JPH01177890A - Current controller for motor - Google Patents

Current controller for motor

Info

Publication number
JPH01177890A
JPH01177890A JP63001240A JP124088A JPH01177890A JP H01177890 A JPH01177890 A JP H01177890A JP 63001240 A JP63001240 A JP 63001240A JP 124088 A JP124088 A JP 124088A JP H01177890 A JPH01177890 A JP H01177890A
Authority
JP
Japan
Prior art keywords
command
current
motor
minor loop
gate pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63001240A
Other languages
Japanese (ja)
Other versions
JPH084395B2 (en
Inventor
Yoji Tomino
門三野 洋二
Masahiro Tobiyo
正博 飛世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63001240A priority Critical patent/JPH084395B2/en
Publication of JPH01177890A publication Critical patent/JPH01177890A/en
Publication of JPH084395B2 publication Critical patent/JPH084395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the speed of response by adding a field forward compensating element to a minor loop controlling the rate of change of currents. CONSTITUTION:In a current control circuit 5, the difference of a mean current command value I0 and mean currents I1 detected by a mean current detector 12 is taken, and the difference is used as the current change rate command I2 of a minor loop through a first compensating element 7. In the minor loop, the difference of the command I2 and an output I3 from a current change rate detector 6 is input to a second compensating element 8, and employed as a voltage command to a gate pulse generator 3. A third compensating element 9 is mounted to the minor loop, and a second voltage command to the gate pulse generator 3 from the current change rate command I2 is formed. The two voltage commands are added, and a final voltage command VP to the gate pulse generator 3 is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電動機の電流制御装置に係わり、特に指令と
外乱変化が頻繁に行われる直流電動機の制御に好適な電
流制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current control device for a motor, and particularly to a current control device suitable for controlling a DC motor in which commands and disturbances are frequently changed.

〔従来の技術〕[Conventional technology]

直流電動機の電流制御装置は、電動機への電流指令や外
乱が頻繁に与えられる場合には、特にその指令や外乱に
対する応答特性のよいことが要求される。このための制
御装置としては、特公昭57−58875号に開示され
たものがあり、平均電流を制御するメジャーループに、
電流変化率を制御するマイナーループを設けた、2重ル
ープ式の制御を行っている。これは、電動機や電流変換
器のもつ非線形性をマイナーループで補償することによ
り、メジャーループのゲインをより大きく設定できるよ
うにし、平均電流の制御精度の向上をはかつている。
A current control device for a DC motor is particularly required to have good response characteristics to the commands and disturbances when current commands and disturbances are frequently applied to the motor. A control device for this purpose is disclosed in Japanese Patent Publication No. 57-58875, in which a measure loop for controlling the average current is used.
Double-loop control is performed with a minor loop that controls the current rate of change. This allows the gain of the major loop to be set larger by compensating for the nonlinearity of the motor and current converter using the minor loop, thereby improving the control accuracy of the average current.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術はフィードバック制御のみを用いているから、
その安定化のために積分要素の使用が必然となり、電動
機の電気的特性としてあられれる一次遅れ要素を補償で
きない。このため、電流指令がステップ的に変化したと
き1本来なら電動機電流が直ちに増加して欲しいものが
、通常3〜4msの遅れを持って増加を始める。これで
は、目標とする応答時間を、最近のように10 m S
程度にしようとすると、致命的な遅れ時間となる。
Since the conventional technology uses only feedback control,
For stabilization, it is necessary to use an integral element, and it is not possible to compensate for the first-order lag element that occurs as an electrical characteristic of the motor. Therefore, when the current command changes in a stepwise manner, the motor current should normally increase immediately, but it usually starts increasing with a delay of 3 to 4 ms. This sets the target response time to 10 mS as recently
If you try to do so, it will result in a fatal delay time.

本発明の目的は、この−次遅れ特性を補償し、遅れ時間
のほとんどない電流応答性能を得られる電動機の電流制
御装置を提供することにある。
An object of the present invention is to provide a current control device for a motor that can compensate for this -order lag characteristic and obtain current response performance with almost no lag time.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、電流変化率制御を制御するマイナールー
プへの電流変化率指令を入力とし、その出力が上記マイ
ナーループの電流変化率制御出力に加算されるように接
続された、フィードフォワード補償要素を付加すること
により達成される。
The purpose of the above is to input a current change rate command to a minor loop that controls current change rate control, and a feedforward compensation element connected so that its output is added to the current change rate control output of the minor loop. This is achieved by adding .

〔作用〕[Effect]

フィードフォワード補償要素を用いた制御系は、マイナ
ーループの制御による遅れを含まないので、指令変化に
対応する指令電圧を直ちにゲートパルス発生回路へ出力
することができ、応答速度を高めることができる。
Since the control system using the feedforward compensation element does not include a delay due to minor loop control, the command voltage corresponding to the command change can be immediately output to the gate pulse generation circuit, and the response speed can be increased.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図は、直流電
動機の電流制御系に本発明を適用した場合の実施例であ
り、サイリスタ等から成る電力変換器2から供給される
直流電動機1の電流は、電流制御回路5により制御され
るゲートパルス発生回路により調整される。電流制御回
路5の構成は、平均電流検出回路12.電流変化量検出
回路6゜メジャーループ用の第1の補償要素7.マイナ
ーループ用の第2の補償要素8、及び本発明の特徴とす
る第3の補償要素9から成る。
An embodiment of the present invention will be described below. FIG. 1 shows an embodiment in which the present invention is applied to a current control system of a DC motor, in which the current of a DC motor 1 supplied from a power converter 2 consisting of a thyristor or the like is controlled by a current control circuit 5. It is adjusted by the gate pulse generation circuit. The current control circuit 5 has an average current detection circuit 12. Current change detection circuit 6. First compensation element for major loop 7. It consists of a second compensation element 8 for the minor loop and a third compensation element 9 which is a feature of the invention.

電流制御回路5への平均電流指令値Ioは、平均電流検
出回路12により電流検出器4出力から検出した平均電
流■1どの差がとられ、その差は第1の補償要素7を介
してマイナーループの電流変化率指令I2となる。マイ
ナーループでは、この指令I2と、電流変化率検出回路
6の出力T3との差が第2の補償要素8へ入力され、ゲ
ートパルス発生器3への電圧指令となる。ここまでは従
来装置と同じであるが、本発明ではこのマイナーループ
に第3の補償要素9を設け、電流変化率指令I2からゲ
ートパルス発生器3への第2の電圧指令を生成しており
、この補償は、電流変化率制御系のフィードフォワード
補償を意味する。2つの電圧指令は加算されてゲートパ
ルス発生器3への最終的な電圧指令Vpが得られる。ゲ
ートパルス発生器3は電力変換器2を動作させるパルス
信号を発生する。
The average current command value Io to the current control circuit 5 is determined by the average current detected from the output of the current detector 4 by the average current detection circuit 12. This becomes the loop current change rate command I2. In the minor loop, the difference between this command I2 and the output T3 of the current change rate detection circuit 6 is input to the second compensation element 8, and becomes a voltage command to the gate pulse generator 3. Up to this point, the device is the same as the conventional device, but in the present invention, a third compensation element 9 is provided in this minor loop to generate the second voltage command to the gate pulse generator 3 from the current change rate command I2. , this compensation means feedforward compensation of the current rate of change control system. The two voltage commands are added to obtain the final voltage command Vp to the gate pulse generator 3. Gate pulse generator 3 generates a pulse signal that operates power converter 2 .

第2図は、第1図の制御系をブロック線図で表したもの
である。同図でEMFは電動機の誘起電圧であり、電動
機の伝達関数10は一次遅れ要素(1/ R) / (
1+ Te a )で、電力変換器の利得11は定数F
Cで表されており、また他の要素は同図に付された番号
と同じ番号の第1図の機器に対応する伝達関数が示され
ている。このうち、とくに第3の補償要素9の伝達関数
09は Go二Geo(1/ Kp)(R/ Fc) (1+T
e s )/ (Tca s )・・・(1) と設定するものとする。電流制御回路5をディジタル装
置で構成する場合、理論式通りの値は得られないので、
これを調整するためにG9oなる定数が乗じられており
、他のすべて別の要素の伝達関数に含まれる関数または
定数である。以下では伝達関数09を(1)式と設定す
ることにより、高速な応答が得られることを示す。
FIG. 2 is a block diagram representing the control system of FIG. 1. In the figure, EMF is the induced voltage of the motor, and the transfer function 10 of the motor is the first-order lag element (1/R) / (
1+ Te a ), the gain 11 of the power converter is a constant F
A transfer function corresponding to the equipment of FIG. 1 is shown, which is denoted by C, and other elements have the same numbers as those given in the same figure. Among these, especially the transfer function 09 of the third compensation element 9 is Go2Geo(1/Kp)(R/Fc)(1+T
e s )/(Tcas) (1). When the current control circuit 5 is configured with a digital device, the value according to the theoretical formula cannot be obtained, so
In order to adjust this, it is multiplied by a constant G9o, which is a function or constant included in the transfer function of all other elements. In the following, it will be shown that a high-speed response can be obtained by setting the transfer function 09 as equation (1).

第3図は、第2図の要素6をマイナーループの外側へ移
して要素13とした等価回路である。この回路で1点P
2とP3の間の伝達関数G C1を求めると、 Gc1=G/(1+GH)=(1/H)(1/(1+1
/GH))・・・(2) 但し、 G=Kp(1/R)(1/(1+Te5))Fc ”’
(3)H=Tcd/Tcr             
・・・(4)である。この伝達関数GCIを用いれば、
第3図は第4図のように表せる。更にこの第4図で点P
1とP3の間の伝達関数GC2を求めて整理すると、(
1)〜(4)式から GC2=(GI?+ 1/(Tcrs))・Gci=(
1/Tc11g)X(1+K(HTes) Goo)/
(1+K(1+Tc5))・・・(5) 但し に=RTcr/(KpFcTei)       ’・
・(6)である。このG c zを使って第4図を更に
簡略化すれば第5図の等価回路が得られる。従って補償
要素9のゲインGooをほぼ1となるように調整すれば
、(5)式より GC2= 1 / Tca s           
 ”’(7)となり、要素Gc2を完全積分系にできる
ので、遅れ要素を含まない制御応答が得られる。
FIG. 3 is an equivalent circuit in which element 6 in FIG. 2 is moved outside the minor loop to form element 13. 1 point P in this circuit
When determining the transfer function G C1 between 2 and P3, Gc1=G/(1+GH)=(1/H)(1/(1+1
/GH))...(2) However, G=Kp(1/R)(1/(1+Te5))Fc '''
(3) H=Tcd/Tcr
...(4). Using this transfer function GCI,
Figure 3 can be expressed as shown in Figure 4. Furthermore, in this figure 4, point P
If we find the transfer function GC2 between 1 and P3 and organize it, we get (
From equations 1) to (4), GC2=(GI?+ 1/(Tcrs))・Gci=(
1/Tc11g)X(1+K(HTes) Goo)/
(1+K(1+Tc5))...(5) However, = RTcr/(KpFcTei) '・
- (6). If FIG. 4 is further simplified using this G c z, the equivalent circuit shown in FIG. 5 can be obtained. Therefore, if the gain Goo of the compensation element 9 is adjusted to approximately 1, then from equation (5), GC2=1/Tca s
''(7), and since the element Gc2 can be made into a complete integral system, a control response that does not include a delay element can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、付加したフィードフォワード要素によ
り電動機の一次遅れ特性を補償できるから、指令に対す
る応答性を速めるとともに、外乱に対して変動の少ない
制御性能を得ることができる効果を有する。
According to the present invention, since the first-order lag characteristic of the electric motor can be compensated for by the added feedforward element, it is possible to speed up responsiveness to commands and to obtain control performance with less fluctuation in response to external disturbances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図は第1
図のブロック線図、第3図〜第5図は第2図の展開図で
ある。 1・・・電動機、2・・・電流変換器、3・・・ゲート
パルス発生器、5・・・電流制御回路、7・・・第1の
補償要素、8・・・第2の補償要素、9・・・第3の補
償要素。
Fig. 1 is a circuit diagram showing one embodiment of the present invention, and Fig. 2 is a circuit diagram showing an embodiment of the present invention.
The block diagram in the figure and FIGS. 3 to 5 are developed views of FIG. 2. DESCRIPTION OF SYMBOLS 1... Electric motor, 2... Current converter, 3... Gate pulse generator, 5... Current control circuit, 7... First compensation element, 8... Second compensation element , 9...Third compensation element.

Claims (1)

【特許請求の範囲】[Claims] 1、検出した電動機電流の平均値が電流指令と一致する
ように制御するための第1指令を出力する第1の電流制
御系と、検出した電動機電流の時間変化率が上記第1指
令と一致するように制御するための第2指令を出力する
第2の電流制御系とを有し、電動機電流を供給する電力
変換手段の出力電圧を上記第2指令により調整して電動
機電流を制御する電動機の電流制御装置において、電動
機の一次遅れ特性を補償するための、上記第1指令を入
力とする補償要素を設け、該要素の出力を上記第2指令
に加算する構成としたことを特徴とする電動機の電流制
御装置。
1. A first current control system that outputs a first command for controlling the average value of the detected motor current to match the current command, and a time rate of change of the detected motor current that matches the first command. and a second current control system that outputs a second command for controlling the motor current, and controls the motor current by adjusting the output voltage of a power conversion means that supplies the motor current according to the second command. The current control device is characterized in that a compensation element receiving the first command as an input is provided to compensate for the first-order lag characteristic of the electric motor, and the output of the element is added to the second command. Electric motor current control device.
JP63001240A 1988-01-08 1988-01-08 Electric current control device Expired - Lifetime JPH084395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63001240A JPH084395B2 (en) 1988-01-08 1988-01-08 Electric current control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001240A JPH084395B2 (en) 1988-01-08 1988-01-08 Electric current control device

Publications (2)

Publication Number Publication Date
JPH01177890A true JPH01177890A (en) 1989-07-14
JPH084395B2 JPH084395B2 (en) 1996-01-17

Family

ID=11495935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001240A Expired - Lifetime JPH084395B2 (en) 1988-01-08 1988-01-08 Electric current control device

Country Status (1)

Country Link
JP (1) JPH084395B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872372A (en) * 1981-10-26 1983-04-30 Hitachi Ltd Current controlling for power converter
JPS596781A (en) * 1982-07-01 1984-01-13 Mitsubishi Electric Corp Variable voltage control device for motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872372A (en) * 1981-10-26 1983-04-30 Hitachi Ltd Current controlling for power converter
JPS596781A (en) * 1982-07-01 1984-01-13 Mitsubishi Electric Corp Variable voltage control device for motor

Also Published As

Publication number Publication date
JPH084395B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JPS6146186A (en) Speed controlling method
JPH01177890A (en) Current controller for motor
JPS63187672A (en) Apd bias circuit
JPH0417570A (en) Voltage control method for inverter
JPH0638530A (en) Dc power source with feedforward control function
JP3284613B2 (en) Control circuit of PWM converter
JP2724124B2 (en) Maximum output tracking controller for solar cells
JP2005011004A (en) Positioning controller for electric motor
JPS596781A (en) Variable voltage control device for motor
SU881899A1 (en) Device for control of piezoelectric motor
JPS6225900A (en) Time division control type automatic voltage regulator
JPH061988B2 (en) Current control method for current source thyristor inverter
SU636629A1 (en) Integrator
JPH06276774A (en) Positioning control method for motor
JPS61147785A (en) Servo motor drive device
JPS6162102A (en) Control arithmetic unit
JPS62144584A (en) Speed controller for dc motor
JPS6169335A (en) Controller of stationary reactive power control device
SU944169A1 (en) Device for control of electric mode of electric arc furnace
JPS596780A (en) Variable voltage control device for motor
JPH04265682A (en) Servo amplifier provided with function for limiting upper limit rotational speed
JPS61240872A (en) Speed controller of motor
JPH01279304A (en) Integral proportion compensator for servo control system
JPH04317205A (en) Fet amplifier
SU809467A1 (en) Method and device for asynchronous regulating of dependent multiphase power-diode converter