JPH01177859A - Rotating method for shaft utilizing magnet and traveling method for truck - Google Patents

Rotating method for shaft utilizing magnet and traveling method for truck

Info

Publication number
JPH01177859A
JPH01177859A JP23588A JP23588A JPH01177859A JP H01177859 A JPH01177859 A JP H01177859A JP 23588 A JP23588 A JP 23588A JP 23588 A JP23588 A JP 23588A JP H01177859 A JPH01177859 A JP H01177859A
Authority
JP
Japan
Prior art keywords
magnet
fixed
superconductor
running
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23588A
Other languages
Japanese (ja)
Inventor
Tadahiro Yuki
結城 忠弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23588A priority Critical patent/JPH01177859A/en
Publication of JPH01177859A publication Critical patent/JPH01177859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To effectively convert magnetic energy into kinetic energy by utilizing the magnetic force of a strong magnet as an energy resource to apply a rotary power to a rotary shaft. CONSTITUTION:The lines of magnetic forces of a magnet 4 and a stationary magnet 5 are radiated from both faces of open side faces 7, 8 in term of the same pole polarity, and introduced into the frame of a superconductor 9 of completely diamagnetism by means of Meissner effect in term of the other polarity. Thus, a strong repelling force 24 is sequentially generated between the magnet 4 and the magnet 5 to move the magnet 4. Thus, rotary power is appled to the shaft 2 of a rotor 3.

Description

【発明の詳細な説明】 本発明は磁石1例えば、永久磁石、又は電磁石。[Detailed description of the invention] The present invention uses a magnet 1, for example, a permanent magnet or an electromagnet.

又は超電導体を介しての磁束発生装置を利用して軸を回
転させる方法、及びレールなどを介して台車が上下、左
右方向に安定するよう装置された軌道を走行する台車を
走行させる方法に関するものである。
Or related to a method of rotating a shaft using a magnetic flux generating device via a superconductor, and a method of running a bogie on a track equipped with rails etc. so that the bogie is stabilized vertically and horizontally. It is.

産油国から豊富に、しかも安価に入手することができた
石油資源に基いて、戦後急速な発展を続けてきたわが国
の産業、経済の将来、国民の文化生活の将来が、今や石
油の安定入荷の不安、又は原子力発電による不測の放射
線事故などの不安から不透明になったとして、代替エネ
ルギーの開発の重要性や省エネルギー、又は安全エネル
ギーの必要性が各方面において強調されている現状であ
る。
The future of Japan's industry, economy, and cultural life of Japan, which has continued to develop rapidly after the war based on the abundant and inexpensive oil resources available from oil-producing countries, now depends on a stable supply of oil. The importance of developing alternative energy, energy conservation, and the need for safe energy are currently being emphasized in various quarters, as the situation has become uncertain due to concerns about nuclear power generation and unforeseen radiation accidents caused by nuclear power generation.

このような国民の環境において、本発明は強力な磁性を
持った磁石、特に超電導体による超密度の磁束発生装置
などが開発されていることに着目し、このような強力な
磁石の磁力を原子力と同様に新しいエネルギー資源とし
て活用し、以って石油のような地下埋蔵エネルギー資源
の消費の節約と公害のない新エネルギーの開発を達成し
ようとするものである。
In such a national environment, the present invention focuses on the fact that magnets with strong magnetism, especially super-density magnetic flux generators using superconductors, have been developed. Similarly, it aims to utilize it as a new energy resource, thereby reducing the consumption of underground energy resources such as oil, and achieving the development of new energy without pollution.

前記の目的を達成するために、本発明における第1番目
の発明を以下において、図面に基いて詳細に説明する。
In order to achieve the above object, the first aspect of the present invention will be explained in detail below based on the drawings.

(1)は適当な台枠上に固定された複数の軸受であり、
(2)は回転自在な軸であり、軸(2)に円柱形状のロ
ーター(3)が軸支されている6本発明においては、ロ
ーター(3)は1個であることに限定されることなく、
複数個であても良い、(4)は適当な形状1例えば六面
立方体、又は大面長方体、又は円柱型状の磁石であり、
このような磁石(4)の複゛数が、それらの先端を同極
1例えばN極として、適当な間隔を置いてローター(3
)の外周に軸(2)の芯方向に、又はこの軸芯方向に対
して所定角(20)をもって着脱可能1例えば螺合結合
手段によって着脱可能に固着されている。(6)は適当
な固着安定装置(25)によって固着された中空枠体で
あって、(5)は適当な形状、例えば六面立方体、又は
大面長方立方体、又は円柱形状の固定磁石であり、中空
枠体(6)の内周に、複数個の磁石(5)が適当間隔を
置いて軸(2)芯方向に、又は所定の角度をとって着脱
可能1例えば螺合手段によって着脱可能に固着されてい
る。ローター(3)は中空枠体(6)内に内装され、複
数個の固定磁石(5)は磁石(4)の外周に位置するよ
うに、且つそれらの先端の磁極が磁石(4)の先端の磁
極と同極、例えばN極となるようにされているし、固定
磁石(5)の最先端と軸(2)との間隔は磁石(4)の
最先端と軸(2)との間隔よりも若干大であるようにさ
れている。
(1) is a plurality of bearings fixed on a suitable underframe,
(2) is a rotatable shaft, and a cylindrical rotor (3) is supported on the shaft (2).6 In the present invention, the number of rotors (3) is limited to one. Without,
There may be a plurality of magnets; (4) is a magnet with an appropriate shape 1, such as a hexagonal cube, a large rectangular parallelepiped, or a cylindrical shape;
A plurality of such magnets (4) are connected to the rotor (3
) is removably fixed to the outer periphery of the shaft (2) in the direction of the core of the shaft (2) or at a predetermined angle (20) with respect to the direction of the shaft. (6) is a hollow frame fixed by a suitable fixing and stabilizing device (25), and (5) is a fixed magnet of a suitable shape, such as a six-sided cube, a large-sided rectangular cube, or a cylindrical shape. A plurality of magnets (5) can be attached and detached on the inner periphery of the hollow frame (6) at appropriate intervals in the direction of the axis (2) or at a predetermined angle. Possibly fixed. The rotor (3) is housed inside a hollow frame (6), and the plurality of fixed magnets (5) are arranged so that they are located on the outer periphery of the magnet (4), and the magnetic poles at the tips thereof are arranged at the tips of the magnets (4). The magnetic pole is the same as the magnetic pole, for example, the N pole, and the distance between the leading edge of the fixed magnet (5) and the shaft (2) is the same as the distance between the leading edge of the magnet (4) and the shaft (2). It is designed to be slightly larger than the

固定磁石(5)と磁石(4)とはそれらが対向する最少
数の側面、即ち、磁石(4)の1つの側面(7)と、固
定磁石(5)の1つの側面(8)の両面、又は磁石(4
)の1つの側面(7)のみ、又は固定磁石(5)の1つ
の側面(8)、又は磁石(4)と(5)との相互有効反
発面を除いた他の全ての側面、又は所定する必要側面が
磁力線を反発し遮断する材料、即ち完全反磁性体1例え
ば、超電導体(9)にて被覆されている。
The fixed magnet (5) and the magnet (4) have the least number of opposing sides, i.e. one side (7) of the magnet (4) and one side (8) of the fixed magnet (5). , or magnet (4
), or only one side (8) of the fixed magnet (5), or all other sides except the mutually effective repulsive surfaces of the magnets (4) and (5), or a predetermined The necessary side surfaces are coated with a material that repels and blocks magnetic lines of force, ie a completely diamagnetic material 1, for example a superconductor (9).

このように構成された本発明の装置によれば、磁石(4
)と固定磁石(5)との磁力線は開放側面である(7)
と(8)の両面より同磁極の磁力線が放射され、他は完
全反磁性である超電導体(9)の枠内にマイスナー効果
により狩人された状態となる。
According to the device of the present invention configured in this way, the magnets (4
) and the fixed magnet (5) have open sides (7)
The magnetic field lines of the same magnetic pole are radiated from both sides of (8) and are hunted by the Meissner effect within the frame of the superconductor (9), which is otherwise completely diamagnetic.

このために磁石(4)と固定磁石(5)との磁極間にお
いて、側面(7)と側面(8)との間にて強力な反発力
(24)が順次発生するので、磁石(4)は矢印(10
)の方向に移動し、従ってローター(3)の軸(2)に
矢印(11)の回転動力を附与すること、ができるので
ある。
For this reason, a strong repulsive force (24) is sequentially generated between the magnetic poles of the magnet (4) and the fixed magnet (5), and between the side surfaces (7) and the side surfaces (8). is an arrow (10
) in the direction of the arrow (11), thus imparting the rotational power of the arrow (11) to the shaft (2) of the rotor (3).

なおまた、磁石(4)と、固定磁石(5)の各々の側面
の所定する必要側面を磁力線を反発し遮断する材料、即
ち完全反磁性体、例えば、超電導体(9)にて被覆する
ことで略前記と同様の軸(2)に回転力を附与すること
ができる。
Furthermore, predetermined necessary side surfaces of each of the magnet (4) and the fixed magnet (5) may be coated with a material that repels and blocks magnetic lines of force, that is, a completely diamagnetic material, such as a superconductor (9). It is possible to apply a rotational force to the shaft (2) which is substantially the same as that described above.

第2番目の発明は第1番目の発明の磁石(14)が略円
筒内面に装着された固定磁石(15)と反発し。
In the second invention, the magnet (14) of the first invention repels the fixed magnet (15) attached to the substantially inner surface of the cylinder.

回転するものを、装着された両磁石郡の相互反発発生部
で路面状に展開し、これを複数個連続させて磁石(14
)の円運動を線運動としたものである。
A rotating object is developed in the shape of a road surface at the mutual repulsion generating part of both magnet groups attached, and a plurality of these are connected in succession to form a magnet (14
) is converted into a linear motion.

即ち磁石(14)連が走行台車(13)の適当位置1例
えば台車(13)の下側において台車の進行方向に連続
して装着し、固定磁石(15)連を走行軌道の適当位置
1例えば2条のレール(16)間に敷設し、固定磁石(
15)と磁石(14)とはそれらが対向する最少必要側
面、即ち、磁石(14)の1つの側面(17)、と、固
定磁石(15)の1つの側面(18) 、の両面、又は
磁石(14)の1つの側面(17)のみ、又は固定磁石
(15)の1つの側面(ia)、又は磁石(14)と(
15)との相互有効反発面のみを除いた他の全ての側面
、又は所定する必要側面が磁力線を反発し遮断する材料
、即ち完全反磁性体1例えば、超電導体(9)にて被覆
されてマイスナー効果により不必要な磁力線は狩人され
た状態となる。このために磁石(4)と固定磁石(5)
との磁極間において、磁石(14)連と固定磁石(15
)連は互に反発し合い走行車(13)を矢印(19)と
走行さすものである。この走行軌道は直線は基より、曲
線状であっても良いことは言までもない。
That is, a series of magnets (14) are attached continuously in the traveling direction of the trolley (13) at an appropriate position 1, for example, on the underside of the trolley (13), and a series of fixed magnets (15) is attached at an appropriate position 1, for example, on the running track. Lay it between two rails (16) and attach a fixed magnet (
15) and the magnet (14) are the minimum necessary sides that face each other, i.e., one side (17) of the magnet (14) and one side (18) of the fixed magnet (15), or Only one side (17) of the magnet (14) or one side (ia) of the fixed magnet (15) or the magnet (14) and (
15) All other side surfaces except for the mutually effective repulsion surface with the magnetic field, or predetermined necessary side surfaces, are coated with a material that repels and blocks magnetic lines of force, i.e., a completely diamagnetic material 1, for example, a superconductor (9). Due to the Meissner effect, unnecessary magnetic lines of force become hunted. For this purpose magnet (4) and fixed magnet (5)
between the magnetic poles of the magnet (14) and the fixed magnet (15).
) series repel each other and cause the vehicle (13) to travel in the direction of the arrow (19). Needless to say, this running track may not be straight, but may be curved.

以上説明する如く1本発明の方法による装置を使用する
と1強力な磁石の磁力を新しいエネルギー資源として活
用し1回転軸に回転動力を附与することができるので、
この回転動力を種々の動力機械に伝達して動力機械を作
動させることができるし、またこの回転軸の回転動力に
て発電機を運転させるなら、磁気エネルギーを長期にわ
たり安定した電気エネルギーに、又、適当構造の軌道と
、これを走行する台車を介して、直線、又は適当曲線状
を介して運搬用の運動のエネルギーに転換させることな
どができ、磁石の角度(22)、(23)を変化さすこ
とにより走行台車を浮上させこれを略飛行さすことがで
きるなどの幾多の利点、特長を発揮するのであるから、
代替エネルギー問題や、省エネルギー問題を解決するの
に貢献するところが大である。
As explained above, when the device according to the method of the present invention is used, it is possible to utilize the magnetic force of a strong magnet as a new energy resource and impart rotational power to a rotating shaft.
This rotational power can be transmitted to various power machines to operate them, and if a generator is operated using the rotational power of this rotating shaft, magnetic energy can be converted into stable electrical energy over a long period of time. It is possible to convert the energy into kinetic energy for transportation via a track of an appropriate structure and a trolley running on it, either in a straight line or in an appropriate curved line, and by changing the angles (22) and (23) of the magnets. It has many advantages and features, such as being able to levitate the traveling truck by changing it and make it almost fly.
It greatly contributes to solving alternative energy issues and energy conservation issues.

【図面の簡単な説明】[Brief explanation of the drawing]

添附図面は本発明を例示するものであって。 第1図A、は1本発明に係る軸の回転装置の中央平面断
面図であり、B、の1点鎖線(12)の断面図B、はA
、の中央断面図である。 第2図A、は平面図であり、 B、はA、の断面図であ
る。 これらの図面において、(2)は軸、(3)はロータタ
ー、(4)は磁石、(5)は固定磁石、(6)は中空体
、(9)は完全反磁性体である超電導体、 (13)は
走行台車、 (14)は走行磁石、 (15)は固定磁
石、である。
The accompanying drawings illustrate the invention. FIG. 1A is a sectional view from the center plane of a shaft rotating device according to the present invention, and FIG.
, is a central cross-sectional view of . FIG. 2A is a plan view, and FIG. 2B is a sectional view of A. In these drawings, (2) is a shaft, (3) is a rotator, (4) is a magnet, (5) is a fixed magnet, (6) is a hollow body, (9) is a completely diamagnetic superconductor, (13) is a running trolley, (14) is a running magnet, and (15) is a fixed magnet.

Claims (1)

【特許請求の範囲】 1、回転自在な軸(2)に軸支されたローター(3)の
外周には適当な形状、例えば六面立方体、又は円柱形状
の磁石、例えば、永久磁石、又は電磁石、又は超電導体
を介しての磁束発生装置(4)の複数個が、それらの先
端を同極として、軸芯方向に対し所定角0を含む(20
)をもつて着脱可能に固着されているローター(3)と
、該ローター(3)が内装されている中空枠体(6)で
あつて、該中空枠体(6)の内周において適当な形状、
例えば六面立方体、又は円柱形状の固定磁石、例えば、
永久磁石、又は電磁石、又は超電導体を介しての磁束発
生装置(5)の複数個が、ローター(3)に固着された
磁石(4)の外周に位置するように、且つそれらの先端
の磁極が磁石の先端磁極と同極となるように、軸芯方向
に対し所定角0を含む(21)をもつて着脱可能に装着
されている中空枠体(6)とを使用し、固定磁石(5)
の先端と軸(2)との間隔は、磁石(4)の最先端と軸
(2)との間隔よりも若干大であるように該ローター(
3)を該中空枠体(6)内に装備し、固定磁石(5)と
磁石(4)とは、それらが対向する最少必要側面、例え
ば側面(7)のみ、又は側面(8)のみ、又は側面(7
)、及び側面(8)の両面、又は磁石(4)と磁石(5
)との相互有効反発面を除いた他の全ての側面、又は所
定する必要面を磁力線を反発し遮断する材料、即ち完全
反磁性材、例えば超電導体にて被覆し、固定磁石(5)
と回動磁石(4)の磁極間の連続反発力によつてロータ
ー(3)の軸(2)を矢印(11)と回転させることを
特徴とする磁石を利用する軸の回転方法。 2、走行自在な軌道台車(13)の適当位置、例えば下
方に適当な形状、例えば六面立方体、又は円柱形状の走
行磁石、例えば、永久磁石、又は電磁石、又は超電導体
を介しての磁束発生装置(14)の複数個が、それらの
先端を一定方向とし、磁極を同極とし、走行方向に対し
て所定角0を含む(23)をもつて着脱可能に固着され
ていて、走行台車(13)の走行する走行軌道の適当位
置、例えばレール(16)間で、走行磁石に対面する側
に固定磁石、例えば、永久磁石、又は電磁石、又は超電
導体を介しての磁束発生装置(15)を走行磁石の先端
面と適当間隔離して複数個、適当な間隔で、軌導方行に
向け所定角0を含む(22)をもつて配設し、固定磁石
(15)と走行磁石(14)には、それらが対向し有効
に反発する最少必要側面、例えば側面(17)のみ、又
は側面(18)のみ、又は側面(17)、及び側面(1
8)の両面、又は磁石(14)と(15)との相互反発
有効面を除いた他の全ての側面、又は所定する必要面を
磁力線を反発し遮断する材料、即ち完全反磁性材、例え
ば超電導体にて被覆し、固定磁石(15)と走行磁石(
14)の磁極間の連続反発力によつて台車(13)を矢
印(19)と走行させることを特徴とする磁石を利用す
る台車の走行方法。
[Claims] 1. On the outer periphery of the rotor (3) supported by a rotatable shaft (2), there is a magnet of an appropriate shape, such as a six-sided cube or a cylinder, such as a permanent magnet or an electromagnet. , or a plurality of magnetic flux generating devices (4) via a superconductor, with their tips at the same pole, including a predetermined angle of 0 with respect to the axial direction (20
), and a hollow frame (6) in which the rotor (3) is housed, with a suitable shape,
For example, a hexagonal cubic or cylindrical fixed magnet, for example,
A plurality of permanent magnets, electromagnets, or magnetic flux generating devices (5) via superconductors are positioned on the outer periphery of the magnet (4) fixed to the rotor (3), and the magnetic poles at the tips thereof are The fixed magnet ( 5)
The rotor (
3) is installed in the hollow frame (6), and the fixed magnet (5) and the magnet (4) face the minimum required side surface, for example, only the side surface (7) or only the side surface (8), Or side (7
), and both sides of the side (8), or magnet (4) and magnet (5)
), or a predetermined necessary surface is coated with a material that repels and blocks magnetic lines of force, that is, a completely diamagnetic material, such as a superconductor, and the fixed magnet (5)
A method of rotating a shaft using a magnet, characterized in that the shaft (2) of a rotor (3) is rotated in the direction of an arrow (11) by continuous repulsive force between the magnetic poles of a rotating magnet (4). 2. Generating magnetic flux through a running magnet, such as a permanent magnet, an electromagnet, or a superconductor, in an appropriate shape, such as a hexagonal cube or a cylinder, at an appropriate position, for example, below the movable track bogie (13). A plurality of devices (14) are removably fixed with their tips in a certain direction, with magnetic poles of the same polarity, and at a predetermined angle (23) including 0 with respect to the traveling direction, and are attached to the traveling trolley ( 13) A fixed magnet, such as a permanent magnet, an electromagnet, or a magnetic flux generating device (15) via a superconductor, on the side facing the running magnet at an appropriate position on the running track, for example between the rails (16). The fixed magnet (15) and the running magnet (14) are arranged at appropriate intervals with a predetermined angle (22) including 0 in the direction of the trajectory. ) have the minimum necessary sides that face and effectively repel, for example only side (17), or only side (18), or side (17) and side (1).
8), or all other sides except for the mutually repulsive effective surfaces of the magnets (14) and (15), or a predetermined necessary surface with a material that repels and blocks magnetic lines of force, i.e., a completely diamagnetic material, e.g. Covered with superconductor, fixed magnet (15) and running magnet (
14) A method of running a trolley using a magnet, characterized in that the trolley (13) is caused to travel in the direction of the arrow (19) by continuous repulsive force between the magnetic poles.
JP23588A 1988-01-03 1988-01-03 Rotating method for shaft utilizing magnet and traveling method for truck Pending JPH01177859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23588A JPH01177859A (en) 1988-01-03 1988-01-03 Rotating method for shaft utilizing magnet and traveling method for truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23588A JPH01177859A (en) 1988-01-03 1988-01-03 Rotating method for shaft utilizing magnet and traveling method for truck

Publications (1)

Publication Number Publication Date
JPH01177859A true JPH01177859A (en) 1989-07-14

Family

ID=11468306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23588A Pending JPH01177859A (en) 1988-01-03 1988-01-03 Rotating method for shaft utilizing magnet and traveling method for truck

Country Status (1)

Country Link
JP (1) JPH01177859A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072431A1 (en) * 1999-05-21 2000-11-30 Park Byung Sun Magnetic dynamo using rotation phenomenon by the repulsive force of permanent magnet
WO2001057994A1 (en) * 2000-02-02 2001-08-09 Hoon Chul Lim Rotating power generator and electric generator using magnet
KR20020062244A (en) * 2002-06-11 2002-07-25 김성환 Natural energy
KR20030063750A (en) * 2002-01-23 2003-07-31 전상형 Rotation Device by using magnet
KR20030065247A (en) * 2002-01-29 2003-08-06 이재학 The Superconducting round equipment
WO2004093297A1 (en) * 2003-04-17 2004-10-28 Man-Suk Park Rotating apparatus using a magnet and rotating decoration employing the same
WO2007131434A1 (en) * 2006-05-11 2007-11-22 Lu, Yumin Permanent magnetic force motor
JP2009112187A (en) * 2007-10-09 2009-05-21 Nsi:Kk Rotating device and bubble generator having the same
WO2011063668A1 (en) * 2009-11-27 2011-06-03 陆毓敏 Permanent magnetic force motor
JP2014165993A (en) * 2013-02-22 2014-09-08 Junichi Tsukasa Movement mechanism
WO2021069764A1 (en) * 2019-10-09 2021-04-15 Hernandez Herrero Juan System for the propulsion of a mobile object by means of magnetic impulses

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072431A1 (en) * 1999-05-21 2000-11-30 Park Byung Sun Magnetic dynamo using rotation phenomenon by the repulsive force of permanent magnet
WO2001057994A1 (en) * 2000-02-02 2001-08-09 Hoon Chul Lim Rotating power generator and electric generator using magnet
KR20030063750A (en) * 2002-01-23 2003-07-31 전상형 Rotation Device by using magnet
KR20030065247A (en) * 2002-01-29 2003-08-06 이재학 The Superconducting round equipment
KR20020062244A (en) * 2002-06-11 2002-07-25 김성환 Natural energy
WO2004093297A1 (en) * 2003-04-17 2004-10-28 Man-Suk Park Rotating apparatus using a magnet and rotating decoration employing the same
WO2007131434A1 (en) * 2006-05-11 2007-11-22 Lu, Yumin Permanent magnetic force motor
JP2009112187A (en) * 2007-10-09 2009-05-21 Nsi:Kk Rotating device and bubble generator having the same
WO2011063668A1 (en) * 2009-11-27 2011-06-03 陆毓敏 Permanent magnetic force motor
JP2014165993A (en) * 2013-02-22 2014-09-08 Junichi Tsukasa Movement mechanism
WO2021069764A1 (en) * 2019-10-09 2021-04-15 Hernandez Herrero Juan System for the propulsion of a mobile object by means of magnetic impulses

Similar Documents

Publication Publication Date Title
CN106416023B (en) Electrical whirler
Jayawant Review lecture-electromagnetic suspension and levitation techniques
Jayawant Electromagnetic suspension and levitation
CN103595301B (en) Magnetic force suspension robot for operation of overhead high-tension power transmission line
JPH01177859A (en) Rotating method for shaft utilizing magnet and traveling method for truck
US8766493B2 (en) Magnetic stator assembly
Jayawant Electromagnetic suspension and levitation
CN105128692A (en) High-speed magnetic suspension linear propulsion system
CN102856032A (en) Installation method of Halbach structure permanent magnet
CA2781694A1 (en) Magnetic rotational device comprising arrays of staggered permanent magnets around the rotor
US20110277659A1 (en) Dynamic magnetic suspension propeller
CN108539959B (en) Magnet rotating device, method for stably rotating magnet and magnetic brake system
WO2018073880A1 (en) New type motor/generator, new type engine, new type turbine, and new type magnetic levitation train
CN113997797B (en) Permanent magnet electric suspension guiding driving integrated device
JPH01177860A (en) Rotating method for shaft utilizing magnet and diamagnetic material and traveling method for truck
JPH01152979A (en) Rotation of shaft and running of carrier utilizing permanent magnet
JPH01126155A (en) Rotating method for shaft using permanent magnet, and running method for truck
KR20180116724A (en) A Rotor using Magnetic force and It's Stator and Rotor Installation Structure
JPH0332379A (en) Permanent rotating engine
Poloujadoff Linear induction machines I. History and theory of operation
CN110697083B (en) Simulation device for controlling configuration of microsatellite by utilizing high-temperature superconducting permanent magnet interaction force
JPH10164822A (en) Permanent motor and motor to which it is applied
WO2022265260A1 (en) Ring-shaped permanent magnet
Aaland et al. Ideas and Experiments in Magnetic Interfacing
WO1989000357A3 (en) Method and apparatus for converting stationary magnetic energy into mechanical energy