JPS6242209B2 - - Google Patents

Info

Publication number
JPS6242209B2
JPS6242209B2 JP58006361A JP636183A JPS6242209B2 JP S6242209 B2 JPS6242209 B2 JP S6242209B2 JP 58006361 A JP58006361 A JP 58006361A JP 636183 A JP636183 A JP 636183A JP S6242209 B2 JPS6242209 B2 JP S6242209B2
Authority
JP
Japan
Prior art keywords
air
oxygen
compressor
boiler
enrichment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58006361A
Other languages
Japanese (ja)
Other versions
JPS59131821A (en
Inventor
Koji Morinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP58006361A priority Critical patent/JPS59131821A/en
Publication of JPS59131821A publication Critical patent/JPS59131821A/en
Publication of JPS6242209B2 publication Critical patent/JPS6242209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はボイラ,特に高効率ボイラに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to boilers, particularly high efficiency boilers.

〔従来技術〕[Prior art]

ボイラにおいては従来からその高効率化のため
に種々の配慮がなされている。この発明はその1
つの手段として、酸素富化空気供給システムの採
用により、ボイラ燃焼性,ならびに給水予熱を改
善しようとするものである。以下,この発明に係
わるボイラーの一実施例につき、添付図面を参照
して詳細に説明する。
Conventionally, various considerations have been made to improve the efficiency of boilers. This invention is part 1
One measure is to improve boiler combustibility and feed water preheating by adopting an oxygen-enriched air supply system. Hereinafter, one embodiment of a boiler according to the present invention will be described in detail with reference to the accompanying drawings.

〔実施例〕〔Example〕

図面はこの実施例によるボイラの配置構成を示
している。この図において、ボイラ本体には、
そのバーナー2に対した燃料を供給する燃料系
,および燃焼1次空気を供給する給気系と、
燃焼排気のための排気系とが設けられ、別に蒸
気発生のための水管6が配されている。
The drawing shows the arrangement of the boiler according to this embodiment. In this figure, the boiler body 1 includes:
Fuel system that supplies fuel to burner 2
3 , and an air supply system 4 that supplies combustion primary air;
An exhaust system 5 for combustion exhaust is provided, and a water pipe 6 for steam generation is separately provided.

しかして前記給気系に接続される酸素富化空
気供給システムは、酸素富化のための機能膜と
して作用する酸素選択的透過膜を内蔵した酸素富
化装置8と、同透過膜の入口側,出口側に圧力差
を与えるためのコンプレツサ9,およびこのコン
プレツサ9を駆動する電動機10と、前記酸素富
化装置8の透過膜を通らずに排出される余剰空気
により駆動されて、前記電動機10と共にコンプ
レツサ9を協動駆動すべく、このコンプレツサ9
に直結されたタービン11と、前記酸素富化装置
8から得られる酸素富化された空気,例えば酸素
量25〜30%程度まで富化された酸素富化空気を予
熱して前記バーナー2に供給させるために、前記
排気系に介在された給気予熱器12とからなつ
ており、また前記水管6への給水,すなわちボイ
ラ給水は、図示省略した給水ポンプからの給水
を、前記コンプレツサ9の吐出側,および前記排
気系にそれぞれ直列して介在された第1,およ
び第2給水予熱器13,14を経て行なうように
したものである。
The oxygen-enriched air supply system 7 connected to the air supply system 4 includes an oxygen enrichment device 8 incorporating an oxygen selective permeable membrane that acts as a functional membrane for oxygen enrichment, and Driven by a compressor 9 for applying a pressure difference between the inlet side and the outlet side, an electric motor 10 for driving the compressor 9, and surplus air discharged without passing through the permeable membrane of the oxygen enrichment device 8, In order to drive the compressor 9 in cooperation with the electric motor 10, the compressor 9
The oxygen-enriched air obtained from the turbine 11 directly connected to the oxygen enrichment device 8, for example, the oxygen-enriched air enriched to an oxygen content of about 25 to 30%, is preheated and supplied to the burner 2. In order to achieve this, the air supply preheater 12 is interposed in the exhaust system 5 , and the water supply to the water pipe 6, that is, the boiler water supply, is carried out from a water supply pump (not shown) to the compressor 9. This is done via first and second water preheaters 13 and 14 which are interposed in series on the discharge side and the exhaust system 5 , respectively.

従つてこの実施例構成の場合,酸素富化空気供
給システムにあつて、コンプレツサ9の電動機
10による駆動で、圧縮されて昇温した吐出空気
は、第1給水予熱器13内での熱交換によりボイ
ラ給水を予熱した上で酸素富化装置8に導かれ
る。そしてこの酸素富化装置8では、機能膜であ
る酸素選択的透過膜を通つて酸素富化空気とな
り、加圧されたまゝの状態で給気予熱器12内で
の排ガスとの熱交換により予熱されたのちに、ボ
イラ本体のバーナー2に燃料系からの燃料と
共に1次空気として供給燃焼され、また透過膜を
通らずに排出される余剰空気は、その排出圧によ
りタービン11を駆動することで、前記コンプレ
ツサ9を前記電動機10と協動駆動させ、同電動
機10の負荷を軽減する。ついで前記第1給水予
熱器13により圧縮空気で予熱されたボイラ給水
は、排気系に介在された第2給水予熱器14内
で排ガスとの熱交換によりさらに予熱された上
で、ボイラー本体の水管6に供給,加熱加圧さ
れて高温,高圧蒸気を得るのである。
Therefore, in the case of this embodiment configuration, in the oxygen-enriched air supply system 7 , the compressed and heated discharge air is driven by the electric motor 10 of the compressor 9, and undergoes heat exchange in the first feed water preheater 13. After preheating the boiler feed water, it is guided to the oxygen enrichment device 8. In the oxygen enrichment device 8, the oxygen-enriched air passes through the oxygen selective permeation membrane, which is a functional membrane, and is preheated by heat exchange with exhaust gas in the supply air preheater 12 while still being pressurized. After that, the excess air is supplied as primary air to the burner 2 of the boiler body 1 along with the fuel from the fuel system 3 and burned, and the excess air that is discharged without passing through the permeable membrane drives the turbine 11 by its exhaust pressure. As a result, the compressor 9 is driven in cooperation with the electric motor 10, and the load on the electric motor 10 is reduced. Next, the boiler feed water preheated with compressed air by the first feed water preheater 13 is further preheated by heat exchange with the exhaust gas in the second feed water preheater 14 interposed in the exhaust system 5 , and then sent to the boiler main body 1. The steam is supplied to the water pipe 6 and heated and pressurized to obtain high-temperature, high-pressure steam.

一般にボイラでの燃焼改善のためには、燃焼空
気の燃料に対する空気比を大きくして酸素量を増
加することが行なわれるが、これは他方において
排気損失の増加をも意昧して効率低下となるもの
であり、これに対して酸素富化空気では、酸素量
の増加が相対的に空気比を小さくするもので、こ
のために排気損失の減少となつて効率向上をもた
らすほか、酸素富化空気の特質として、燃焼速度
および温度の上昇,着火エネルギの軽減、可燃範
囲の拡大などがあつて、大巾な省エネルギ化を達
成でき、また併せて酸素富化空気供給システムに
あつては、余剰空気をタービン駆動に振り向けて
コンプレツサ駆動の電動機負荷を減少させ、かつ
排ガスによる酸素富化空気の予熱、およびボイラ
給水の圧縮空気,排ガスによる予熱などにより、
より一層のボイラ効率向上が可能となる。
Generally, in order to improve combustion in a boiler, the air ratio of combustion air to fuel is increased to increase the amount of oxygen, but this also means an increase in exhaust loss and a decrease in efficiency. On the other hand, with oxygen-enriched air, the increase in oxygen content makes the air ratio relatively smaller, which reduces exhaust loss and improves efficiency. The characteristics of air include increased combustion speed and temperature, reduced ignition energy, and expanded flammable range, making it possible to achieve significant energy savings.In addition, in the case of oxygen-enriched air supply systems, By directing surplus air to the turbine drive to reduce the load on the compressor drive motor, and preheating the oxygen-enriched air with exhaust gas, and preheating the boiler feed water with compressed air and exhaust gas,
This makes it possible to further improve boiler efficiency.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によるときは、ボ
イラ本体の給気系への酸素富化空気供給システム
の接続により燃焼性を改善し得ると共に、同シス
テムにおいては酸素富化装置の余剰空気を、同装
置への圧縮空気コンプレツサ駆動の動力に振り向
けるために、この圧縮動力を軽減でき、かつ酸素
富化空気を排ガスにより予熱してからボイラ本体
に供給するようにしていることで、一層の効率化
が可能となり、さらにボイラ給水についても、圧
縮空気との熱交換による予熱をなすようにしたか
ら、排ガスによる予熱器の小型化ができるなどの
特長があり、実質的にボイラの綜合効率を向上し
得るものである。
As detailed above, according to the present invention, combustibility can be improved by connecting the oxygen enriched air supply system to the air supply system of the boiler main body, and in the same system, excess air from the oxygen enrichment device can be This compression power can be reduced in order to use the power to drive the compressed air compressor for the equipment, and by preheating the oxygen-enriched air with exhaust gas before supplying it to the boiler, further efficiency can be achieved. Furthermore, since the boiler water supply is now preheated by heat exchange with compressed air, it has features such as the ability to downsize the preheater using exhaust gas, which substantially improves the overall efficiency of the boiler. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明に係るボイラの一実施例を示す
配置構成図である。 ……ボイラ本体、2……バーナー、……燃
料系、……給気系、……排気系、6……水
管、……酸素富化空気供給システム、8……酸
素富化装置、9……コンプレツサ、10……電動
機、11……タービン、12……給気予熱器、1
3,14……給水予熱器。
The drawing is a layout configuration diagram showing one embodiment of a boiler according to the present invention. 1 ...Boiler body, 2...Burner, 3 ...Fuel system, 4 ...Air supply system, 5 ...Exhaust system, 6...Water pipe, 7 ...Oxygen-enriched air supply system, 8...Oxygen-enriched converter, 9... compressor, 10... electric motor, 11... turbine, 12... supply air preheater, 1
3,14... Water supply preheater.

Claims (1)

【特許請求の範囲】[Claims] 1 ボイラ本体の給気系に酸素富化空気供給シス
テムを接続させると共に、この酸素富化空気供給
システムを、酸素富化装置とこの酸素富化装置に
圧縮空気を供給するコンプレツサ,およびこのコ
ンプレツサを駆動する電動機と、前記酸素富化装
置から排出される余剰空気により駆動され、前記
コンプレツサに連繋されたタービンと、ボイラ本
体の排気系に設けられて、前記酸素富化装置から
の酸素富化空気を予熱してバーナーに与える給気
予熱器とから構成させ、さらにボイラ本体への給
水を前記コンプレツサの吐出側,および排気系に
それぞれに設けた給水予熱器を介して行なうよう
にしたことを特徴とするボイラ。
1 Connect an oxygen enriched air supply system to the air supply system of the boiler main body, and connect this oxygen enriched air supply system to an oxygen enrichment device, a compressor that supplies compressed air to this oxygen enrichment device, and this compressor. A driving electric motor, a turbine driven by surplus air discharged from the oxygen enrichment device and connected to the compressor, and a turbine installed in the exhaust system of the boiler main body to generate oxygen enriched air from the oxygen enrichment device. and a supply air preheater that preheats the air and supplies it to the burner, and furthermore, water is supplied to the boiler main body via a water supply preheater provided on the discharge side of the compressor and the exhaust system, respectively. boiler.
JP58006361A 1983-01-18 1983-01-18 Boiler Granted JPS59131821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006361A JPS59131821A (en) 1983-01-18 1983-01-18 Boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006361A JPS59131821A (en) 1983-01-18 1983-01-18 Boiler

Publications (2)

Publication Number Publication Date
JPS59131821A JPS59131821A (en) 1984-07-28
JPS6242209B2 true JPS6242209B2 (en) 1987-09-07

Family

ID=11636217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006361A Granted JPS59131821A (en) 1983-01-18 1983-01-18 Boiler

Country Status (1)

Country Link
JP (1) JPS59131821A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140215A (en) * 1986-11-29 1988-06-11 Shimadzu Corp Air supply device
JP5287282B2 (en) * 2009-01-20 2013-09-11 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purification system
FR2957408B1 (en) * 2010-03-09 2015-07-17 Air Liquide METHOD AND APPARATUS FOR HEATING AN AIR GAS FROM AN AIR SEPARATION APPARATUS

Also Published As

Publication number Publication date
JPS59131821A (en) 1984-07-28

Similar Documents

Publication Publication Date Title
US5417053A (en) Partial regenerative dual fluid cycle gas turbine assembly
US5319925A (en) Installation for generating electrical energy
US7621133B2 (en) Methods and apparatus for starting up combined cycle power systems
JP3162479B2 (en) Gas / steam combined power plant
US4785621A (en) Air bottoming cycle for coal gasification plant
JPH10184315A (en) Gas turbine generating device
US2341490A (en) Gas turbine plant
JPS6242209B2 (en)
CA1284586C (en) Air turbine cycle
US4244188A (en) Methanol fueled spark ignition engine
US2405676A (en) Marine power plant
US4133567A (en) Combined cycle electric power generating system with improvement
GB2119447A (en) Vapourising systems in jet propulsion or gas turbine engines
EP0014075A1 (en) Fuel atomising arrangements in gas turbine engines
JPH045703Y2 (en)
SU1749511A1 (en) Power plant
JPH08210109A (en) Improving method of efficiency of process of composite cyclepower plant
JPS59131739A (en) Internal-combustion engine
JP2806338B2 (en) Gas turbine generator
JP2751837B2 (en) Two-fluid cycle gas turbine
SU918469A2 (en) Power generating unit
JPS5923034A (en) Starter of high pressure hot air generator
JPS5551922A (en) Turbo-charged diesel engine with auxiliary burner
JPH11280493A (en) Compound steam injection gas turbine
JPS62135619A (en) Heat supply power generating device using gas turbine