bringing about shocks to the movable body by providing an arithmetic unit for setting an acceleration speed and deceleration speed given to the movable body at desired values and giving them to the serbo device of the movable body. CONSTITUTION:The analogue speed signals which are input by an operation lever 6 are converted into digital signals through an A/D converter 5 and input in an arithmetic unit 4. In this unit 4, an acceleration speed and deceleration speed given to a jointed section 1 which is an movable body are set at a desired values respectively. These set values are given to the servo device 2 of the jointed section 1 which is a movable body. This leads to the acceleration and deceleration control of the jointed section 1 without shocks to a machine body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、操作器からの移動指令に応じて移動する関節
等の移動体を有する例えば大型クレーンに使用される移
動体移動加減速度制御装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a moving body movement acceleration/deceleration control device used, for example, in a large crane, which has a moving body such as a joint that moves in response to a movement command from an operating device. Regarding.

〔従来の技術〕[Conventional technology]

従来例えば建設用の大型クレーンは、関節の移動速度設
定のための電気的手段と、これと連動する操作器例えば
操作レバーを備えておシ、操作レバーが急激に操作され
た場合は、その動力源の最大で加速又減速するか1段階
的に出力能力を切シ替えるといった方法で行なわれてい
る。しかも制御はアナログ的制御である。
Conventionally, for example, large construction cranes have been equipped with an electric means for setting the movement speed of the joints and an operating device that is linked to this, such as a control lever.If the control lever is suddenly operated, the power This is done by accelerating or decelerating at the maximum power source, or by switching the output capacity in one step. Moreover, the control is analog control.

第6図は1以上のことを説明するための図であ〕、これ
は段階的変速の機能を有しない装置において、操作レバ
ーを中立位置から最大角度から中立位置へ瞬時に操作を
行りた場合の移動速度の変化を示したもので、第6図の
実線は機械装置の最大能力に応じた加速及び減速を行う
為、操作レバーを急激に大きく動かすと、大きな加速度
及び減速度を生じることを表わしている。
Figure 6 is a diagram for explaining the above points. This is a diagram for explaining the above points. This is a diagram for instantaneously operating the operating lever from the neutral position to the maximum angle to the neutral position in a device that does not have a stepwise gear change function. The solid line in Figure 6 shows the change in moving speed when the machine is operated.The solid line in Figure 6 shows the acceleration and deceleration according to the maximum capacity of the mechanical device, so if the control lever is moved suddenly and greatly, large accelerations and decelerations will occur. It represents.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の従来装置は、操作レバーが急激に操作された場合
の、機械本体の加速又は減速は殆んどがいわば、その最
大能力と機械運動部の特性忙期待した成シ行き任せの制
御にょシ行なわれておシ。
In the conventional device described above, the acceleration or deceleration of the machine body when the operating lever is suddenly operated is mostly controlled by the control that is left to its maximum capacity and the characteristics of the mechanical moving parts. It's been done.

確かな数値に基づいて演算及び制御を行つておらず、緩
衝度は充分とは言い難く、かつまた緩衝機能を有するも
のでも、段階的なアナログ制御で行なわれておシ、この
場合も緩衝度は完全ではなく。
Calculations and control are not carried out based on reliable numerical values, and the degree of buffering cannot be said to be sufficient.Also, even for devices that have a buffering function, it is performed by step-by-step analog control, and in this case, the degree of buffering is not complete.

なおかつディジタル制御における自由度の広いという長
所が生かされていない。
Moreover, the advantage of digital control, which has a wide degree of freedom, is not utilized.

そこで1本発明は操作器がいかなるように操作されても
、衝撃の殆んどない移動体移動加減速度制御装置を提供
することを目的とする。
Accordingly, one object of the present invention is to provide a moving object movement acceleration/deceleration control device that causes almost no impact no matter how the operating device is operated.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記目的を達成するため、操作器からの操作指
令に応じて移動する移動体を有した機械において、前記
移動体に与える加速度および減速度を所望の値に設定可
能であって、これを前記移動体のサーボ装置に与える演
算装置を備えたものである。
In order to achieve the above-mentioned object, the present invention provides a machine having a moving body that moves in response to an operation command from an operating device, in which acceleration and deceleration applied to the moving body can be set to desired values. and a calculation device that provides the servo device of the moving body.

〔作用〕[Effect]

本発明は前記のように加速度、減速度を予め最適な値に
設定すれば、操作器がどの様に操作されても、衝撃の殆
んどない加速、減速制御が可能となる。
According to the present invention, if the acceleration and deceleration are set to optimal values in advance as described above, acceleration and deceleration control with almost no impact is possible no matter how the operating device is operated.

〔実施例〕 以下1本発明の実施例について図面に基づいて説明する
[Example] An example of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示すブロックダイアグラム
であシ、1は制御対象である機械の関節部(移動体)、
2はアナログ信号によシ機械出力を出力するサーボ装置
、3は演算装置4から出力されるディジタル信号をアナ
ログ信号に変換するD/A変換器、4は後述する演算処
理を行う演算装置、5は操作器例えば操作レバー6から
のアナログ信号をディジタル信号に変換するA/D変換
器である。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which 1 is a joint part (moving body) of a machine to be controlled;
2 is a servo device that outputs a mechanical output based on an analog signal; 3 is a D/A converter that converts a digital signal output from a calculation device 4 into an analog signal; 4 is a calculation device that performs calculation processing to be described later; 5 is an A/D converter that converts an analog signal from an operating device, such as the operating lever 6, into a digital signal.

第4図は前記関節部分1で機械本体上に取シ付けられた
位置検出器(角度検出器)41ならびに油圧シリンダ4
2及びブーム43.44から構成されている。
FIG. 4 shows a position detector (angle detector) 41 and a hydraulic cylinder 4 mounted on the machine body at the joint part 1.
2 and booms 43 and 44.

第5図は前記サーボ装置20の内部及びアクチエエータ
である油圧シリンダとの関係を示すもので、機械部分に
観点を置いた制御ブロック図で。
FIG. 5 is a control block diagram that shows the inside of the servo device 20 and its relationship with the hydraulic cylinder that is the actuator, focusing on the mechanical part.

ディジタル制御演算を行う中央処理装置(CPU)−A
/D変換器、D/A変換器およびメモリ等からなる制御
演算装置55.アナログ制御演算及び最終の電気出力信
号を生成しサーボ電磁弁53を制御するサーボアンプ5
4.関節油圧シリンダ51(第4図の42に相当)への
油量を制御する油圧シリンダ駆動用電磁弁53及び第4
図の43及び44に相当する位置検出器51(第4図の
41に相当)及び油圧シリンダ51から構成されている
Central processing unit (CPU)-A that performs digital control calculations
/D converter, D/A converter, memory, etc., control calculation device 55. Servo amplifier 5 that generates analog control calculations and final electrical output signals and controls servo solenoid valve 53
4. A hydraulic cylinder drive solenoid valve 53 and a fourth hydraulic cylinder drive solenoid valve 53 that controls the amount of oil to the joint hydraulic cylinder 51 (corresponding to 42 in FIG. 4).
It is composed of a position detector 51 corresponding to 43 and 44 in the figure (corresponding to 41 in FIG. 4) and a hydraulic cylinder 51.

なお、第5図の一点鎖線は油圧ラインを示し、破線は機
械的接続を示し、また実線は電気信号ラインを示してい
る。
In addition, the dashed-dotted line in FIG. 5 shows a hydraulic line, the broken line shows a mechanical connection, and the solid line shows an electric signal line.

次に1以上のように構成された本発明による移動体移動
加減速度制御装置の一実施例の動作について第2図、第
3図および第6図を参照して説明する。
Next, the operation of one embodiment of the moving object movement acceleration/deceleration control device according to the present invention configured as described above will be described with reference to FIGS. 2, 3, and 6.

第2図は1本発明による制御装置の緩衝機能を説明する
為に模式的に示した、操作レバーからの指令速度と、出
力速度の関係を示したグラフであシ。
FIG. 2 is a graph showing the relationship between the command speed from the operating lever and the output speed, which is schematically shown to explain the buffering function of the control device according to the present invention.

第3図は、緩衝機能を実現する為の演算処理の70−チ
ャートである。
FIG. 3 is a 70-chart of arithmetic processing for realizing the buffer function.

第6図は、操作レバー6の操作と関節部1の移動速度と
の関係を従来の方法によるものと1本発明によるものと
を比較して示したグラフである。
FIG. 6 is a graph showing the relationship between the operation of the operating lever 6 and the moving speed of the joint 1, comparing the conventional method and the method according to the present invention.

いま、第1図の操作レバー6から入力された速度信号(
ポテンシオメータ等から得られた電圧等のアナログ信号
(以降ジ1イステ7りの略J8人力と称す))は、A/
D変換器5によシデイジタル信号に変換し、演算装置4
に、入力する。ここで。
Now, the speed signal (
Analog signals such as voltage obtained from potentiometers etc. (hereinafter referred to as J8 manual power)) are A/
It is converted into a digital signal by the D converter 5, and then sent to the arithmetic unit 4.
Enter. here.

第3図に示す様な演算処理を行なった後、 D/A変換
器3でアナログ信号に変換してサーボ装置2に入力し、
機械本体の関節部1を動かす。
After performing the arithmetic processing as shown in Fig. 3, the D/A converter 3 converts it into an analog signal and inputs it to the servo device 2.
Move the joint part 1 of the machine body.

この例は、サーボ装置2への指令信号は速度として与え
ることで記述しであるが、演算装置4で演算処理タイム
サイクル毎の位置(角度)指令信号としても1本発明の
効果は実現可能である。
In this example, the command signal to the servo device 2 is given as a speed, but the effects of the present invention can also be achieved by giving a position (angle) command signal for each calculation processing time cycle in the calculation device 4. be.

第2図は、操作レバー6がステップ状に零から正方向最
大が取られた場合と正方向最大から負方向最大に取られ
た場合の操作レバー6からの入力速度(実線)11と演
算処理された出力速度12の関係を示したグラフであシ
Figure 2 shows the input speed (solid line) 11 from the operating lever 6 and the calculation process when the operating lever 6 is stepped from zero to the maximum in the positive direction and from the maximum in the positive direction to the maximum in the negative direction. This is a graph showing the relationship between the output speeds 12 and 12.

第3図に示す演算処理を行うことKよシ、この第2図の
12に示す様な関係(速度指令出力)が実現可能である
。また第2図に示す様に、一般に加速度よシ減速度を大
きくする方が、危険回避及び操作性向上の観点より、よ
シ良い。
By performing the arithmetic processing shown in FIG. 3, the relationship (speed command output) shown at 12 in FIG. 2 can be realized. Furthermore, as shown in FIG. 2, it is generally better to increase the acceleration and deceleration from the viewpoint of avoiding danger and improving operability.

第3図では+ A/D変換器5から入力されたディジタ
ル信号(J8人力速度)は−旦J8人力速度コピーとい
うデータノ々ツファにコピーされている(第3図の21
)が、これは1A/D変換器5の演算処理タイミングと
演算装置4の演算処理タイミングが同期していない場合
、演算装置401回の演算処理中に入力データが変化し
て、データの一貫性が損われて、演算処ツに不具合を生
じるのを防止する為の処理である。
In FIG. 3, the digital signal (J8 manual speed) input from the + A/D converter 5 is copied to a data node called J8 manual speed copy (21 in FIG. 3).
), but this is because if the arithmetic processing timing of the 1A/D converter 5 and the arithmetic processing timing of the arithmetic unit 4 are not synchronized, the input data changes during the arithmetic processing of the arithmetic unit 401, resulting in data consistency. This is a process to prevent problems from occurring in the arithmetic processing due to damage.

そして、出力速度と、J8人力速度コピーの極性が互い
に逆であればJS入力速度コピーのデータを零とする(
第3図の22〜27)。
Then, if the polarity of the output speed and the J8 manual speed copy are opposite to each other, the data of the JS input speed copy is set to zero (
22-27 in Figure 3).

これは、ある出力速度が出力されている場合に。This is when a certain output speed is being output.

操作レバーが急激に逆方向に取られたら、−旦速度零ま
で設定された減速度で減速し、出力速度が零になったら
、設定された加速度で逆方向へ加速する為であり、危険
回避及び操作性向上の面から減速度は加速度よシ大きく
する方がよく、加速度と減速度が異っているのでこの処
理が必要となる。
If the control lever is suddenly pulled in the opposite direction, the speed will be decelerated to zero at the set deceleration, and when the output speed reaches zero, it will be accelerated in the opposite direction at the set acceleration, thereby avoiding danger. Also, from the viewpoint of improving operability, it is better to make the deceleration larger than the acceleration, and this process is necessary because acceleration and deceleration are different.

この処理を省くと、上記の場合は、単に逆方向に加速す
るのみで、速度零になるまでの時間が長くなシ、安全性
と操作性が損われる恐れを生じる。
If this process is omitted, in the above case, the vehicle will simply accelerate in the opposite direction, which will take a long time to reach zero speed, and there is a risk that safety and operability will be impaired.

次に、J8人力速度コピーの絶対値と出力速度とを比較
しく第3図の28)JS入力速度コピーの絶対値が大き
ければ操作レバーからの要求速度に対して出力速度が到
達していないことになるので、出力速度の絶対値に、予
め設定した加速度とCPU演算処理タイム(チンプリン
グタイム)Δtを掛けた値を加える(第3図の29)。
Next, compare the absolute value of J8 manual speed copy and the output speed. 28 in Figure 3) If the absolute value of JS input speed copy is large, it means that the output speed has not reached the required speed from the control lever. Therefore, the absolute value of the output speed is multiplied by the preset acceleration and the CPU calculation processing time (chimpling time) Δt (29 in FIG. 3).

そしてその加算値(V)がJ8人力速度コピーの絶対値
より小さい場合は、出力速度の極性を判断して、出力速
度に加算値(V)を代入して出力とする(第3図の30
〜33)。
If the added value (V) is smaller than the absolute value of the J8 manual speed copy, the polarity of the output speed is determined and the added value (V) is substituted for the output speed to output it (30 in Figure 3).
~33).

その逆の場合は、出力速度にJ8人力速度コピーを代入
して出力とする(第3図の30,34)。
In the opposite case, the J8 manual speed copy is substituted for the output speed and output (30, 34 in FIG. 3).

第3図の28に示すJS入力速度コピーの絶対値が出力
速度の絶対値よシ小さい場合は、減速処理を行うことに
なシ、出力速度の絶対値よシ、予め設定した減速度とC
PU演算処理タイム(チンプリングタイム)Δtを掛け
た値を減じる(第3図の35)。そしてその減算値(V
)がJS入力速度コピーの絶対値よシ大きい場合は、出
力速度の極性を判断して、出力速度に減算値(v)を代
入して出力とする(第3図の36〜39)。その逆の場
合は、出力速度にJS入力速度コピーを代入して出力と
する(第3図のse、4o)。
If the absolute value of the JS input speed copy shown at 28 in Figure 3 is smaller than the absolute value of the output speed, no deceleration processing will be performed.
The value multiplied by PU calculation processing time (chimpling time) Δt is subtracted (35 in FIG. 3). And the subtracted value (V
) is larger than the absolute value of the JS input speed copy, the polarity of the output speed is determined, the subtraction value (v) is assigned to the output speed, and the result is output (36 to 39 in FIG. 3). In the opposite case, the JS input speed copy is substituted for the output speed and output (se, 4o in FIG. 3).

以上述べた実施例は中央処理装置(CPU)を有するデ
ィジタル回路からなる制御装置の場合について説明した
が、場合たよっては前記制御装置の出力段にアナログ回
路を設けて必要なときのみ利用することは可能である。
The embodiments described above have been explained in the case of a control device consisting of a digital circuit having a central processing unit (CPU), but in some cases, an analog circuit may be provided at the output stage of the control device and used only when necessary. is possible.

また、実施例では第1図の演算袋@4の出力としては出
力速度をあげているが、実際の装置にあっては最終出力
は次のような(1)式で表現される値を用いる。
In addition, in the example, the output speed of the calculation bag @4 in Fig. 1 is increased, but in the actual device, the final output uses the value expressed by the following equation (1). .

位置指令出力値=(前サンプ9フフ時の出力値)+(出
力速度)×(チンプリングタイム)  ・・・・・・・
・・・・・ (1)さらに実施例の加速度、減速度を実
際には次のように行う。すなわち、軸の機械仕様の、最
大加速トルク、最大ブレーキトルク、慣性モーメント及
び自重(旋回の場合は自重は不要)等によシ、計算によ
シ値を求め、その約1/2〜1/3の値を目安として、
メモリに記憶させ実際に運転して、指令と実際追従の偏
差、操作性及び荷振れの具合等を見ながら段階的に値を
上げていく方法を使用する。
Position command output value = (output value at 9 puffs of previous sump) + (output speed) x (chimpling time) ・・・・・・・・・
... (1) Furthermore, the acceleration and deceleration in the example are actually performed as follows. In other words, calculate the value based on the mechanical specifications of the shaft, such as maximum acceleration torque, maximum brake torque, moment of inertia, and own weight (self-weight is not required in the case of turning), and calculate approximately 1/2 to 1/2 of that value. Using the value of 3 as a guide,
A method is used in which the value is increased step by step by storing the value in memory and actually driving it, observing the deviation between the command and actual follow-up, operability, load swing, etc.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、加速度及び減速度をその機
械に適合した適当な値に設定すれは、どの様な操作器の
操作に対しても安全性と操作性を損うことなく、機械本
体への衝撃が殆んどない移動体移動加減速度制御装置を
提供できる。
According to the present invention described above, by setting the acceleration and deceleration to appropriate values suitable for the machine, the machine can be operated without compromising safety and operability regardless of the operation of any operating device. It is possible to provide a moving object movement acceleration/deceleration control device with almost no impact on the main body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロックダイアグラム
、第2図は本発明による制御装置の緩衝機能を模式的に
示した速度信号のグラフ、第3図は制御装置の演算処理
内容を示すフローチャート。 第4図は油圧シリンダと位置検出器の関係を示す図、第
5図itサーボ装置及びその周辺装置を示した図、第6
図は従来装置と本発明装置における操作レバーと軸の移
動速度の関係を説明するためのグラフである。 出願人代理人 弁理士  鈴  江  武  彦第3図 第4図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a speed signal graph schematically showing the buffering function of the control device according to the present invention, and Fig. 3 shows the arithmetic processing contents of the control device. flowchart. Figure 4 is a diagram showing the relationship between the hydraulic cylinder and the position detector, Figure 5 is a diagram showing the IT servo device and its peripheral equipment, and Figure 6 is a diagram showing the relationship between the hydraulic cylinder and the position detector.
The figure is a graph for explaining the relationship between the moving speed of the operating lever and the shaft in the conventional device and the device of the present invention. Applicant's agent Patent attorney Takehiko Suzue Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 操作器からの操作指令に応じて移動する移動体を有した
機械において、前記移動体に与える加速度および減速度
を所望の値に設定可能であって、これを前記移動体のサ
ーボ装置に与える演算装置を備えた移動体移動加減速度
制御装置。
In a machine having a movable body that moves in response to an operation command from an operating device, the acceleration and deceleration applied to the movable body can be set to desired values, and the calculation is applied to a servo device of the movable body. A moving body movement acceleration/deceleration control device equipped with a device.
JP33469487A 1987-12-28 1987-12-28 Adjustable travel speed control device for moving body Pending JPH01177982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33469487A JPH01177982A (en) 1987-12-28 1987-12-28 Adjustable travel speed control device for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33469487A JPH01177982A (en) 1987-12-28 1987-12-28 Adjustable travel speed control device for moving body

Publications (1)

Publication Number Publication Date
JPH01177982A true JPH01177982A (en) 1989-07-14

Family

ID=18280175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33469487A Pending JPH01177982A (en) 1987-12-28 1987-12-28 Adjustable travel speed control device for moving body

Country Status (1)

Country Link
JP (1) JPH01177982A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109985U (en) * 1991-03-08 1992-09-24 株式会社明電舎 Electric motor starting control device
JPH0653583U (en) * 1991-02-26 1994-07-22 コマツエンジニアリング株式会社 Hoist crane
WO2005012155A1 (en) * 2003-08-05 2005-02-10 Sintokogio, Ltd. Crane and controller for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653583U (en) * 1991-02-26 1994-07-22 コマツエンジニアリング株式会社 Hoist crane
JPH04109985U (en) * 1991-03-08 1992-09-24 株式会社明電舎 Electric motor starting control device
WO2005012155A1 (en) * 2003-08-05 2005-02-10 Sintokogio, Ltd. Crane and controller for the same
CN100425520C (en) * 2003-08-05 2008-10-15 新东工业株式会社 Crane and controller for the same
US8005598B2 (en) 2003-08-05 2011-08-23 Sintokogio, Ltd. Crane and controller thereof

Similar Documents

Publication Publication Date Title
CN109910005A (en) Change admittance control method and system for robot
DE19920431A1 (en) Method for damping pendulum load on cranes with reduced sensory mechanism includes one or more drive motors while detecting the cable length between a crane trolley, its load and a load mass.
JP5101406B2 (en) Construction machinery
JPS6217631A (en) Apparatus for controlling position of shift lever
JPH01177982A (en) Adjustable travel speed control device for moving body
KR100236592B1 (en) Robot control method and apparatus
JPH0878506A (en) Positioning controller
JPH0976184A (en) Control device of robot
JPH01177981A (en) Travel speed control device of movable body
JPS6239295B2 (en)
JP2548241B2 (en) Controller for master / slave manipulator
JP3998415B2 (en) Force control device
JPH01177983A (en) Automatic acceleration and deceleration control method of movable body
JPH03234490A (en) Control method of robot
JP2024041086A (en) Robot control device and robot control method
JPS5841997B2 (en) Industrial robot runaway prevention device
JP4080220B2 (en) Servo control device
JPH0115881B2 (en)
JPS58192986A (en) Control device for hydraulic circuit
JP2689648B2 (en) Control method for master / slave manipulator
JP2010001714A (en) Drive control device and construction machinery including the same
JPS6279978A (en) Overload controller for manipulator
JP2656584B2 (en) Control device for master-slave manipulator
JP2000084878A (en) Control device for robot
JPH02152777A (en) Control method for bilateral master/slave manipulator