JPH01176897A - Method and device for lubricating stern tube bearing - Google Patents

Method and device for lubricating stern tube bearing

Info

Publication number
JPH01176897A
JPH01176897A JP62336642A JP33664287A JPH01176897A JP H01176897 A JPH01176897 A JP H01176897A JP 62336642 A JP62336642 A JP 62336642A JP 33664287 A JP33664287 A JP 33664287A JP H01176897 A JPH01176897 A JP H01176897A
Authority
JP
Japan
Prior art keywords
oil film
bearing
oil
thickness
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62336642A
Other languages
Japanese (ja)
Inventor
Kazuo Hattori
服部 一男
Kenji Aoyanagi
青柳 健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62336642A priority Critical patent/JPH01176897A/en
Publication of JPH01176897A publication Critical patent/JPH01176897A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/105Conditioning, e.g. metering, cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/002Cooling of bearings of fluid bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To achieve a sufficient oil film pressure in a bearing by detecting the thickness of the oil film and feeding lubricant cooled to a setting temperature when the thickness of the oil film decreases below a setting level thereby ensuring a necessary oil film thickness. CONSTITUTION:When a shaft S is rotating, an oil film thickness detector 10 detects the thickness of oil film based on the displacement of the shaft, and an arithmetic circuit 11 judges whether an oil film thickness corresponding to the rotation is maintained. If the thickness of oil film is thinner than a predetermined level, a control circuit 13 operates a cooling device 8. The cooling device 8 cools lubricant in an oil supply pipe 4, and the lubricant is cooled immediately and fed to a bearing because the quantity thereof is small.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は船尾管軸受の技術分野において利用され、特に
その潤滑方法と装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is utilized in the technical field of stern tube bearings, and particularly relates to a method and apparatus for lubrication thereof.

(従来の技術及び問題点) 船尾管軸受における正常運転を図るために油膜の厚さを
適切値に保つ必要があり、従来衣のいくつかの方法に依
っていたが、いづれも問題点を有していた。
(Prior technology and problems) In order to ensure normal operation of the stern tube bearing, it is necessary to maintain the thickness of the oil film at an appropriate value, and several conventional methods have been used, but all of them have problems. Was.

■ 軸系に無理な負荷をかけずに、これを支持するよう
に、軸系の撓み曲線を考慮し支持点における撓み量だけ
変位せしめた位置に軸受を配する軸系アライメント法が
ある。またこの方法においては、特に撓みの多い船尾管
軸受には、撓み角をも考慮して傾斜させるスロープポー
リング法も活用されている。しかしながら、かかる方法
にあっては、油膜は軸の回転により形成されるので、回
転数の減少に伴い薄くなってしまう。特に極低速時、い
わゆるデッドスローのときには動圧が得られず、  ゛
所定の油膜厚さが確保できないために、軸受として支障
をきたすこととなる。
■ In order to support the shaft system without imposing an unreasonable load on it, there is a shaft system alignment method that considers the deflection curve of the shaft system and places the bearing at a position that is displaced by the amount of deflection at the support point. In addition, in this method, a slope poling method is also utilized in which the stern tube bearing, which is subject to a lot of deflection, is tilted in consideration of the deflection angle. However, in this method, since the oil film is formed by the rotation of the shaft, it becomes thinner as the number of rotations decreases. Particularly at extremely low speeds, so-called dead slows, dynamic pressure cannot be obtained and the specified oil film thickness cannot be ensured, resulting in problems as a bearing.

■ 次に、船尾管軸受の後部に静圧オイルポケットを設
け、軸受外部のポンプから上記オイルポケットに静圧油
を供給して軸を上方に浮かせて適切な油膜厚さを確保せ
んとする静圧潤滑法がある。
■ Next, a static pressure oil pocket is installed at the rear of the stern tube bearing, and a pump outside the bearing supplies static pressure oil to the oil pocket to float the shaft upward and ensure an appropriate oil film thickness. There is a pressure lubrication method.

本方法によれば、4回転数の如何によらず、軸受内の油
膜厚さを設定値以上とすることが確実にできるが、静圧
供給ポンプ間の配管等の追加工作も必要となり、高価な
ものとなる。
According to this method, it is possible to ensure that the oil film thickness inside the bearing exceeds the set value regardless of the number of revolutions, but it requires additional work such as piping between the static pressure supply pumps, which is expensive. Become something.

■ さらには、上記■の軸受において、軸の回転に伴い
潤滑油温度が上昇すると、潤滑油は粘性が低下し油膜が
薄くなってしまう傾向を示す。そこで、軸受とタンクと
の間を循環する潤滑油を常に冷却してその温度上昇を制
御せんとする方法もある。しかし、この方法では油膜厚
さを所定値とすることができず、適正条件下で運転され
ることが保証されない。
(2) Furthermore, in the bearing (2) above, when the lubricating oil temperature rises as the shaft rotates, the lubricating oil tends to decrease in viscosity and the oil film becomes thinner. Therefore, there is a method of constantly cooling the lubricating oil circulating between the bearing and the tank to control the temperature rise. However, with this method, it is not possible to set the oil film thickness to a predetermined value, and it is not guaranteed that the oil film will be operated under appropriate conditions.

(問題点を解決するための手段及び作用)本発明は、上
述したごとくの従来の船尾管軸受の潤滑方法及びその装
置の問題を解決し、簡単に常時設定値以上の油膜厚さを
確保できる船尾管軸受の潤滑法及び装置を提供すること
を目的とする。
(Means and effects for solving the problems) The present invention solves the problems of the conventional stern tube bearing lubrication method and its device as described above, and can easily ensure an oil film thickness of at least a set value at all times. The object of the present invention is to provide a method and device for lubrication of stern tube bearings.

本発明は、上記目的のために潤滑法に関しては、船尾管
軸受の軸受面と軸との間に油膜を形成して軸を支持する
方法において、 油膜の厚さを検出し、該油膜の厚さが設定値以下になっ
たときに設定温度まで冷却された潤滑油を軸受に供給す
る、 ことにより構成され、 また、上記方法を実施するための装置に関しては、 船尾管軸受の軸受面と軸との間に油膜を形成して軸を支
持する装置において、 油膜の厚さ検出器と、 タンクから軸受へ潤滑油を供給する給油経路に設けられ
た冷却装置と、 上記冷却装置を作動せしめる制御手段とを備え、上記検
出器で検出された油膜の厚さが設定値以下になったとき
に上記冷却装置を作動せしめるように制御手段が設定さ
れている、 ことにより構成される。
Regarding the lubrication method for the above purpose, the present invention is a method of forming an oil film between the bearing surface of a stern tube bearing and the shaft to support the shaft, and detecting the thickness of the oil film, and detecting the thickness of the oil film. The lubricating oil cooled to the set temperature is supplied to the bearing when the temperature falls below the set value. A device that supports a shaft by forming an oil film between the bearings, an oil film thickness detector, a cooling device installed in the oil supply path that supplies lubricating oil from the tank to the bearing, and a control that operates the cooling device. and a control means is configured to operate the cooling device when the thickness of the oil film detected by the detector becomes equal to or less than a set value.

以上のことくの本発明によるならば、油膜厚さが必要十
分なる設定値以下になった際、冷却装置で冷却された潤
滑油が供給され、粘度が所定値以上となって、それによ
り必要な油膜厚さが確保される。その結果、軸受内では
十分なる油膜圧力が生じ、正常な軸受運転がなされる。
According to the present invention, when the oil film thickness falls below a necessary and sufficient set value, lubricating oil cooled by the cooling device is supplied, and the viscosity becomes more than the predetermined value, thereby causing the necessary A suitable oil film thickness is ensured. As a result, sufficient oil film pressure is generated within the bearing, allowing normal bearing operation.

(実施例) 以下、添付図面の簡単な説明にもとづいて本発明の一実
施例を説明する。
(Example) Hereinafter, an example of the present invention will be described based on a brief explanation of the accompanying drawings.

第1図においてSはプロペラ軸で、船尾管軸受1により
支持されている。咳軸受1は、軸受面と軸Sとの間に軸
の回転によって形成される油膜の圧力で上記軸1を支持
するようになっている。上記軸受面には溝2が設けられ
ており、給油口3を経て給油管4から上記溝2に潤滑油
が供給される。
In FIG. 1, S is a propeller shaft, which is supported by a stern tube bearing 1. The cough bearing 1 supports the shaft 1 by the pressure of an oil film formed between the bearing surface and the shaft S by rotation of the shaft. A groove 2 is provided on the bearing surface, and lubricating oil is supplied to the groove 2 from an oil supply pipe 4 through an oil supply port 3.

上記溝2から供給された潤滑油は、油膜を形成した後軸
受の端部から排出せられ、排油管5によりポンプ6を経
てタンク7に帰還するようになっている。
The lubricating oil supplied from the groove 2 is discharged from the end of the bearing after forming an oil film, and returns to the tank 7 via the pump 6 via the oil drain pipe 5.

上記タンク7と給油口3とを接続する給油管4には冷却
装置8が設けられている。
A cooling device 8 is provided in the oil supply pipe 4 that connects the tank 7 and the oil supply port 3 .

一方、軸受1の端部に近接する位置には、軸1の半径方
向変位で、軸受内における油膜厚さ検出する油膜厚さ検
出器10が設けられている。該検出器10はその信号が
演算回路11に送られるように接続されている。また、
該演算回路11には軸の回転数検出器12も接続せられ
ており、演算回路11は、瞬時の回転数における最適油
膜厚さを算出するように設定されている。そして上記検
出された油膜厚さが上記設定値以下の場合、その旨の信
号が上記演算回路11から制御回路13に伝達されるよ
うに接続されている。該制御回路13は上記演算回路1
1からの信号を受けて、冷却装置8に作動指令を発する
ようになっている。
On the other hand, an oil film thickness detector 10 is provided at a position close to the end of the bearing 1 to detect the thickness of the oil film within the bearing based on the radial displacement of the shaft 1. The detector 10 is connected so that its signal is sent to an arithmetic circuit 11. Also,
A shaft rotation speed detector 12 is also connected to the calculation circuit 11, and the calculation circuit 11 is set to calculate the optimum oil film thickness at an instantaneous rotation speed. When the detected oil film thickness is less than or equal to the set value, the arithmetic circuit 11 is connected to the control circuit 13 so that a signal to that effect is transmitted. The control circuit 13 is the same as the arithmetic circuit 1.
Upon receiving the signal from 1, an operation command is issued to the cooling device 8.

以上のごとくの本実施例装置おいて、タンク7から給油
管4を経て軸受の溝2に供給された潤滑油は、軸受面に
拡がり油膜を形成して軸の回転により油膜圧を発生して
軸を支持する。しかる後、潤滑油は排出され排油管5を
経てポンプ6によりタンク7に帰還する。その際、軸S
の回転中に油膜厚さ検出器10は軸の変位置から油膜厚
さを検出し、そのときの回転数に相応する油膜厚さとな
っているかの判断が演算回路11にてなされる。その判
断が所定油膜厚さ以下である場合には制御回路13は冷
却装置8を作動せしめる。その場合、冷却装置8は、給
油管4内の潤滑油を冷却することとなるが、その油量は
少量であるために潤滑油は、即冷却されて軸受に供給さ
れる。
In the device of this embodiment as described above, the lubricating oil supplied from the tank 7 to the groove 2 of the bearing via the oil supply pipe 4 spreads on the bearing surface to form an oil film, and as the shaft rotates, oil film pressure is generated. Support the shaft. Thereafter, the lubricating oil is discharged and returned to the tank 7 via the oil drain pipe 5 by the pump 6. At that time, axis S
During the rotation, the oil film thickness detector 10 detects the oil film thickness from the changed position of the shaft, and the arithmetic circuit 11 determines whether the oil film thickness corresponds to the rotational speed at that time. If the judgment is that the oil film thickness is below the predetermined oil film thickness, the control circuit 13 operates the cooling device 8. In that case, the cooling device 8 cools the lubricating oil in the oil supply pipe 4, but since the amount of oil is small, the lubricating oil is immediately cooled and supplied to the bearing.

かくして、冷却された潤滑油は粘性が高くなって軸受内
の油膜が所定厚さを確保するようになり、その結果所定
の油膜圧を得られ正常な運転がなされる。次に、以上の
ように作動する本実施例装置にあって、各動作について
より具体的に説明することとする。
The viscosity of the cooled lubricating oil thus increases to ensure that the oil film within the bearing has a predetermined thickness, resulting in a predetermined oil film pressure and normal operation. Next, each operation of the apparatus of this embodiment which operates as described above will be explained in more detail.

第2図において、演算回路の油膜厚さの下限設定値を回
転数に係わりなくり。・一定とする。同図では潤滑油温
度をパラメータとして回転数と油膜厚さの関係が示され
ている。図中A点は潤滑油温度T、で回転数も高く油膜
厚さは設定値よりも十分大きい。回転数を減少させると
設定値までは温度T、の曲線に沿って油膜厚さhoが確
保される。(C。
In Figure 2, the lower limit setting value of the oil film thickness of the arithmetic circuit is independent of the rotation speed.・Stand constant. The figure shows the relationship between rotational speed and oil film thickness using lubricating oil temperature as a parameter. At point A in the figure, the lubricating oil temperature is T, the rotational speed is high, and the oil film thickness is sufficiently larger than the set value. When the rotational speed is decreased, the oil film thickness ho is maintained along the curve of the temperature T up to the set value. (C.

D点) 次に、第2図において潤滑油温度をT、T3間に制御し
、回転数に応じた油膜厚さの設定値の幅をり。
Point D) Next, in Fig. 2, the lubricating oil temperature is controlled between T and T3, and the range of the set value of the oil film thickness is adjusted according to the rotational speed.

からhlの間に適切に設定すれば、領域ABCDE内の
任意の点で運転することができるようになる。
If it is set appropriately between hl and hl, it becomes possible to drive at any point within the area ABCDE.

一方、演算回路では、軸受潤滑状態を表すシンマーフェ
ルト数を計算し、第3図のごとく流体摩擦係数fが最小
となるように潤滑油の温度制御を行うこともできるが、
予演算回路に摩擦係数が最小となるシンマーフェルト数
(So)を設定しておき、軸受潤滑状態より計算される
シンマーフェルト数(S)との大小関係を判定し、潤滑
油の温度を制御できる。本実施例では、油膜厚さが設定
値以下となったときに潤滑油(油膜)の温度が限界温度
以上となったと判断して冷却すべく温度制御しているも
のである、 (発明の効果) 本発明は以上のごとく軸受内の油膜厚さが設定値以下と
なったときに潤滑油を冷却して供給することとし粘性を
高めることによって油膜厚さを確保するようにしたので
、油膜厚さは常に設定値以上しかも所定範囲に維持でき
て軸受における金属接触が回避され常に良好な状態での
運転がなされるという効果がある。しかも、そのための
構成はきわめて簡単で安価なるのみならず、油膜厚さ検
出器を軸受外部に設けてもよいので、既存の船尾管軸受
にも追加工事によって簡単に製作可能でありその用途は
広い。
On the other hand, the arithmetic circuit can calculate the Simmerfeld number that represents the bearing lubrication state and control the temperature of the lubricating oil so that the fluid friction coefficient f is minimized as shown in Figure 3.
The Simmerfelt number (So) that minimizes the friction coefficient is set in the pre-calculation circuit, the magnitude relationship with the Simmerfelt number (S) calculated from the bearing lubrication state is determined, and the temperature of the lubricating oil is determined. Can be controlled. In this embodiment, when the oil film thickness becomes less than a set value, it is determined that the temperature of the lubricating oil (oil film) has exceeded the limit temperature, and the temperature is controlled to cool the lubricating oil (oil film). ) As described above, the present invention cools and supplies lubricating oil when the oil film thickness inside the bearing falls below a set value, and ensures the oil film thickness by increasing the viscosity. This has the advantage that the bearing can always be maintained above the set value and within a predetermined range, thereby avoiding metal contact in the bearing and always operating in a good condition. Moreover, the configuration for this purpose is not only extremely simple and inexpensive, but also the oil film thickness detector can be installed outside the bearing, so it can be easily manufactured on existing stern tube bearings with additional work, and its uses are wide. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の概要構成図、第2図は
第1図装置の運転における回転数と油膜厚さの関係を示
す図、第3図はシンマーフェルト数と摩擦係数との関係
を示す図である。 1・・・・・・・・・船尾管軸受 4・・・・・・・・・給油経路(給油管)6・・・・・
・・・・ポンプ 8・・・・・・・・・冷却装置
Fig. 1 is a schematic configuration diagram of a device according to an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between rotation speed and oil film thickness during operation of the device shown in Fig. 1, and Fig. 3 is a diagram showing the Simmerfeld number and friction coefficient. FIG. 1... Stern tube bearing 4... Oil supply route (oil supply pipe) 6...
...Pump 8...Cooling device

Claims (2)

【特許請求の範囲】[Claims] (1)船尾管軸受の軸受面と軸との間に油膜を形成して
軸を支持する方法において、 油膜の厚さを検出し、該油膜の厚さが設定値以下になっ
たときに設定温度まで冷却された潤滑油を軸受に供給す
る、 ことを特徴とする船尾管軸受の潤滑方法。
(1) In a method of supporting the shaft by forming an oil film between the bearing surface of the stern tube bearing and the shaft, the thickness of the oil film is detected and set when the thickness of the oil film falls below a set value. A method of lubricating a stern tube bearing, characterized by supplying lubricating oil cooled to a temperature to the bearing.
(2)船尾管軸受の軸受面と軸との間に油膜を形成して
軸を支持する装置において、 油膜の厚さ検出器と、 タンクから軸受へ潤滑油を供給する給油経路に設けられ
た冷却装置と、 上記冷却装置を作動せしめる制御手段とを備え、上記検
出器で検出された油膜の厚さが設定値以下になったとき
に上記冷却装置を作動せしめるように制御手段が設定さ
れている、 ことを特徴とする船尾管軸受の潤滑装置。
(2) In a device that supports the shaft by forming an oil film between the bearing surface of the stern tube bearing and the shaft, there is an oil film thickness detector and an oil supply path that supplies lubricating oil from the tank to the bearing. A cooling device, and a control means for operating the cooling device, the control means being set to operate the cooling device when the thickness of the oil film detected by the detector becomes less than a set value. A stern tube bearing lubrication device characterized by:
JP62336642A 1987-12-28 1987-12-28 Method and device for lubricating stern tube bearing Pending JPH01176897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336642A JPH01176897A (en) 1987-12-28 1987-12-28 Method and device for lubricating stern tube bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336642A JPH01176897A (en) 1987-12-28 1987-12-28 Method and device for lubricating stern tube bearing

Publications (1)

Publication Number Publication Date
JPH01176897A true JPH01176897A (en) 1989-07-13

Family

ID=18301279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336642A Pending JPH01176897A (en) 1987-12-28 1987-12-28 Method and device for lubricating stern tube bearing

Country Status (1)

Country Link
JP (1) JPH01176897A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357556A (en) * 1999-12-24 2001-06-27 Univ Central Lancashire Lubrication control system
JP2003247812A (en) * 2002-02-27 2003-09-05 Daido Metal Co Ltd Bearing with oil-film thickness measuring instrument
CN102109010A (en) * 2011-01-24 2011-06-29 南京工业大学 Turntable bearing capable of being monitored on line
JP2012524697A (en) * 2009-04-27 2012-10-18 ツェットエフ、レンクジステメ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Automotive power steering system
EP3187768A1 (en) * 2015-12-17 2017-07-05 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
EP4112932A1 (en) * 2021-06-28 2023-01-04 Hoerbiger Wien GmbH Piston compressor and method for operating same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357556A (en) * 1999-12-24 2001-06-27 Univ Central Lancashire Lubrication control system
GB2357556B (en) * 1999-12-24 2002-11-06 Univ Central Lancashire Lubrication control system
US7552799B2 (en) 1999-12-24 2009-06-30 University Of Central Lancashire Lubrication control system
JP2003247812A (en) * 2002-02-27 2003-09-05 Daido Metal Co Ltd Bearing with oil-film thickness measuring instrument
JP2012524697A (en) * 2009-04-27 2012-10-18 ツェットエフ、レンクジステメ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Automotive power steering system
CN102109010A (en) * 2011-01-24 2011-06-29 南京工业大学 Turntable bearing capable of being monitored on line
EP3187768A1 (en) * 2015-12-17 2017-07-05 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
US10317121B2 (en) 2015-12-17 2019-06-11 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
US11187449B2 (en) 2015-12-17 2021-11-30 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
US11725859B2 (en) 2015-12-17 2023-08-15 Trane International Inc. System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
EP4112932A1 (en) * 2021-06-28 2023-01-04 Hoerbiger Wien GmbH Piston compressor and method for operating same

Similar Documents

Publication Publication Date Title
JP4874756B2 (en) Machine Tools
US20080093175A1 (en) Spindle device
US10790727B2 (en) Cooling apparatus for rotating electrical machine
JPH01176897A (en) Method and device for lubricating stern tube bearing
EP1358411A1 (en) Gas lubricated thrust bearing
JP6388312B2 (en) Sliding bearing lubrication device and sliding bearing lubrication method
JP3313441B2 (en) Rolling bearing lubricant supply device
JPH11166549A (en) Lubricating oil quantity control device of bearing part
US3560064A (en) Servo controlled fluid bearing
JP4553422B2 (en) Cooling control device for rotating shaft
JP2001099157A (en) Contact avoiding control device for air static pressure bearing
JP2004076783A (en) Method of lubricating rolling bearing and its device
JPS588823A (en) Diagnosis method for abnormality in bearing
KR20180096528A (en) High speed spindle apparatus
JPH0641796Y2 (en) Spindle unit
KR20140080785A (en) Spindle's tilting axis assembly for constrained Lubricating Unit
KR20090030920A (en) Cooling apparatus for a main spindle of machine
JPS61149611A (en) Slide bearing monitoring device
JPH11210747A (en) Journal bearing
JP7126342B2 (en) Oil supply amount adjusting device for journal bearing, journal bearing device, rotating machine, and method for adjusting oil supply amount for journal bearing
CA1185681A (en) Gap control system
JPH0455098A (en) Method for controlling lubricating oil of press machine
JPH04135139A (en) Lubrication system of bearing in machine tool
JPH05253791A (en) Thermal displacement hysteresis improvement method of static pressure main spindle for precision working machine
JPS6073124A (en) Rotary shaft floating device