JPH01176803A - Operation controller for plurality of actuators having flow control valve combined with variable displacement pump - Google Patents

Operation controller for plurality of actuators having flow control valve combined with variable displacement pump

Info

Publication number
JPH01176803A
JPH01176803A JP63000551A JP55188A JPH01176803A JP H01176803 A JPH01176803 A JP H01176803A JP 63000551 A JP63000551 A JP 63000551A JP 55188 A JP55188 A JP 55188A JP H01176803 A JPH01176803 A JP H01176803A
Authority
JP
Japan
Prior art keywords
pump
actuator
valve
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63000551A
Other languages
Japanese (ja)
Inventor
Ryoji Yamada
良二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchida Oil Hydraulics Mfg Co Ltd
Original Assignee
Uchida Oil Hydraulics Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchida Oil Hydraulics Mfg Co Ltd filed Critical Uchida Oil Hydraulics Mfg Co Ltd
Priority to JP63000551A priority Critical patent/JPH01176803A/en
Publication of JPH01176803A publication Critical patent/JPH01176803A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To retain operation of a high load actuator so as to improve the controllability by automatically decreasing the flow passing through a flow control valve, when the total flow passing through respective flow control valves of plural actuators mounted on a construction machine or the like becomes larger than a discharge from a pump. CONSTITUTION:Each compensator valve 9, 10 is provided with a control cylinder 28 which varies the spring force of a compensator spring 13. The control cylinder 28 introduces pump discharge pressure into one chamber 30 from a discharge circuit 4, and introduces the highest load pressure out of the load pressures on respective actuators 1, 2 into the other chamber 32. When the necessary flow for both flow control valves 7, 8 becomes larger then the total discharge from a pump 3, the control cylinder 28 controls the spring force of the compensator spring 13 so as to supply flow to the higher load side actuator and dissolves inconvenient stop of the actuator.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建設機械、荷投機械等の産業機械に設けた複
数台のアクチュエータの作動を1台の可変容量ポンプと
組合せた流量制御弁により作動制御する装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a flow control valve that combines the operation of multiple actuators installed in industrial machines such as construction machines and loading machines with one variable displacement pump. The present invention relates to a device whose operation is controlled by

(従来の技術) 従来、第1図示のように、複数台、例えば2台のアクチ
ュエ−タ、aを1台の可変容量ポンプbの吐出回路Cに
並列に接続し、各アクチュエータaへの各接続回路dに
コンペンセータバルブe付の切換弁iからなる流量制御
弁fを設け、該可変容量ポンプbに設けたポンプ容量を
制御するポンプ制御装置gに、各アクチュエータaの各
負荷圧力のうちの最も高い負荷圧をパイロット配管りを
介して導入すると共に該ポンプbの吐出圧を導入し、各
アクチュエータの負荷に応じた圧力、流量を該ポンプ制
御装置gの作動により制御することが行なわれている。
(Prior Art) Conventionally, as shown in FIG. A flow rate control valve f consisting of a switching valve i with a compensator valve e is provided in the connection circuit d, and a pump control device g for controlling the pump capacity provided in the variable displacement pump b is connected to a flow rate control valve f consisting of a switching valve i with a compensator valve e. The highest load pressure is introduced through the pilot piping, and the discharge pressure of the pump b is also introduced, and the pressure and flow rate according to the load of each actuator are controlled by the operation of the pump control device g. There is.

該コンペンセータバルブeは、例えば第2図示のように
、コンペンセータスプリングjで弾発されると共にアク
チュエータaの負荷圧が作用するプランジャkを流路I
に設け、該プランジャkに設けた絞りmの下流の流体圧
力が該プランジャkに該スプリングjと対抗するように
作用するように構成される。そして切換弁iが操作され
て吐出回路Cから接続回路dを介してアクチュエータa
へと制御流量が流れるとき、プランジャにはスプリング
j及び負荷圧による力と絞りmの下流の流体圧力による
力とが釣合う位置まで移動して絞りmの面積を制御し、
該制御流量の圧力補償を行なう。
For example, as shown in the second diagram, the compensator valve e connects a plunger k, which is urged by a compensator spring j and is subjected to the load pressure of an actuator a, to a flow path I.
and is configured such that fluid pressure downstream of a restriction m provided on the plunger k acts on the plunger k in opposition to the spring j. Then, when the switching valve i is operated, the actuator a is connected from the discharge circuit C through the connection circuit d.
When the controlled flow rate flows to the plunger, the plunger moves to a position where the force due to the spring j and the load pressure balances the force due to the fluid pressure downstream of the throttle m, thereby controlling the area of the throttle m,
The control flow rate is pressure compensated.

またポンプ制御装置gは、ポンプ容量を変化させるため
の傾転シリンダ0への流体の導入排出を制御する圧力コ
ントロールバルブpと流量コントロールバルブqを備え
、圧力コントロールバルブpは吐出回路Cの圧力が設定
値より高まるとポンプ容量を少なくする作動を行なうよ
うに傾転シリンダ0へ吐出回路Cの流体を導き、流量コ
ントロールバルブqはパイロット配管りを介して導入さ
れる各アクチュエータaSaのうちの最も高い負荷圧と
ポンプ吐出圧との差が設定値以上になったとき傾転シリ
ンダ0へ吐出回路Cの流体を導き、該ポンプbのポンプ
容量即ちポンプ吐出量を少なくする。第1図のrは安全
弁、Sはオイルタンク、tはシャトル弁を示す。
The pump control device g also includes a pressure control valve p and a flow rate control valve q that control the introduction and discharge of fluid into the tilt cylinder 0 to change the pump capacity, and the pressure control valve p controls the pressure of the discharge circuit C. The fluid in the discharge circuit C is guided to the tilting cylinder 0 so that the pump capacity is reduced when the flow rate exceeds the set value, and the flow control valve q is connected to the highest flow rate among the actuators aSa introduced through the pilot piping. When the difference between the load pressure and the pump discharge pressure exceeds a set value, the fluid in the discharge circuit C is guided to the tilting cylinder 0, and the pump capacity, that is, the pump discharge amount of the pump b is reduced. In FIG. 1, r indicates a safety valve, S indicates an oil tank, and t indicates a shuttle valve.

(発明が解決しようとする問題点) 前記第1図示の装置では、各流量制御弁fの切換弁iに
は夫々コンペンセータバルブeが設けられており、負荷
の影響を受けずに切換弁の開度に応じた流量を流すよう
になっている。また流量制御弁全体が必要とする流量は
、ポンプ制御装置gの流量コントロールバルブqによっ
て必要流量分だけ可変容量ポンプbが吐出するようにな
っている。
(Problems to be Solved by the Invention) In the device shown in the first diagram, the switching valve i of each flow control valve f is provided with a compensator valve e, so that the switching valve can be opened without being affected by the load. It is designed to flow at a flow rate depending on the temperature. Further, the flow rate required by the entire flow rate control valve is controlled by the flow rate control valve q of the pump control device g so that the variable displacement pump b discharges the required flow rate.

しかし、流量制御弁全体が必要とする流量が、ポンプ吐
出全量よりも多くなった場合は制御不能となり、高負荷
側のアクチュエータへ流入すべき流量が軽負荷側のアク
チュエータへと流れてしまう。この状態をグラフ化する
と第3図示の如くであり、曲線Qlは高負荷側のアクチ
ュエータへの流量制御弁を一定流量が流れるようにセッ
トしたときの流量の変化、曲線Q2は軽負荷側のアクチ
ュエータへの流量制御弁の開度を徐々に流量を増加させ
るように上げたときの流量変化を示す。これに見られる
ようにポンプ吐出全量が流量制御弁全体の流量よりも多
いXの範囲ではQlの流量は変化しないが、ポンプ吐出
全量が流量制御弁全体が必要となる流量よりも少なくな
るYの範囲では制御不能となり、高負荷側のアクチュエ
ータへと流れていたQlの流量が軽負荷側のアクチュエ
ータへと流れ込みQ2が増大し、最終的にはQlは零に
まで減ってしまう。
However, if the flow rate required by the entire flow control valve becomes greater than the total pump discharge, control becomes uncontrollable, and the flow rate that should flow into the actuator on the high load side flows into the actuator on the light load side. This state is graphed as shown in Figure 3, where the curve Ql is the change in flow rate when the flow control valve to the actuator on the high load side is set so that a constant flow flows, and the curve Q2 is the change in flow rate when the flow control valve to the actuator on the high load side is set to flow at a constant flow rate. This shows the change in flow rate when the opening degree of the flow control valve is gradually increased to increase the flow rate. As seen in this figure, the flow rate Ql does not change in the range In this range, control becomes uncontrollable, and the flow rate of Ql that had been flowing to the actuator on the high load side flows to the actuator on the light load side, increasing Q2, and eventually Ql decreases to zero.

この現象をシリンダ等のアクチュエータの動きで考える
と、1台のアクチュエータが動いている状態で他のアク
チュエータを動かすと、動いていたアクチュエータが停
止してしまうことになるので制御上の問題がある。
Considering this phenomenon in terms of the movement of actuators such as cylinders, if one actuator is moving and another actuator is moved, the actuator that was moving will stop, which poses a control problem.

こうした問題を解決するには、ポンプ吐出量が不足した
場合、その不足分に応じて流量制御弁を流れる流量を減
じ、別のアクチュエータを動かしたときそれまで動いて
いたアクチュエータは速度が遅くなっても停止しないよ
うにする必要があり、これを満足する解決手段を提供す
ることが本発明の目的である。
To solve this problem, if the pump discharge volume is insufficient, the flow rate flowing through the flow control valve is reduced accordingly, so that when another actuator is moved, the speed of the actuator that was previously moving becomes slower. Therefore, it is an object of the present invention to provide a solution that satisfies this requirement.

(問題点を解決するための手段) 本発明では、前記目的を達成すべく、1台の可変容量ポ
ンプの吐出回路に複数台のアクチュエータを並列に接続
し、各アクチュエータへの各接続回路に、制御要素とし
てコンペンセータスプリングを有するコンペンセータバ
ルブ付の流量制御弁を夫々設け、該可変容量ポンプに、
各アクチュエータの負荷圧力のうち最も高い負荷圧と該
ポンプの吐出圧とに応じて該ポンプのポンプ容量を制御
するポンプ制御装置を設けるようにしたものに於いて、
制御スプリングと前記段も高い負荷圧とによる一方向へ
の力の作用を受けると共にその逆方向に前記吐出圧によ
る力の作用を受けるピストンを備えた制御シリンダを用
意し、前記一方向への力よりもその逆方向への力が優勢
となったとき前記ピストンのロッドが前記コンペンセー
タスプリングをたわめるように該制御シリンダをコンペ
ンセータバルブに連結するようにした。
(Means for solving the problem) In the present invention, in order to achieve the above object, a plurality of actuators are connected in parallel to the discharge circuit of one variable displacement pump, and each connection circuit to each actuator is connected to the discharge circuit of one variable displacement pump. Each of the variable displacement pumps is provided with a flow control valve with a compensator valve having a compensator spring as a control element,
A pump control device is provided that controls the pump capacity of the pump according to the highest load pressure among the load pressures of each actuator and the discharge pressure of the pump,
A control cylinder is provided with a piston that is subjected to a force in one direction due to a control spring and a high load pressure, and is also subjected to a force in the opposite direction due to the discharge pressure, The control cylinder is connected to the compensator valve so that the rod of the piston deflects the compensator spring when a force in the opposite direction becomes dominant.

(作 用) 該可変容量ポンプに例えば2台のアクチュエータが並列
に接続されており、いまその一方のアクチュエータが接
続回路の流量制御弁の操作により一定の流量の供給を受
は高負荷で作動しているものとする。このときもう一方
の軽負荷のアクチュエータを作動すべくもう一方の流量
制御弁を操作し、該アクチュエータへの流量を次第に増
大させると、第4図に見られるように、両流量制御弁の
合計流量Ql+02が該ポンプの吐出可能な吐出量の範
囲Xでは、ポンプ吐出圧P1と最も高い負荷圧P2との
差がコンペンセータバルブにより一定差に保たれるが、
Ql+02がポンプの吐出量以上となる範囲Yではポン
プ吐出圧PIと負荷圧P2がほぼ同じ圧力になる現象が
見られた。本発明はこの現象の性質を利用するもので、
コンペンセータバルブに連結して設けた制御シリンダに
ポンプ吐出圧P1と負荷圧P2を導入し、P+ =!:
 P2の差圧が小さくなるYの範囲になると、該制御シ
リンダの制御スプリングによってそのピストン及びピス
トンロッドが退去し、コンペンセータスプリングのばね
力を弱めるので、流量制御弁の流量を決める差圧を低く
するようにコンペンセータバルブが作動する。コンペン
セータバルブの差圧が低くなると流量制御弁を流れる流
量が減少するため、Q2の最大流量が減り、ポンプ吐出
量が不足してもQlを維持することが出来、高負荷のア
クチュエータの動きを止めることなく作動させ続けるこ
とが出来る。尚、PlがP2よりも制御圧力付だけの差
圧があるXの範囲では、制御シリンダの制御スプリグに
打ち勝ってそのピストン及びピストンロッドがコンペン
セータスプリングをたわめるように移動し、コンペンセ
ータバルブは流量制御弁の流量を決める差圧を高くする
(Function) For example, two actuators are connected in parallel to the variable displacement pump, and one of the actuators is currently being supplied with a constant flow rate by operating a flow rate control valve in a connected circuit, and is operating under a high load. It is assumed that At this time, when the other flow control valve is operated to operate the other light-load actuator and the flow rate to that actuator is gradually increased, the total flow rate of both flow control valves is increased as shown in Fig. 4. When Ql+02 is in the range X of the discharge amount that the pump can discharge, the difference between the pump discharge pressure P1 and the highest load pressure P2 is maintained at a constant difference by the compensator valve.
In the range Y where Ql+02 is equal to or greater than the pump discharge amount, a phenomenon was observed in which the pump discharge pressure PI and the load pressure P2 become approximately the same pressure. The present invention utilizes the properties of this phenomenon,
Pump discharge pressure P1 and load pressure P2 are introduced into a control cylinder connected to the compensator valve, and P+ =! :
When the differential pressure of P2 reaches a range of Y where the pressure difference decreases, the piston and piston rod are moved away by the control spring of the control cylinder, weakening the spring force of the compensator spring, thereby lowering the differential pressure that determines the flow rate of the flow control valve. The compensator valve operates as follows. When the differential pressure of the compensator valve decreases, the flow rate through the flow control valve decreases, so the maximum flow rate of Q2 decreases, and Ql can be maintained even if the pump discharge volume is insufficient, stopping the movement of the actuator under high load. It can continue to operate without any problems. In addition, in the range Increase the differential pressure that determines the flow rate of the flow control valve.

(実施例) 本発明の実施例を1台の可変容量ポンプにより2台のア
クチュエータを作動せる場合につき説明すると、第5図
に於いて符号(1) (2)は油圧シリンダのアクチュ
エータ、(3)は可変容量ポンプ、(4)は該ポンプ(
3)の吐出回路、(5) (6)は該吐出回路(4)か
ら分岐して各アクチュエータ(1) (2)へ流体を供
給する接続回路、(7) (8)は各接続回路(5) 
(6)に設けたコンペンセータバルブ(9) (IO付
の切換弁(’Ivazからなる流量側−御弁を示す。各
流量制御弁(7) (8)はその切換弁(Ivoの操作
ストロークに応じて開度が変えられるが、その開度に応
じた流量が流れるように各切換弁I′Iv■の前後の差
圧をコンペンセータバルブ(9) (IOが制御する。
(Embodiment) An embodiment of the present invention will be explained with reference to the case where two actuators are operated by one variable displacement pump. In FIG. ) is a variable displacement pump, (4) is the pump (
3) discharge circuit, (5) and (6) are connection circuits that branch from the discharge circuit (4) and supply fluid to each actuator (1) and (2), and (7) and (8) are each connection circuit ( 5)
The compensator valve (9) installed in (6) (shows the flow rate side control valve consisting of a switching valve ('Ivaz) with IO. Each flow rate control valve (7) (8) is connected to the operating stroke of its switching valve (Ivo) The opening degree is changed accordingly, and the compensator valve (9) (IO controls the differential pressure before and after each switching valve I'Iv■) so that the flow rate corresponds to the opening degree.

各コンペンセータバルブ(9) (IOのそれ自体の構
造は第6図示のように従来のものとほぼ同様であり、コ
ンペンセータスプリングa3で一端側aΦから弾発され
ると共に該一端側(+4)の室(I5+に導入したアク
チュエータ(1)又は(2)の負荷圧の作用を受ける移
動自在のプランジャaOを吐出回路(4)に連なる流路
(+7)に備え、該プランジャ11oに設けた可変する
絞り(Ieの下流の流体圧力が該プランジャ(IOの前
記一端側(IΦと対向する他端側(+9)に作用するよ
うに構成される。そして切換弁a11)又はa2が操作
されて絞り(181を通りアクチュエータ(1)又は(
2)へ流体が流れると、該プランジャ(Ioは一端側a
4)に作用するスプリング(13及び負荷圧による力と
他端側(+!I)に作用する絞り(Ieの下流の流体圧
力による力とが釣合う位置にまで移動して絞り(1&の
面積を制御し、切換弁(Ivazの開度に応じた流量が
流れるように圧力補償する。
Each compensator valve (9) (The structure of the IO itself is almost the same as the conventional one as shown in Figure 6, and the compensator spring a3 springs from one end side aΦ and the one end side (+4) has a chamber. (A movable plunger aO that is affected by the load pressure of the actuator (1) or (2) introduced into I5+ is provided in the flow path (+7) connected to the discharge circuit (4), and a variable throttle provided on the plunger 11o. (The fluid pressure downstream of Ie is configured to act on the one end side (the other end (+9) opposite IΦ) of the plunger (IO.Then, the switching valve a11) or a2 is operated and the throttle (181 through the actuator (1) or (
2) When the fluid flows to the plunger (Io is one end side a
The force due to the spring (13 and load pressure acting on the spring (13) and the load pressure acting on the other end (+! The pressure is compensated so that the flow rate corresponds to the opening degree of the switching valve (Ivaz).

該可変容量ポンプ(3)は、ポンプ容量を変化させるた
めの傾転シリンダ■への流体の導入排出を制御する圧力
コントロールバルブ0と流量コントロールバルブ■とで
構成されたポンプ制御装置■を備えており、該圧力コン
トロールバルブσは吐出回路(4)から導入した圧力が
設定値よりも高くなるとポンプ容量を少なくする作動を
行なうように傾転シリンダ■へ吐出回路(4)の流体を
導き、また流量コントロールバルブ■はシャトル弁QΦ
及びパイロット配管■を介して導入される各アクチュエ
ータ(1) (2)のうちの最も高い負荷圧と、吐出回
路(4)から導入したポンプ吐出圧との差が設定値以上
になったとき作動して傾転シリンダ■へ該吐出回路(4
)の流体を導く。このポンプ制御装置■は各コントロー
ルバルブ0■の作動でポンプ吐出圧又はアクチュエータ
の負荷圧に応じてポンプ容量を制御し、圧力に応じた流
量をポンプ(3)が吐出する。■は安全弁、■はオイル
タンクである。
The variable displacement pump (3) is equipped with a pump control device (2) consisting of a pressure control valve (0) and a flow rate control valve (2) for controlling the introduction and discharge of fluid into the tilting cylinder (2) for changing the pump capacity. The pressure control valve σ guides the fluid in the discharge circuit (4) to the tilting cylinder (■) so as to reduce the pump capacity when the pressure introduced from the discharge circuit (4) becomes higher than a set value. Flow rate control valve ■ is shuttle valve QΦ
Activates when the difference between the highest load pressure of each actuator (1) (2) introduced through the and pilot piping ■ and the pump discharge pressure introduced from the discharge circuit (4) exceeds the set value. and connect the discharge circuit (4) to the tilting cylinder ■.
) to guide the fluid. This pump control device (2) controls the pump capacity according to the pump discharge pressure or the load pressure of the actuator by operating each control valve (0), and the pump (3) discharges a flow rate according to the pressure. ■ is a safety valve, and ■ is an oil tank.

以上の構成は従来のものと略同様であり、流量制御弁(
7) (8)の切換弁(It) (IZの開度に応じた
流2を各アクチュエータ(1) (2)へ流すようにコ
ンペンセータバルブ(9) (If)が圧力補償制御を
行ない、両流量制御弁(7) (8)が必要とする流量
は、ポンプ制御装置■の流量コントロールバルブのによ
ってポンプ(3)が前記必要流量分だけ吐出することも
従来のものと同様であるが、この構成では両流量制御弁
(7) (8)が必要とする流量がポンプ(3)の全吐
出量よりも多くなった場合には制御不能になり、高負荷
側のアクチュエータへ流入すべき流量が低負荷側のアク
チュエータへ流入し、その結果高負荷側のアクチュエー
タの作動が停止する不都合がある。
The above configuration is almost the same as the conventional one, and the flow control valve (
7) The compensator valve (9) (If) performs pressure compensation control so that the flow 2 corresponding to the opening degree of the switching valve (It) (IZ) in (8) flows to each actuator (1) (2). The flow rate required by the flow rate control valves (7) and (8) is similar to the conventional one, in that the pump (3) discharges the required flow rate depending on the flow rate control valve of the pump control device (■). In the configuration, if the flow rate required by both flow control valves (7) and (8) becomes greater than the total discharge amount of the pump (3), control becomes uncontrollable, and the flow rate that should flow into the actuator on the high load side is reduced. There is an inconvenience that the liquid flows into the actuator on the low load side, and as a result, the operation of the actuator on the high load side stops.

そこで、本発明に於いては、各コンペンセータバルブ(
9) (IOに、コンペンセータスプリング(′leの
ばね力を変更する制御シリンダ■を設けるようにし、前
記の如く両流量制御弁(7) (8)が必要とする流量
がポンプ(3)の全吐出量よりも多くなった場合、該制
御シリンダ■がコンペンセータスプリング(1′3のば
ね力を制御し、高負荷側のアクチュエータに流量を流し
て該アクチュエータが停止する不都合を解消するように
した。該制御シリンダ■の詳細は、第6図示の如くであ
り、ピストン■の一方の室ωに吐出回路(4)からポン
プ吐出圧を導入し、ロッド■を取付けた他方の室■に、
制御スブリグ■と、シャトル弁(24+で抽出した各ア
クチュエータ(1) (2)の負荷圧のうちの最も高い
負荷圧を導入するように構成され、該ロッドGl)はコ
ンペンセータスプリングG3のスプリング座■に連結さ
れる。
Therefore, in the present invention, each compensator valve (
9) (The IO is provided with a control cylinder (■) that changes the spring force of the compensator spring ('le), so that the flow rate required by both flow rate control valves (7) (8) as described above is equal to the total flow rate of the pump (3). When the amount exceeds the discharge amount, the control cylinder (2) controls the spring force of the compensator spring (1'3) to allow the flow to flow to the actuator on the high load side, thereby eliminating the inconvenience of the actuator stopping. The details of the control cylinder (2) are as shown in FIG.
It is configured to introduce the highest load pressure among the load pressures of each actuator (1) (2) extracted by the control subrig ■ and the shuttle valve (24+, and the rod Gl) is connected to the spring seat ■ of the compensator spring G3. connected to.

該制御シリンダ■はポンプ吐出圧が最も高い負荷圧より
も制御スプリング■による力の分だけ高い場合、即ち第
4図のXの範囲では、該制御スプリング■に打ち勝って
ピストン■及びロッド01)がコンペンセータスプリン
グ(131をたわめるように移動し、これによりコンペ
ンセータバルブ(9)又は00は流量制御弁(7)又は
(8)の流量を決める差圧を高くする。これとは逆に、
ポンプ吐出圧と最も高い負荷圧とがほぼ同じ圧力になっ
た場合、即ち第4図のYの範囲では、制御スプリング■
によってピストン■及びロッドGl)が後退し、コンペ
ンセータスプリング(131か弱くなるので、流量制御
弁(7)又は(8)の流量を決める差圧か低くなる。こ
の作用によって軽負荷側のアクチュエータへの流量Q2
の最大値が減少するため、ポンプ(3)の吐出量が減少
しても高負荷側のアクチュエータへの流m Q lを確
保出来、高負荷側のアクチュエータの動きを停止させな
いで制御作動を行なえる。
When the pump discharge pressure is higher than the highest load pressure by the force exerted by the control spring ■, that is, in the range X in Fig. 4, the control cylinder ■ overcomes the control spring ■ and the piston ■ and rod 01) The compensator spring (131) is moved to deflect, thereby causing the compensator valve (9) or 00 to increase the differential pressure that determines the flow rate of the flow rate control valve (7) or (8).On the contrary,
When the pump discharge pressure and the highest load pressure become almost the same pressure, that is, in the range Y in Fig. 4, the control spring ■
As a result, the piston (2) and the rod (Gl) move back, and the compensator spring (131) becomes weaker, so the differential pressure that determines the flow rate of the flow control valve (7) or (8) decreases.This action reduces the flow rate to the actuator on the light load side. Q2
Since the maximum value of is reduced, even if the discharge amount of the pump (3) decreases, the flow m Q l to the actuator on the high load side can be secured, and control operations can be performed without stopping the movement of the actuator on the high load side. Ru.

(発明の効果) 以上のように本発明によるときは、流量制御弁に設けた
コンペンセータバルブのコンペンセータスプリングを、
複数台のアクチュエータの負荷圧のうちの最も高い負荷
圧とポンプ吐出圧との差圧が設定値以下となったとき該
スプリングのばね力を弱める制御シリンダを設けるよう
にしたので、複数台のアクチュエータの作動を制御する
各流量制御弁の合計流量がポンプ吐出量より多くなった
場合、自動的に流量制御弁の流量が減少し、高負荷のア
クチュエータの動きを停止させないで作動させ続けるこ
とが出来、制御性が向上する等の効果がある。
(Effects of the Invention) As described above, according to the present invention, the compensator spring of the compensator valve provided in the flow control valve is
A control cylinder is provided that weakens the spring force of the spring when the differential pressure between the highest of the load pressures of multiple actuators and the pump discharge pressure becomes less than a set value, so multiple actuators If the total flow rate of each flow control valve that controls the operation of the actuator exceeds the pump discharge amount, the flow rate of the flow control valve will automatically decrease, allowing the highly loaded actuator to continue operating without stopping. This has the effect of improving controllability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の線図、第2図は第1図示のもののアク
チュエータへの流量の変化特性を示す線図、第3図は第
1図示のコンペンセータバルブの詳細図、第4図は本発
明装置よるアクチュエータへの流量の変化特性を示す線
図、第5図は本発明の実施例の線図、第6図は第5図示
の制御シリンダの詳細図である。 (1) (2)・・・アクチュエータ (3)・・・可変容量ポンプ (4)・・・吐出回路 (5) (6)・・・接続回路 (7) (8)・・・流量制御弁 (9) (10・・・コンペンセータバルブ(I3・・
・コンペンセータスプリング■・・・ポンプ制御装置 ■・・・制御シリンダ ■・・・ピストン ■・・・ロッド ■・・・制御スプリング
Fig. 1 is a diagram of the conventional example, Fig. 2 is a diagram showing the change characteristics of the flow rate to the actuator of the one shown in Fig. 1, Fig. 3 is a detailed view of the compensator valve shown in Fig. 1, and Fig. 4 is a diagram of the present invention. FIG. 5 is a diagram showing the variation characteristics of the flow rate to the actuator by the inventive device, FIG. 5 is a diagram of an embodiment of the present invention, and FIG. 6 is a detailed view of the control cylinder shown in FIG. (1) (2)...Actuator (3)...Variable displacement pump (4)...Discharge circuit (5) (6)...Connection circuit (7) (8)...Flow rate control valve (9) (10... Compensator valve (I3...
・Compensator spring■...Pump control device■...Control cylinder■...Piston■...Rod■...Control spring

Claims (1)

【特許請求の範囲】[Claims]  1台の可変容量ポンプの吐出回路に複数台のアクチュ
エータを並列に接続し、各アクチュエータへの各接続回
路に、制御要素としてコンペンセータスプリングを有す
るコンペンセータバルブ付の流量制御弁を夫々設け、該
可変容量ポンプに、各アクチュエータの負荷圧力のうち
の最も高い負荷圧と該ポンプの吐出圧とに応じて該ポン
プのポンプ容量を制御するポンプ制御装置を設けるよう
にしたものに於いて、制御スプリングと前記最も高い負
荷圧とによる一方向への力の作用を受けると共にその逆
方向に前記吐出圧による力の作用を受けるピストンを備
えた制御シリンダを用意し、前記一方向への力よりもそ
の逆方向への力が優勢となったとき前記ピストンのロッ
ドか前記コンペンセータスプリングをたわめるように該
制御シリンダをコンペンセータバルブに連結したことを
特徴とする可変容量ポンプと組合せた流量制御弁を有す
る複数台のアクチュエータの作動制御装置。
A plurality of actuators are connected in parallel to the discharge circuit of one variable displacement pump, and each connection circuit to each actuator is provided with a flow control valve with a compensator valve having a compensator spring as a control element, and the variable displacement pump is connected in parallel to the discharge circuit of one variable displacement pump. The pump is provided with a pump control device that controls the pump capacity of the pump according to the highest load pressure among the load pressures of each actuator and the discharge pressure of the pump, and the control spring and the A control cylinder is provided with a piston that receives a force in one direction due to the highest load pressure and a force in the opposite direction due to the discharge pressure. a flow control valve in combination with a variable displacement pump, characterized in that the control cylinder is connected to a compensator valve so as to deflect either the rod of the piston or the compensator spring when a force on the piston becomes predominant. Operation control device for the actuator.
JP63000551A 1988-01-05 1988-01-05 Operation controller for plurality of actuators having flow control valve combined with variable displacement pump Pending JPH01176803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000551A JPH01176803A (en) 1988-01-05 1988-01-05 Operation controller for plurality of actuators having flow control valve combined with variable displacement pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000551A JPH01176803A (en) 1988-01-05 1988-01-05 Operation controller for plurality of actuators having flow control valve combined with variable displacement pump

Publications (1)

Publication Number Publication Date
JPH01176803A true JPH01176803A (en) 1989-07-13

Family

ID=11476858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000551A Pending JPH01176803A (en) 1988-01-05 1988-01-05 Operation controller for plurality of actuators having flow control valve combined with variable displacement pump

Country Status (1)

Country Link
JP (1) JPH01176803A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107586A (en) * 1989-09-22 1991-05-07 Komatsu Ltd Capacity controller of variable capacity pump
JPH0351201U (en) * 1989-09-26 1991-05-17
JPH03157504A (en) * 1989-11-14 1991-07-05 Hitachi Constr Mach Co Ltd Control device of hydraulic circuit
US6224270B1 (en) 1996-07-15 2001-05-01 Seiko Instruments Inc. Universal optical fiber connectors and basic plugs thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943203A (en) * 1982-09-03 1984-03-10 Kayaba Ind Co Ltd Hydraulic pressure control circuit
JPS6011706A (en) * 1983-06-14 1985-01-22 リンデ・アクチエンゲゼルシヤフト Liquid pressure type apparatus having at least two working apparatuses loaded by one pump
JPS61206804A (en) * 1985-03-08 1986-09-13 Kawasaki Heavy Ind Ltd Parallel multibranch hydraulic circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943203A (en) * 1982-09-03 1984-03-10 Kayaba Ind Co Ltd Hydraulic pressure control circuit
JPS6011706A (en) * 1983-06-14 1985-01-22 リンデ・アクチエンゲゼルシヤフト Liquid pressure type apparatus having at least two working apparatuses loaded by one pump
JPS61206804A (en) * 1985-03-08 1986-09-13 Kawasaki Heavy Ind Ltd Parallel multibranch hydraulic circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107586A (en) * 1989-09-22 1991-05-07 Komatsu Ltd Capacity controller of variable capacity pump
JPH0351201U (en) * 1989-09-26 1991-05-17
JPH03157504A (en) * 1989-11-14 1991-07-05 Hitachi Constr Mach Co Ltd Control device of hydraulic circuit
US6224270B1 (en) 1996-07-15 2001-05-01 Seiko Instruments Inc. Universal optical fiber connectors and basic plugs thereof
US6533468B2 (en) 1996-07-15 2003-03-18 Seiko Instruments Inc. Universal optical fiber connectors and basic plugs thereof

Similar Documents

Publication Publication Date Title
JPH0674204A (en) Hydraulic type controller for plurality of consuming equipment
JPH04136507A (en) Hydraulic circuit
US4967554A (en) Commonly-piloted directional control valve and load pressure signal line relieving switching valve
JPS62270803A (en) Hydraulic circuit
JPS595165B2 (en) hydraulic control device
US5188147A (en) Pressure compensating type hydraulic valve
JPH01176803A (en) Operation controller for plurality of actuators having flow control valve combined with variable displacement pump
KR960016819B1 (en) Flow control hydraulic circuit for a pump
JPH0117001B2 (en)
JP2794864B2 (en) Industrial vehicle hydraulics
JP2794874B2 (en) Industrial vehicle hydraulics
JPH0333925B2 (en)
JP2652791B2 (en) Flow control device
JPH0768963B2 (en) Hydraulic 3-port continuous valve and hydraulic control device using the same
JPS5824642Y2 (en) Switching valve device that controls flow rate and back pressure
CN212717427U (en) Variable power valve group, variable power control device and hydraulic system
JP3772037B2 (en) Hydraulic control device
JPS63106406A (en) Liquid pressure controller
JP3344745B2 (en) Hydraulic control circuit
JPH0419204Y2 (en)
JPH03125002A (en) Hydraulic driving system
JPH06185503A (en) Hydraulic circuit for construction machine
JP3553651B2 (en) Displacement control device for variable displacement hydraulic pump
JPS62253981A (en) Working fluid temperature rise circuit in hydraulic control device
JPS5849722B2 (en) fluid equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees