JPH01177422A - Gas turbine plant - Google Patents

Gas turbine plant

Info

Publication number
JPH01177422A
JPH01177422A JP33323987A JP33323987A JPH01177422A JP H01177422 A JPH01177422 A JP H01177422A JP 33323987 A JP33323987 A JP 33323987A JP 33323987 A JP33323987 A JP 33323987A JP H01177422 A JPH01177422 A JP H01177422A
Authority
JP
Japan
Prior art keywords
gas turbine
compressor
combustion air
drive shaft
variable speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33323987A
Other languages
Japanese (ja)
Inventor
Akihiko Fujimoto
明彦 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33323987A priority Critical patent/JPH01177422A/en
Publication of JPH01177422A publication Critical patent/JPH01177422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To ensure the simple and proper adjustment of the supply quantity of combustion air and enhance the overall efficiency of a plant by connecting the drive shaft of a gas turbine to the drive shaft of a compressor for supplying the combustion air to the gas turbine via a variable speed coupling. CONSTITUTION:The combustion gas of a gas turbine 1 is supplied to an exhaust gas boiler 2 and feed water C from a pump 3 is heated therein, thereby generating steam. Compressor 4 is driven with the gas turbine 1 and combustion air A is supplied to the gas turbine 1. Also, the gas turbine 1 is connected to a generator 6 via a steam turbine 7. In the aforesaid constitution, a drive shaft 5a for the compressor 4 and another drive shaft 5b for the gas turbine 1 are provided respectively and connected to each other via a variable speed coupling 11. Furthermore, for example, the quantity of the combustion air A at the outlet of the compressor 4 is made controllable and a control device 12 is provided for the feedback control of the variable speed coupling 11.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガスタービンに燃焼用空気を送る圧縮機がガ
スタービンにより駆動されるガスタービンプラントに関
する。しかしながら、これに限らず加圧流動床ボイラに
燃焼用又は流動用空気を送る圧縮機がガスタービンによ
り駆動されるガスタービンプラントにも適用されるもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas turbine plant in which a compressor for supplying combustion air to a gas turbine is driven by a gas turbine. However, the present invention is not limited to this, and can also be applied to a gas turbine plant in which a compressor that sends combustion or fluidized air to a pressurized fluidized bed boiler is driven by a gas turbine.

従来の技術 周知の技術であるガスタ−ビンプラントて、燃焼用空気
の圧縮機はガスタービンにより駆動されるのが一般的で
ある。
BACKGROUND OF THE INVENTION In gas turbine plants, which are well known in the art, the combustion air compressor is typically driven by a gas turbine.

例えば、第5図に示すように、ガスタービンlの燃焼ガ
スを排ガスボイラ2に供給し、給水ポンプ3から送られ
た給水を加熱して蒸気を発生させるガスタービンプラン
トでは、ガスタービン1に燃焼用空気を送る圧縮機4が
駆動軸5を介してガスタービンlによって駆動されてい
た。また、他の例として加圧流動床ボイラ(図示されず
)の燃焼ガスを用いてガスタービンを駆動させるガスタ
ービンプラントでは、加圧流動床ボイラに燃焼用もしく
は流動用空気を送る圧縮機がガスタービンによって駆動
されるものもあった。
For example, as shown in FIG. 5, in a gas turbine plant in which combustion gas from a gas turbine 1 is supplied to an exhaust gas boiler 2 and feed water sent from a feed water pump 3 is heated to generate steam, the gas turbine 1 is A compressor 4 for supplying air for use was driven by a gas turbine 1 via a drive shaft 5. In addition, as another example, in a gas turbine plant that uses combustion gas from a pressurized fluidized bed boiler (not shown) to drive a gas turbine, a compressor that sends combustion or fluidized air to the pressurized fluidized bed boiler is equipped with a gas turbine. Some were powered by turbines.

さて、図に示す如くガスタービン!は通常発電機6に接
続し、このプラントではその間に蒸気タービン7を同軸
に設置したものである。もちろん、この蒸気タービンの
ないプラントも多く使用されていることは云うまでもな
いが、この場合、ガスタービンプラントにおける発電機
6は一定の回転−度で運転することが望ましいため、そ
の発電機6′ を駆動させるためのガスタービン1の駆動軸〜の回転速
度を一定とするよう、ガスタービン1への燃焼用空気の
量又は圧力の制御は、そのガスタービンに接続する圧縮
機4の上流側若しくは下流側に設けたダンパ、ベーン又
はバルブ等(図示されず)により行っていた。なお、図
中、符号8は燃焼器、9は電動機、及び10は煙突を夫
々示す。
Now, as shown in the figure, it's a gas turbine! is normally connected to a generator 6, and in this plant, a steam turbine 7 is installed coaxially between them. Of course, it goes without saying that many plants without this steam turbine are also used, but in this case, it is desirable that the generator 6 in the gas turbine plant be operated at a constant rotation degree, so the generator 6 The amount or pressure of combustion air to the gas turbine 1 is controlled by the upstream side of the compressor 4 connected to the gas turbine so as to keep the rotational speed of the drive shaft of the gas turbine 1 constant. Alternatively, this was done using a damper, vane, valve, etc. (not shown) provided on the downstream side. In the figure, reference numeral 8 indicates a combustor, 9 indicates an electric motor, and 10 indicates a chimney.

発明が解決しようとする問題点 以上述べた従来のガスタービンプラントでは、圧縮機4
は略一定の回転速度で運転されていたため、例えば発電
機負荷が低下したときガスタービンでの燃料消費が減少
し、必要燃焼用空気量も減少するようなときには、前述
の如く圧縮機4の回転数を低減する方向へ制限すること
ができなかったので、その代わりに、前記ダンパ、ベー
ン又はバルブ等をガスタービンlと圧縮機4間の空気系
統に配置し、これらの開開操作で制御せざるを得なかっ
た。
Problems to be Solved by the Invention In the conventional gas turbine plant described above, the compressor 4
Since the compressor 4 was operated at a substantially constant rotational speed, for example, when the generator load decreases, the fuel consumption in the gas turbine decreases, and the required amount of combustion air also decreases, the rotation of the compressor 4 changes as described above. Since it was not possible to limit the number of dampers, vanes, valves, etc., were placed in the air system between the gas turbine 1 and the compressor 4, and the dampers, vanes, valves, etc. I had no choice.

この場合、第6図で示す圧縮機の流量−揚程特性曲線(
Q −Hカーブ)に基づいて、ダンパ、ベーン又はバル
ブ等で燃焼用空気の圧力損失を変化させ、圧縮機4の差
圧を変えることにより、前記特性曲線上での運転点を変
化させ、燃焼用空気流量を制御していた。
In this case, the flow rate-head characteristic curve of the compressor shown in Fig. 6 (
By changing the pressure loss of combustion air using a damper, vane, or valve, etc., and changing the differential pressure of the compressor 4 based on the Q-H curve, the operating point on the characteristic curve is changed, and the combustion controlled the air flow rate.

ところが、燃焼用空気の量又は圧力の制御をダンパ、ベ
ーン又はバルブ等により行うことは、夫々にエネルギー
の損失、即ち圧力損失が生じ、ガスタービンプラント全
体の効率を低下させる不都合があった。
However, controlling the amount or pressure of combustion air using a damper, vane, valve, or the like causes a loss of energy, that is, a loss of pressure, which inconveniently reduces the efficiency of the entire gas turbine plant.

問題点を解決するための手段 本発明は、このような従来の問題点を解決するために、
ガスタービンプラントにおいて、ガスタービンに燃焼用
空気を送る圧縮機の駆動軸と、ガスタービンの駆動軸と
を可変速継手を介して接続し、圧縮機出口の燃焼用空気
量を制御量として該燃焼用空気量の測定値と目標値との
制御偏差を前記可変速継手にフィードバックする制御装
置を設けたものである。
Means for Solving the Problems In order to solve these conventional problems, the present invention provides the following:
In a gas turbine plant, the drive shaft of a compressor that sends combustion air to the gas turbine is connected to the drive shaft of the gas turbine through a variable speed joint, and the amount of combustion air at the outlet of the compressor is used as a control variable to control the combustion. A control device is provided which feeds back a control deviation between the measured value and the target value of the amount of air used to the variable speed joint.

作用 従って、圧縮機を可変速継手を介してガスタービン≠会
≠幸により駆動させるため、この可変速継手により圧縮
機の回転速度を変化させて適切なブ等を不要にして、こ
れらで失われていたエネルギーの損失をなくすことがで
きる。
Therefore, since the compressor is driven by the gas turbine via the variable speed joint, the rotational speed of the compressor is changed by the variable speed joint, eliminating the need for appropriate brakes and reducing the amount of energy lost by these. It is possible to eliminate the energy loss that would otherwise have occurred.

実施例 以下第1〜4図を参照して、本発明による実施例につい
て説明する。
EXAMPLES Hereinafter, examples according to the present invention will be described with reference to FIGS. 1 to 4.

しかして、第1図に示すように、ガスタービン1に燃焼
用空気を送る圧縮機4と、ガスタービンlとを接続する
従来の駆動軸5(第5図参照)に代えて、この駆動軸5
を縁切りした、図に示す如く圧縮機4用の駆動軸5aと
、ガスタービン1用の駆動軸5bとを夫々設けて、両部
動軸端部には可変速継手11を接続している。
As shown in FIG. 1, this drive shaft is used instead of the conventional drive shaft 5 (see FIG. 5) that connects the compressor 4 that sends combustion air to the gas turbine 1 and the gas turbine l. 5
As shown in the figure, a drive shaft 5a for the compressor 4 and a drive shaft 5b for the gas turbine 1 are provided, respectively, and a variable speed joint 11 is connected to the ends of both drive shafts.

そして、本発明によるガスタービンプラントには、例え
ば圧縮機4出口の燃焼用空気量を制御量としてこの可変
速継手にフィードバック制御を行う制御量R12を設け
ている。。
The gas turbine plant according to the present invention is provided with a control variable R12 that performs feedback control on the variable speed joint by using, for example, the amount of combustion air at the outlet of the compressor 4 as a control variable. .

即ち、第2図に良く示すように、この制御装置は、ガス
タービンlの駆動軸5bから圧縮機4の駆動軸5aへ伝
達する回転数が可変速継手11を介して増減するよう設
置したもので、圧縮機4出口の燃焼用空気量を制御量と
して、目標(必要)値との制御偏差を可変速継手11に
フィードバックする。
That is, as clearly shown in FIG. 2, this control device is installed so that the rotational speed transmitted from the drive shaft 5b of the gas turbine 1 to the drive shaft 5a of the compressor 4 can be increased or decreased via the variable speed joint 11. Then, using the amount of combustion air at the outlet of the compressor 4 as a control amount, the control deviation from the target (required) value is fed back to the variable speed joint 11.

このため、制御装置12は大略、圧縮機4出口側に設け
られた燃焼用空気量を測定する流量計13と、後述する
運転点の導入方法により設定された燃焼用空気量の目標
値を送り出す4ための設定部14と、この設定部からの
空気量要求信号を受けて指示された目標値と前述の流量
計13から検出される測定値とを比較演算する演算器1
5と、これから導かれる動作信号の値によって次の操作
部となる可変速継手11に必要な訂正信号、つまり修正
の回転数を送り出す調節部16とからなっている。
For this reason, the control device 12 generally sends out a target value for the amount of combustion air set by a flow meter 13 provided on the outlet side of the compressor 4 that measures the amount of combustion air and a method of introducing an operating point to be described later. a setting section 14 for 4, and a computing unit 1 that compares and calculates a target value instructed in response to an air amount request signal from this setting section and a measured value detected from the aforementioned flow meter 13.
5, and an adjusting section 16 which sends out a necessary correction signal, that is, a corrected rotational speed, to the variable speed joint 11, which is the next operating section, based on the value of the operating signal derived from the operating signal.

以上のような構成により、ガスタービンlと蒸気タービ
ン7とは出力軸6′を発電機6に接続して駆動し、ガス
タービンlへの燃焼用空気は圧縮゛機4により圧縮され
ガスタービンlに送られる。
With the above configuration, the gas turbine 1 and the steam turbine 7 are driven by connecting the output shaft 6' to the generator 6, and the combustion air to the gas turbine 1 is compressed by the compressor 4, and the gas turbine 1 is compressed by the compressor 4. sent to.

る。なお、圧縮機1は電動機9により駆動するトさス; さ由5はガスタービンプラントの起動時等に用いる。Ru. Note that the compressor 1 is driven by an electric motor 9; The shaft 5 is used when starting up a gas turbine plant.

そして、プラントの運転中、発電機6負荷が上昇・低下
して、ガスタービン!での燃料消費が増減し、必要燃焼
空気量も増減するようなときは、そのガスタービンに供
される空気流量が常に適正となるよう圧縮機4の回転数
を変えてガスタービン1に送られる燃焼用空気量を変化
させれば良い。
Then, while the plant is operating, the generator 6 load increases and decreases, and the gas turbine! When fuel consumption increases or decreases, and the required amount of combustion air also increases or decreases, the rotation speed of the compressor 4 is changed so that the amount of air supplied to the gas turbine is always appropriate, and the air is sent to the gas turbine 1. All you have to do is change the amount of combustion air.

このため圧縮機4とガスタービン1の各駆動軸5a。For this purpose, each drive shaft 5a of the compressor 4 and the gas turbine 1.

1Q5bに接続した可変速継手11の操作によりその回
転数を制御することとなる。
The rotation speed is controlled by operating the variable speed joint 11 connected to 1Q5b.

しかして、圧縮機4の回転数を調整する理由について説
明すると、第3図に示すように、この圧縮機の回転数n
を変化させると、空気流量Qは回転数nに比例して、ま
た揚程(圧縮機で得られる差圧)Hはnのへ乗に比例し
て容易に目標の空気流量を得ることができるからであり
、従って、圧縮機4の回転数が可変速継手、11の機械
的な操作により制御することが可能だからである。
Therefore, to explain the reason for adjusting the rotation speed of the compressor 4, as shown in FIG. 3, the rotation speed n of this compressor is
By changing , the air flow rate Q is proportional to the rotation speed n, and the head (differential pressure obtained by the compressor) H is proportional to the power of n, so the target air flow rate can be easily obtained. Therefore, the rotation speed of the compressor 4 can be controlled by mechanical operation of the variable speed joint 11.

一方、第4図において、圧縮機4の回転数nに対する特
性曲線(Q −Fl  カーブ)の変化の概要を示して
おり、通常、ある空気量が流れたときの系統の圧力損失
の値1’l(システム圧損)はほぼ−様に決まるため、
ガスタービン必要空気量に対する必要揚程も一通りに定
まることとなる。
On the other hand, Fig. 4 shows an overview of the change in the characteristic curve (Q - Fl curve) with respect to the rotation speed n of the compressor 4, and normally the value of pressure loss in the system when a certain amount of air flows is 1' Since l (system pressure loss) is determined approximately in a - manner,
The required head for the required air amount of the gas turbine will also be determined.

そこで、ガスタービンlに必要とされる燃焼用空気量に
対しては、前記の第3図のデータと第4図のデータとを
重ね合わせ、揚程とシステム圧損とを等しく採ることに
より、最適な運転点が求まり、制御装置12における設
定部14での燃焼用空気量(又は圧力)の目標値を設定
することができる。
Therefore, the amount of combustion air required for the gas turbine 1 can be determined optimally by overlapping the data in Figure 3 and the data in Figure 4, and by taking the head and system pressure drop equally. The operating point is determined, and the target value of the combustion air amount (or pressure) can be set in the setting section 14 of the control device 12.

そして、この目標値と、圧縮機4出口で流量計13によ
り検出された制御量となる燃焼用空気量の測定値との制
御偏差をフィードバックすることにより、駆動軸5aを
介して可変速継手11による圧縮機4の回転数が確実に
制御された後、ガスタービン1へは適正な燃焼用空気量
を送れることとなる。
Then, by feeding back the control deviation between this target value and the measured value of the amount of combustion air, which is the control amount detected by the flow meter 13 at the outlet of the compressor 4, the variable speed joint 11 After the rotational speed of the compressor 4 is reliably controlled, an appropriate amount of combustion air can be sent to the gas turbine 1.

゛ しかしながら、本発明によれば、測定対象は前述の
圧縮機4出口での燃焼用空気量だけに限定されるもので
はなく、他の実施例として、ガスタービンl出口の酸素
濃度や同じくガスタービン1出口の燃焼(排)ガス量等
によってなされても良い。
゛ However, according to the present invention, the measurement target is not limited to the amount of combustion air at the compressor 4 outlet described above, but can also be measured by the oxygen concentration at the gas turbine 1 outlet or the gas turbine 1 outlet. It may also be determined by the amount of combustion (exhaust) gas at one outlet.

また、可変速継手11の操作においても前述のフィード
バック制御に限定されるものではなく、他の実施例と8
ガスタービンl負荷や燃料流量に対し所定の圧縮機4の
回転数とする公知の技術による制御方式が採用されても
良いことは云うまでもない。
Furthermore, the operation of the variable speed joint 11 is not limited to the above-described feedback control, and may be performed using other embodiments or 8.
It goes without saying that a control method based on a known technique may be adopted in which the rotation speed of the compressor 4 is set to a predetermined number with respect to the gas turbine load and fuel flow rate.

発明の効果 以上の結果、発電機の負荷変動等が生じた場合に、可変
速継手の制御により圧縮機側の回転数を調整することで
ガスタービンへの必要空気量を容易に、かつ確実に供給
することができるため、従来、使用されていたダンパ、
ベーン又はパルプ等の装置を基本的に不要とするので、
これらに発生した圧力損失をなくし、よってガスタービ
ンプラント全体の効率を高めることができる。
As a result of the invention, the amount of air required for the gas turbine can be easily and reliably adjusted by controlling the speed of the compressor by controlling the variable speed joint when load fluctuations occur on the generator. Dampers, which were traditionally used, can be supplied with
Since equipment such as vanes or pulp is basically unnecessary,
It is possible to eliminate the pressure loss generated in these, thereby increasing the efficiency of the entire gas turbine plant.

また、制御性向上の観点からダンパ、ベーン、又はバル
ブ等を可変速継手と併設して同時に制御に用いる場合に
も、従来と比較してエネルギーの損失を低減できる。
Furthermore, even when a damper, vane, valve, or the like is installed together with a variable speed joint and used for control at the same time from the viewpoint of improving controllability, energy loss can be reduced compared to the conventional method.

更に、圧縮機の消費する軸動力の低減分は、発電機によ
り有効に回収される。
Furthermore, the reduced shaft power consumed by the compressor is effectively recovered by the generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガスタービンプラントの一例を示
す系統図、第2図は圧縮機の回転数をフィードバックす
る制御装置を示す系統図、第3図は圧縮機の回転数を変
化させたときの流量−揚程特性曲線(Q −Hカーブ)
図、第4図は圧縮機の回転数に対する流量−システム圧
損特性曲線図、第5図は従来のガスタービンプラントを
示す系統図、第6図は圧縮機のある一定回転数での滝壷
−揚程酌 特性曲倉接ある。 l・・ガスタービン、4・・圧縮機、5a・・圧縮機の
駆動軸、5b・・ガスタービンの駆動軸、11・・可変
速継手、12・・制御装置。 第1図 1 :カ′人タービ゛ン 4:圧縮橿。 5(1:圧縮後峻動徊 5b:ゴスタービンpj!動軸 11:可変梨I佳手 12:制御装置 第2図 第3因 第4図 Oq気流量0 □ 第5図 第す図 手続補正書(自発) 昭和63年2月17日 特許庁長官 小 川  邦 夫 殿 1、事件の表示   特願昭62年333239号2、
発明の名称   ガスタービンプラント3、補正をする
者  事件との関係 特許出願人名称   三菱重工業
株式会社 4、代 理 人   〒100東京都千代田区有楽町−
丁目8番1号「発明の詳細な説明」の欄、並びに 図面の第1図及び第2図 6、補正の内容 [■]明細書を次のように補正します。 (1)特許請求の範囲を別紙のとおり訂正。 (2)第1頁第16行「しかしながら、」の後に「本発
明は、」を加入。 (3)第2頁において、第15行「図」を「第5図」と
訂正、第16行「この」を「またこの第5図に示す」と
訂正、第17行「したものである。」を「している。」
と訂正、第19行「ないが、この場合」を「ない。そし
て、」と訂正。 (4)第4頁第16〜19行「、圧縮機・・・設け」を
削除。 (5)第5頁において、第1行「従って」の前に「この
ような手段によれば、」を加入、第9行「による」を「
の」と訂正、第1O行「説明する。」の後に「なお、第
1図において、第5図に示したものと同一の部分には同
一の符号を付して、その詳細な説明は省略する。」を加
入、第18〜19行「本発明・・・例えば」を「本実施
例によれば、」と訂正。 (6)第7頁において、第4〜5行「圧縮機・・・用い
る。」を「ガスタービンプラントの起動時等においては
、圧縮機lは継手17を介して電動機9により駆動する
こともできる。」と訂正。 (7)第9頁において、第1行「しかし・・・よれば」
を「なお」と訂正、第13行「の結果」を「述べたよう
に、本発明によれば、」と訂正。 [11]図面の第1及び2図をそれぞれ別紙のとおり訂
正します。 特許請求の範囲 ガスタービンに燃焼用空気を送る圧縮機の駆動軸と、ガ
スタービンの駆動軸とを可変速継手を介して接続したこ
とを特徴とするガスタービンプラント。 第1図 1 :力1人タービン 4:圧縮線・ 51;圧縮後峻動徊 5ら:ゴスタービン憶動軸 11:可変距U味手 12:制岬装置
Fig. 1 is a system diagram showing an example of a gas turbine plant according to the present invention, Fig. 2 is a system diagram showing a control device that feeds back the rotation speed of the compressor, and Fig. 3 is a system diagram showing a control device that feeds back the rotation speed of the compressor. Flow rate-head characteristic curve (Q-H curve)
Fig. 4 is a flow rate-system pressure drop characteristic curve diagram with respect to the rotation speed of the compressor, Fig. 5 is a system diagram showing a conventional gas turbine plant, and Fig. 6 is a waterfall basin-lift height at a certain rotation speed of the compressor. There is a kakukura-touchi characteristic of the sake cup. l...Gas turbine, 4...Compressor, 5a...Compressor drive shaft, 5b...Gas turbine drive shaft, 11...Variable speed joint, 12...Control device. Figure 1 1: Car turbine 4: Compression rod. 5 (1: Steep movement after compression 5b: Gosturbin pj! Axis of movement 11: Variable position I/O 12: Control device Figure 2 Figure 3 Cause Figure 4 Oq air flow rate 0 □ Figure 5 Figure 2 Procedure amendment (Voluntary) February 17, 1988 Kunio Ogawa, Commissioner of the Patent Office 1, Indication of the case Patent Application No. 333239 of 1988 2,
Title of the invention Gas turbine plant 3, person making the amendment Relationship to the case Patent applicant name Mitsubishi Heavy Industries, Ltd. 4, agent Yurakucho, Chiyoda-ku, Tokyo 100-
The column of "Detailed Description of the Invention" in No. 8-1, Figures 1 and 2 of the drawings, 6, and the content of the amendment [■] The description will be amended as follows. (1) The scope of claims has been amended as shown in the attached sheet. (2) On page 1, line 16, after “however,” add “the present invention”. (3) On page 2, "Figure" in line 15 is corrected to "Figure 5,""this" in line 16 is corrected to "also shown in this figure 5," and line 17 says "This is what we did." .” is “doing.”
In line 19, "No, but in this case" was corrected to "No, and." (4) Page 4, lines 16 to 19, ``Providing a compressor...'' was deleted. (5) On page 5, add ``by such means'' before ``therefore'' in the first line, and change ``by'' to ``by'' in the 9th line.
"," was corrected, and after "Explain" in line 1O, "In addition, in Figure 1, the same parts as shown in Figure 5 are given the same reference numerals, and detailed explanations thereof are omitted. In lines 18 and 19, ``The present invention...for example'' was corrected to ``According to this embodiment.'' (6) On page 7, in lines 4 and 5, "Compressor... is used." I can do it.'' I corrected myself. (7) On page 9, line 1: “However…”
In line 13, ``result of'' was corrected to ``as stated, according to the present invention.'' [11] Figures 1 and 2 of the drawings are corrected as shown in the attached sheets. Claims: A gas turbine plant characterized in that a drive shaft of a compressor that sends combustion air to a gas turbine and a drive shaft of the gas turbine are connected via a variable speed joint. Figure 1 1: Power 1 person turbine 4: Compression line 51; Post-compression movement 5 etc.: Gosturbine storage shaft 11: Variable distance U taster 12: Control cape device

Claims (1)

【特許請求の範囲】[Claims] ガスタービンに燃焼用空気を送る圧縮機の駆動軸と、ガ
スタービンの駆動軸とを可変速継手を介して接続し、圧
縮機出口の燃焼用空気量を制御量として該燃焼用空気量
の測定値と目標値との制御偏差を前記可変速継手にフィ
ードバックする制御装置を設けたことを特徴とするガス
タービンプラント。
The drive shaft of the compressor that sends combustion air to the gas turbine is connected to the drive shaft of the gas turbine via a variable speed joint, and the amount of combustion air at the outlet of the compressor is used as a control variable to measure the amount of combustion air. A gas turbine plant, comprising: a control device that feeds back a control deviation between a value and a target value to the variable speed joint.
JP33323987A 1987-12-29 1987-12-29 Gas turbine plant Pending JPH01177422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33323987A JPH01177422A (en) 1987-12-29 1987-12-29 Gas turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33323987A JPH01177422A (en) 1987-12-29 1987-12-29 Gas turbine plant

Publications (1)

Publication Number Publication Date
JPH01177422A true JPH01177422A (en) 1989-07-13

Family

ID=18263879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33323987A Pending JPH01177422A (en) 1987-12-29 1987-12-29 Gas turbine plant

Country Status (1)

Country Link
JP (1) JPH01177422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180100661A (en) * 2016-02-12 2018-09-11 지멘스 악티엔게젤샤프트 Gas turbine train with starter motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231208A (en) * 1975-09-03 1977-03-09 Komatsu Ltd Control system for single-shaft differential gas turbine
JPS60150438A (en) * 1984-01-19 1985-08-08 Toshio Sugimori Gas turbine engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231208A (en) * 1975-09-03 1977-03-09 Komatsu Ltd Control system for single-shaft differential gas turbine
JPS60150438A (en) * 1984-01-19 1985-08-08 Toshio Sugimori Gas turbine engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180100661A (en) * 2016-02-12 2018-09-11 지멘스 악티엔게젤샤프트 Gas turbine train with starter motor
JP2019512056A (en) * 2016-02-12 2019-05-09 シーメンス アクティエンゲゼルシャフト Gas turbine section with starter motor
US10570827B2 (en) 2016-02-12 2020-02-25 Siemens Aktiengesellschaft Gas turbine train with starter motor

Similar Documents

Publication Publication Date Title
US4081956A (en) Combined gas turbine and steam turbine power plant
AU593395B2 (en) Method of operating a gas turbine unit
US8056317B2 (en) Apparatus and system for gas turbine engine control
US5417053A (en) Partial regenerative dual fluid cycle gas turbine assembly
US4450363A (en) Coordinated control technique and arrangement for steam power generating system
US20170037785A1 (en) Free gas turbine with constant temperature-corrected gas generator speed
GB636364A (en) Improvements in gas turbine plant for the associated production of heat and mechanical energy including adjusting means therefor
JPS61234232A (en) Method of correcting gas turbine engine and gas turbine
GB1033528A (en) Improvements in and relating to combustion apparatus
CN111757979A (en) Controller and method
JPH01177422A (en) Gas turbine plant
US6659026B1 (en) Control system for reducing NOx emissions from a multiple-intertube pulverized-coal burner using true delivery pipe fuel flow measurement
CA3089687A1 (en) Controller and method
JP3716014B2 (en) Pressure control equipment for gasification plant
US2116587A (en) Regulating means for steam generating plants
JPH04187831A (en) Controller for supplying fuel gas and air to fuel-gas burning type gas turbine
JPS63208624A (en) Output control device for gas turbine
JPS6312640U (en)
JP3707089B2 (en) Plant control system in an exhaust-fired combined cycle plant
JP3288804B2 (en) Supercharger for internal combustion engine
JPS6242209B2 (en)
JP3697731B2 (en) Main steam temperature controller in exhaust recombustion combined cycle plant
JPS6441606A (en) Pressurized fluidized bed compound power generating plant
JPS62223421A (en) Sliding pressure operation control method for coal gasification compound power generating plant
JPH0610710A (en) Compound power generation plant and method and device for controlling pressurized fluidized bed boiler thereof