JPH01176914A - Laser interference type encoder - Google Patents

Laser interference type encoder

Info

Publication number
JPH01176914A
JPH01176914A JP63000452A JP45288A JPH01176914A JP H01176914 A JPH01176914 A JP H01176914A JP 63000452 A JP63000452 A JP 63000452A JP 45288 A JP45288 A JP 45288A JP H01176914 A JPH01176914 A JP H01176914A
Authority
JP
Japan
Prior art keywords
light
scale
order diffracted
optical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63000452A
Other languages
Japanese (ja)
Other versions
JP2503561B2 (en
Inventor
Yasushi Oki
裕史 大木
Osamu Tanitsu
修 谷津
Eiichi Kitajima
北島 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP45288A priority Critical patent/JP2503561B2/en
Publication of JPH01176914A publication Critical patent/JPH01176914A/en
Application granted granted Critical
Publication of JP2503561B2 publication Critical patent/JP2503561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a complete sine wave with a simple constitution by irradiating an optical scale by transmission with parallel light which is projected by a coherent light source and collimated. CONSTITUTION:When the optical scale 3 is irradiated with the coherent parallel light from the laser light source 1 which is collimated by a collimator lens 2, its transmitted light contains much diffracted light is addition to direct light. When, however, a specific position is selected in a space, only the direct light and plus primary diffracted light interfere with each other to obtain interference fringes in a complete sine wave shape. Then, an index scale 4 is arranged at this part and then an output waveform becomes a complete sine wave. Thus, the complete sine wave can be obtained with the simple constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学式エンコーダに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to optical encoders.

〔従来の技術〕[Conventional technology]

従来の光学式エンコーダでは通常レーザー光源が使われ
ず、そのため出力波形を完全な正弦波とするためには、
例えば、USP3674372明細書のように特殊な工
夫が必要であり、高コストであった。また、特開昭61
−212728号のように、レーザービームを分岐させ
て干渉計の構成をとるものもあるが、偏光プリズムや波
長板等が必要となり、構成が複雑で高価であった。
Conventional optical encoders usually do not use a laser light source, so in order to make the output waveform a perfect sine wave,
For example, as in US Pat. No. 3,674,372, special measures were required and the cost was high. Also, JP-A-61
There are some devices, such as No. 212728, which have an interferometer configuration by branching a laser beam, but they require polarizing prisms, wave plates, etc., making the configuration complicated and expensive.

一方、特開昭61−10716号によって、簡単な構成
で完全な正弦波形の得られる光学式エンコーダが提案さ
れている。このものは、コヒーレント光源と、該コヒー
レント光源からの光束を収束する照明対物レンズと、該
照明対物レンズによる収束光に対して相対的に移動可能
な回折格子板と、該回折格子板による回折光を集光する
集光対物レンズと、該集光対物レンズの射出瞳の近傍に
配置された2分割受光素子とを有し、該2分割受光素子
の分割線が該集光対物レンズの光軸と交わり前記回折格
子の溝方向と平行になるように配置され、更に該2分割
受光素子からの各出力信号の差信号と和信号とを出力す
る演算手段を有するものである。
On the other hand, Japanese Patent Laid-Open No. 61-10716 proposes an optical encoder that can obtain a perfect sine waveform with a simple configuration. This device includes a coherent light source, an illumination objective lens that converges the light beam from the coherent light source, a diffraction grating plate that is movable relative to the converged light beam from the illumination objective lens, and a diffraction light beam produced by the diffraction grating plate. It has a condensing objective lens that condenses light, and a two-split light-receiving element arranged near the exit pupil of the condensing objective lens, and the dividing line of the two-split light-receiving element is aligned with the optical axis of the condensing objective lens. , and further includes arithmetic means for outputting a difference signal and a sum signal of each output signal from the two-split light-receiving element.

そして2分割受光素子によってそれぞれに入射するプラ
ス1次及びマイナス1次の回折光の強度を検出し、演算
手段によって両受光素子の出力信号の差及び和の信号を
求め互いに9.0°だけ位相の異なる信号を得ている。
Then, the intensities of the plus first-order and minus first-order diffracted lights incident on each of the two split light-receiving elements are detected, and the calculation means calculates the difference and sum of the output signals of both light-receiving elements, and the phase difference is 9.0° from each other. are getting different signals.

しかなからこのものは、回折格子板上にコヒーレント光
束の集束光を入射させているため、回折格子板の格子ピ
ッチが正確であること、及び回折格子板と対物レンズと
の距離が正しく設定されていること、が高精度な信号を
得る条件となる。
However, since this device makes a coherent beam of focused light incident on the diffraction grating plate, it is important that the grating pitch of the diffraction grating plate is accurate and that the distance between the diffraction grating plate and the objective lens is set correctly. This is a condition for obtaining highly accurate signals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明では、従来の光学式エンコーダの構成を大きく変
えることなく、簡単な構成でかつ、回折格子板と対物レ
ンズとの距離が正しく設定されていなくても、完全な正
弦波を得ることのできる光学式エンコーダを提供するこ
とを目的とする。
In the present invention, a perfect sine wave can be obtained with a simple configuration without significantly changing the configuration of a conventional optical encoder, and even if the distance between the diffraction grating plate and the objective lens is not set correctly. The purpose is to provide an optical encoder.

c問題点を解決する為の手段〕 本発明は、一定のピッチでくり返される回折格子を有す
る光学式スケール(3)を、レーザー等のコヒーレント
光源(1)から出射するコリメートされた平行光で透過
照明し、前記スケール透過後の前記照明光のプラス一次
回折光と直接光(ゼロ次回折光)のみが干渉する領域、
又はマイナス一次回折光と直接光のみが干渉する領域に
前記スケール(3)と同一のピッチを持つインデックス
スケール(3,4)を配置したことを特徴とするレーザ
ー干渉式エンコーダ、である。
Means for Solving Problem c] The present invention provides an optical scale (3) having a diffraction grating repeated at a constant pitch using collimated parallel light emitted from a coherent light source (1) such as a laser. an area where only the positive first-order diffracted light of the illumination light after passing through the scale and the direct light (zero-order diffracted light) interfere with each other;
Alternatively, there is a laser interference encoder characterized in that index scales (3, 4) having the same pitch as the scale (3) are arranged in a region where only the negative first-order diffracted light and the direct light interfere.

〔作 用〕[For production]

第1図で示したように、光学式スケール3をコリメータ
レンズでコリメートされたレーザ光源等1からのコヒー
レントな平行光で照射すると、透過光は直接光の他に多
くの回折光を含む。しかし空間内の特定の位置を選べば
、直接光とプラス一次回折光(又は直接光とマイナス一
次回折光)のみが干渉し、完全な正弦波状の干渉縞を得
ることができる。第1回の斜線で示した位置がそのよう
な位置であり、この部分にインデックススケール、を配
置すれば出力波形は完全な正弦波となる。第1図よりイ
ンデックススケールと光学式スケールの間隔は図中のd
で示す値の近傍が都合良いことがわかる。ここでスケー
ルピッチをP、照明波長をλ、直接光の幅の半分をR1
とすると、dζPR/λ     ・・・・・・・・・
(1)ここで、第1図の座標系に沿って、斜線で示した
領域に生ずる干渉縞を定式化する。まず、直接光とプラ
ス1次回折光の干渉について考える。
As shown in FIG. 1, when the optical scale 3 is irradiated with coherent parallel light from a laser light source 1 collimated by a collimator lens, the transmitted light includes many diffracted lights in addition to the direct light. However, if a specific position in space is selected, only the direct light and the positive first-order diffracted light (or the direct light and the negative first-order diffracted light) interfere, and a perfect sinusoidal interference pattern can be obtained. The first diagonally shaded position is such a position, and if the index scale is placed at this position, the output waveform will become a perfect sine wave. From Figure 1, the distance between the index scale and optical scale is d in the figure.
It can be seen that the vicinity of the value shown by is convenient. Here, the scale pitch is P, the illumination wavelength is λ, and half the width of the direct light is R1.
Then, dζPR/λ ・・・・・・・・・
(1) Here, interference fringes occurring in the shaded area along the coordinate system of FIG. 1 are formulated. First, consider the interference between direct light and positive first-order diffracted light.

直接光の振幅Uo(x、z)は k=2 π/λとして Uo(x、  z ) = −exp (i k z 
)2       ・・・・・・(2) 一次回折光の振幅U、(x、z)は (J+(x、Z)= ・・・・・・(3) よって、干渉後の振幅U”  (x、z)はU”  (
x、、z) −Uo(x、z)+U+(x、z)・・・
・・・(4) 干渉縞の強度分布M  (x、z)は(2)、(3)、
(4)より I’  (xS z)−lU”  (x、z)l”4 
    π2 π        P        P”・・・・・
・ (5) 直接光とマイナス一次回折光の干渉縞の強度分布ヒ (
x、z)は同様に ・・・・・・(6) となる。(5)、(6)より干渉縞は光学スケールのピ
ッチと同一であり、Z方向に観測面を移動させると、縞
の位相がおのおの逆方向に動くことがわかる。
The amplitude of direct light Uo(x, z) is expressed as Uo(x, z) = −exp (i k z
)2 ・・・・・・(2) The amplitude U, (x, z) of the first-order diffracted light is (J+(x, Z)= ・・・・・・(3) Therefore, the amplitude after interference U” ( x, z) is U” (
x,,z) -Uo(x,z)+U+(x,z)...
...(4) The intensity distribution M (x, z) of the interference fringes is (2), (3),
From (4), I' (xS z)-lU" (x, z)l"4
π2 π P P”・・・・・・
・ (5) Intensity distribution of interference fringes between direct light and minus first-order diffracted light (
Similarly, x, z) becomes...(6). From (5) and (6), it can be seen that the interference fringes are the same as the pitch of the optical scale, and when the observation plane is moved in the Z direction, the phases of the fringes move in opposite directions.

■゛と■−の位相差は(5)、(6)式よりP! エンコーダとしては、進行方向弁別のため90°位相の
異なった2つの出力が必要であるから、δ=±90″で
あると都合が良い。このとき2は(7)式より λ      4 となる。
From equations (5) and (6), the phase difference between ■゛ and ■− is P! Since the encoder requires two outputs with a 90° phase difference for traveling direction discrimination, it is convenient that δ=±90″. In this case, 2 becomes λ 4 from equation (7).

〔実施例〕〔Example〕

第2図は本発明の第1実施例であり、レーザーダイオー
ドlから出たコヒーレントな単色光はコリメータレンズ
2で平行光となってリニアスケール3に入射する。リニ
アスケール3は透過型の回折格子であって、例えば、蒸
着等により一定ピンチでスリットの形成されたものが用
いられる。リニアスケール3で回折した光は、インデッ
クスス  □ケール4に入射するが、リニアスケール3
とインデックススケール4の間隔dが をみたしているため、インデックススケール4上にはリ
ニアスケール3と同一ピンチの正弦波状干渉縞があられ
れ、かつインデックススケール4の右半分と左半分とで
干渉縞の位相が90°ずれている。従って、インデック
ススケール4の右半分からの透過光を検出する光検出器
5aと左半分からの透過光を検出する光検出器5bの出
力から演算回路6、表示装置7によって方向弁別可能な
リニアエンコーダが構成される。この場合インデックス
スケール4は単なるリニアスケールで良いが、複数個の
位相の異なった刻線窓をもつ従来型のインデックススケ
ールを用いても勿論良い。
FIG. 2 shows a first embodiment of the present invention, in which coherent monochromatic light emitted from a laser diode 1 is turned into parallel light by a collimator lens 2, and then enters a linear scale 3. The linear scale 3 is a transmission type diffraction grating, for example, one in which slits are formed with a constant pinch by vapor deposition or the like. The light diffracted by the linear scale 3 enters the index scale 4, but the linear scale 3
Since the interval d of the index scale 4 satisfies , there are sinusoidal interference fringes on the index scale 4 with the same pinch as the linear scale 3, and there are interference fringes on the right half and left half of the index scale 4. The phases of are shifted by 90°. Therefore, a linear encoder whose direction can be determined by the arithmetic circuit 6 and the display device 7 from the outputs of the photodetector 5a that detects the transmitted light from the right half of the index scale 4 and the photodetector 5b that detects the transmitted light from the left half of the index scale 4 is configured. In this case, the index scale 4 may be a simple linear scale, but it is of course also possible to use a conventional index scale having a plurality of marked windows having different phases.

2λ     4 はインデックススケールの刻線窓間の位相差に応じて変
わることになる。
2λ 4 will vary depending on the phase difference between the scored windows of the index scale.

第3図は本発明の第2実施例であり、レーザーダイオー
ド8、コリメータレンズ9、の働きは第2図と同一であ
るが、第3図ではリニアスケール10を透過した回折光
が反射部材11を経て再びスケール10上に投影される
。この場合はリニアスケール10がインデックススケー
ルを兼ねるわけであり、第3図の右側の光検出器12a
と左側の光検出器12bからは、点Aから点Bまでの光
路長が λ     4 90°位相の異なった出力が得られる。また、第2実施
例では、投影式にしたことにより、検出器12a、12
bとリニアスケール10とが変位する際に、等価的にリ
ニアスケール10のピッチが半減する(出力パルス数が
2倍になる)ことは幾何光学的に明らかである。以上の
ことから、この系では進行方向弁別可能なエンコーダが
構成可能であると共に、出力パルス数を2倍にすること
が可能である。また、光出力信号は前に述べた通り完全
正弦波形であるから1ピツチ内の電気的内挿も原理的に
は無限に可能である。
FIG. 3 shows a second embodiment of the present invention, and the functions of the laser diode 8 and collimator lens 9 are the same as in FIG. 2, but in FIG. The image is then projected onto the scale 10 again. In this case, the linear scale 10 also serves as an index scale, and the photodetector 12a on the right side of FIG.
From the photodetector 12b on the left side, the optical path length from point A to point B is λ 4 and outputs having different phases by 90° are obtained. Further, in the second embodiment, by using a projection type, the detectors 12a, 12
It is clear from geometrical optics that when b and the linear scale 10 are displaced, the pitch of the linear scale 10 is equivalently halved (the number of output pulses is doubled). From the above, with this system, it is possible to construct an encoder that can discriminate the direction of travel, and it is also possible to double the number of output pulses. Further, since the optical output signal has a perfectly sinusoidal waveform as described above, electrical interpolation within one pitch is theoretically possible infinitely.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、光源にレーザーダイオード
の様なコヒーレント単色光源を用いるだけで、簡単な構
成で正弦波出力の可能なエンコーダを提供することがで
きる。また、平行光をスケールに入射しているので、ス
ケールの格子に多少のピッチむらがあってもそれらは平
均化される。
As described above, according to the present invention, an encoder capable of outputting a sine wave can be provided with a simple configuration by simply using a coherent monochromatic light source such as a laser diode as a light source. Furthermore, since parallel light is incident on the scale, even if there are some pitch irregularities in the scale grating, they are averaged out.

また、スケール−インデックス間隔を 単なるリニアスケールをインデックススケールに用いて
も、90°位相の異なる2つの正弦波出力を得ることが
できる。この応用として、第3図に示したように、自己
投影型のエンコーダが実現でき、出力パルス数を2倍に
増やすことができる。
Further, even if a simple linear scale is used as the index scale for the scale-index interval, two sine wave outputs having a phase difference of 90° can be obtained. As an application of this, a self-projection encoder can be realized as shown in FIG. 3, and the number of output pulses can be doubled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する光路図、第2図は本発
明の第1実施例を示す光学系及び電気ブロックを示す図
、第3図は本発明の第2実施例の光学系を示す図、であ
る。 〔主要部分の符号の説明〕 −1・・・レーザーダイオード、 2・・・コリメータレンズ、 3・・・リニアスケール、 4・・・インデックススケール、 5a、5b・・・光検出器。 出願人  日本光学工業株式会社
Fig. 1 is an optical path diagram explaining the present invention in detail, Fig. 2 is a diagram showing an optical system and electric block showing a first embodiment of the invention, and Fig. 3 is an optical system according to a second embodiment of the invention. FIG. [Explanation of symbols of main parts] -1... Laser diode, 2... Collimator lens, 3... Linear scale, 4... Index scale, 5a, 5b... Photodetector. Applicant Nippon Kogaku Kogyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)一定のピッチでくり返される回折格子を有する光
学式スケールを、レーザー等のコヒーレント光源から出
射するコリメートされた平行光で透過照明し、前記スケ
ール透過後の前記照明光のプラス一次回折光と直接光(
ゼロ次回折光)のみが干渉する領域、又はマイナス一次
回折光と直接光のみが干渉する領域に前記スケールと同
一のピッチを持つインデックススケールを配置したこと
を特徴とするレーザー干渉式エンコーダ。
(1) An optical scale having a diffraction grating repeated at a constant pitch is transmitted and illuminated with collimated parallel light emitted from a coherent light source such as a laser, and the positive first-order diffracted light of the illumination light after passing through the scale and direct light (
A laser interference encoder characterized in that an index scale having the same pitch as the scale is arranged in a region where only the zero-order diffracted light (zero-order diffracted light) interferes or a region where only the negative first-order diffracted light and direct light interfere.
(2)プラス一次回折光と直接光のみが干渉する領域、
及びマイナス一次回折光と直接光のみが干渉する領域に
またがって一個のインデックススケールを配置したこと
特徴とする特許請求の範囲第(1)項記載のレーザー干
渉式エンコーダ。
(2) A region where only the positive first-order diffracted light and the direct light interfere,
The laser interferometric encoder according to claim 1, characterized in that one index scale is disposed across a region where only the negative first-order diffracted light and the direct light interfere.
(3)前記光学式スケールの回折格子として、一定のピ
ッチで光透過部分と光不透過部分がくり返されるものを
用いると共に、前記光学式スケールを透過した光を再び
該スケール上に投影する光学系を設け、前記光学式スケ
ールがインデックススケールの役割をもするようにした
特許請求の範囲第2項記載のレーザー干渉式エンコーダ
(3) As the diffraction grating of the optical scale, a grating in which a light transmitting part and a light non-transmitting part are repeated at a constant pitch is used, and an optical system that projects the light that has passed through the optical scale onto the scale again. 3. The laser interferometric encoder according to claim 2, wherein a system is provided so that the optical scale also serves as an index scale.
(4)前記光学式スケールと前記インデックススケール
の間隔zを空気換算にしてほぼ z=P^2/λ(n±1/4) 但し、λは照明光の波長 Pはスケールピッチ nは任意の自然数 としたことを特徴とする特許請求の範囲第(1)項から
第3項記載のレーザー干渉式エンコーダ。
(4) The distance z between the optical scale and the index scale is approximately z=P^2/λ (n±1/4) when converted to air. However, λ is the wavelength of the illumination light P, and the scale pitch n is arbitrary. 4. A laser interference encoder according to claim 1, wherein the encoder is a natural number.
JP45288A 1988-01-05 1988-01-05 Laser interference encoder Expired - Lifetime JP2503561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP45288A JP2503561B2 (en) 1988-01-05 1988-01-05 Laser interference encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45288A JP2503561B2 (en) 1988-01-05 1988-01-05 Laser interference encoder

Publications (2)

Publication Number Publication Date
JPH01176914A true JPH01176914A (en) 1989-07-13
JP2503561B2 JP2503561B2 (en) 1996-06-05

Family

ID=11474183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP45288A Expired - Lifetime JP2503561B2 (en) 1988-01-05 1988-01-05 Laser interference encoder

Country Status (1)

Country Link
JP (1) JP2503561B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323001A (en) * 1989-12-26 1994-06-21 Canon Kabushiki Kaisha Rotary encoder with scale member and interference of zero and first order diffraction beam
US5327218A (en) * 1990-11-16 1994-07-05 Canon Kabushiki Kaisha Method and apparatus for measuring displacement by using a diffracted inverted image projected on a diffraction grating
US5481106A (en) * 1992-06-17 1996-01-02 Canon Kabushiki Kaisha Encoder with an optical scale and interference of zero and first order diffraction beams
US5483059A (en) * 1992-09-30 1996-01-09 Canon Kabushiki Kaisha Signal processing method using comparator level adjustment in a displacement measuring device
JP2008205109A (en) * 2007-02-19 2008-09-04 Minebea Co Ltd Inverter transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323001A (en) * 1989-12-26 1994-06-21 Canon Kabushiki Kaisha Rotary encoder with scale member and interference of zero and first order diffraction beam
US5327218A (en) * 1990-11-16 1994-07-05 Canon Kabushiki Kaisha Method and apparatus for measuring displacement by using a diffracted inverted image projected on a diffraction grating
US5481106A (en) * 1992-06-17 1996-01-02 Canon Kabushiki Kaisha Encoder with an optical scale and interference of zero and first order diffraction beams
US5483059A (en) * 1992-09-30 1996-01-09 Canon Kabushiki Kaisha Signal processing method using comparator level adjustment in a displacement measuring device
JP2008205109A (en) * 2007-02-19 2008-09-04 Minebea Co Ltd Inverter transformer

Also Published As

Publication number Publication date
JP2503561B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US5064290A (en) Opto-electronic scale-reading apparatus wherein phase-separated secondary orders of diffraction are generated
US9175987B2 (en) Displacement detecting device
US4970388A (en) Encoder with diffraction grating and multiply diffracted light
JPH0130089B2 (en)
JPH03148015A (en) Position measuring apparatus
US5424833A (en) Interferential linear and angular displacement apparatus having scanning and scale grating respectively greater than and less than the source wavelength
KR100531458B1 (en) Optical displacement measurement system
JP2764373B2 (en) Multi-coordinate measuring device
JPS58191907A (en) Method for measuring extent of movement
JPH03279812A (en) Diffraction interference type encoder
JPH01176914A (en) Laser interference type encoder
JPH02206720A (en) Angle measuring instrument
JPH046884B2 (en)
JP2718440B2 (en) Length measuring or angle measuring device
JPS632323B2 (en)
KR100531693B1 (en) Optical displacement measurement system
JP2718439B2 (en) Length measuring or angle measuring device
JP3013467B2 (en) Laser interference encoder
JP2675317B2 (en) Moving amount measuring method and moving amount measuring device
JPS6041287B2 (en) Small angle measurement method
JPS6110716A (en) Photoelectric encoder
JP2517027B2 (en) Moving amount measuring method and moving amount measuring device
JPH03115809A (en) Encoder
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device
JPS6222019A (en) Detector for fundamental position