JPH01176103A - Frequency discrimination circuit - Google Patents

Frequency discrimination circuit

Info

Publication number
JPH01176103A
JPH01176103A JP33661887A JP33661887A JPH01176103A JP H01176103 A JPH01176103 A JP H01176103A JP 33661887 A JP33661887 A JP 33661887A JP 33661887 A JP33661887 A JP 33661887A JP H01176103 A JPH01176103 A JP H01176103A
Authority
JP
Japan
Prior art keywords
phase difference
output
difference detection
circuit
local oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33661887A
Other languages
Japanese (ja)
Other versions
JP2517035B2 (en
Inventor
Kenzo Urabe
健三 占部
Katsumi Ushiyama
牛山 勝實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP62336618A priority Critical patent/JP2517035B2/en
Publication of JPH01176103A publication Critical patent/JPH01176103A/en
Application granted granted Critical
Publication of JP2517035B2 publication Critical patent/JP2517035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Measuring Phase Differences (AREA)

Abstract

PURPOSE:To obtain a discrimination output without distortion by selecting 2nd or 1st differentiation output and the 1st or 2nd differentiation output respec tively against the binary state represented by a phase difference discrimination output and its opposite state in the phase difference point giving the discontinu ous change of 1st or 2nd phase difference detection output. CONSTITUTION:A changeover circuit 6 selects the the 2nd or 1st differentiation output D2 or D1 and the 1st or 2nd differentiation output D1 or D2 respectively against the binary state represented by a phase difference discrimination output C and its opposite state in the phase difference point giving the discontinuous change in the 1st or 2nd phase difference detection output theta1 or theta2 and outputs it switchingly. The switching output D is given to a low-pass filter 7 and the noise component at the outside of the base band caused by noise in a transmis sion line is eliminated. Then the effect of an impulse output of the 1st or 2nd differentiation output D1, D2 caused by the discontinuous change in the 1st or 2nd phase difference detection output theta1, theta2 is avoided and a frequency dis crimination output S is obtained from a low-pass filter. Thus, the frequency discrimination operation not including any distortion theoretically and not includ ing undesired harmonics is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアナログ信号、データ信号等によって周波数変
調が施された信号の復調や、入力信号の周波数偏差の計
測等に応用される周波数弁別回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a frequency discrimination circuit that is applied to demodulating signals frequency-modulated by analog signals, data signals, etc., and measuring frequency deviation of input signals. Regarding.

〔従来の技術とその問題点〕[Conventional technology and its problems]

入力信号の瞬時周波数を弁別する方法として従来は、セ
ラミック素子の同調特性を利用する方法(セラミックデ
ィスクリミネータ)や、クオドラチャ検波方式等がある
Conventional methods for discriminating the instantaneous frequency of an input signal include a method using the tuning characteristics of a ceramic element (ceramic discriminator), a quadrature detection method, and the like.

しかしながらこれらは、セラミック素子や90゜位相シ
フト用インダクタンス素子等、IC化に適さないデバイ
スを必要とL、ICの外部に付加して用いるにしても、
小形化に限界がある上に、処理対象となる搬送波は特定
の中間周波に限定されるため、ヘテロダイン受信機に応
用が限られる等、小形化、汎用化に問題があった。
However, these require devices that are not suitable for IC implementation, such as ceramic elements and 90° phase shift inductance elements, and even if they are used outside the IC,
In addition to there being a limit to miniaturization, the carrier wave to be processed is limited to a specific intermediate frequency, which limits its application to heterodyne receivers, which poses problems in miniaturization and generalization.

また、入力信号と同一の周波数を有L、互いに位相がπ
/2ラジアンだけ異なる2つの局部発振波と入力信号と
を周波数混合することによって2つの互いに直交するベ
ースバンド信号を抽出L、その一方のπ/2ラジアンシ
フト信号と他方のベースバンド信号のアナログ乗算から
得られる2つの乗算出力を取り出L、これらの差を周波
数弁別出力とする、いわゆる直交検波方式が汎用性の高
い方式としてあげられる。
Also, it has the same frequency as the input signal, and the phase is π
Two mutually orthogonal baseband signals are extracted by frequency mixing the input signal and two local oscillation waves that differ by /2 radians, and analog multiplication of the π/2 radian shift signal of one of them and the other baseband signal A highly versatile method is a so-called orthogonal detection method in which the two multiplication outputs obtained from L are taken out and the difference between them is used as a frequency discrimination output.

しかL、この方式において歪のない弁別出力を得るには
、出来るだけ理想的なアナログ乗算器を2回路必要とL
、回路規模が大きくなL、小形化に適さないという問題
点があった。
However, in order to obtain a discrimination output without distortion in this method, two circuits of analog multipliers as ideal as possible are required.
, L has a large circuit scale and is not suitable for miniaturization.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記従来の問題点を解決するためになされたも
のであって、アナログ乗算器を使用せずに無歪の周波数
弁別動作を実現することによって小形化、IC化が容易
であL、かつ汎用性に優れる周波数弁別回路を提供しよ
うとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and by realizing distortion-free frequency discrimination operation without using an analog multiplier, it can be easily miniaturized and integrated into an IC. The present invention also aims to provide a frequency discrimination circuit which is excellent in versatility.

即ち、本発明回路は、 入力信号Rの中心周波数と同一
周波数を有する局部発振出力りを得る局部発振回路1と
、局部発振出力しの極性を反転し極性反転出力■を得る
極性反転器2と、入力信号Rと局部発振出力L、及び入
力信号Rと極性反転出力τをそれぞれ入力しそれぞれ2
つの入力RとL、Rとτの位相差に対し周期2πラジア
ンで直線的上昇または下降を繰り返す鋸歯状形の位相差
特性に従って第1.第2位相差検出出力θ8.θ2を得
る第1.第2位相差検出回路31 、32と、入力信号
Rと局部発振出力りを入力しこれらの位相差に対し周期
2πラジアンでπラジアン毎に2値判定値を呈する位相
差判定出力Cを得る位相差判定回路4と、第1.第2位
相差検出出力θ1 、θ2を入力しその時間微分動作に
よってそれぞれ第1゜第2微分出力Dr、Dzを得る第
1.第2微分器51゜52と、第1.第2微分出力D+
 、02を入力しこれらの2つの入力の一方を位相差判
定出力Cの2値状態に対応して選択L、これらの切替出
力りを得る切替回路6と、切替出力りを入力し伝送回線
における雑音によって生じたベースバンド帯域外の雑音
成分を除去して周波数弁別出力Sを得る低域濾波器7と
よりなL、位相差判定出力Cの2値変化を与える人力信
号Rと局部発振出力りとの位相差点は、第1.第2位相
差検出出力θ1 、θ2の鋸歯状形の位相差検出特性に
おける不連続変化を与える位相差点に対し±π/2ラジ
アンの位相差を有するように第1.第2位相差検出回路
31 、32及び位相差判定回路4を構成すると共に、
切替回路6は第1または第2位相差検出出力θ1または
θ2の不連続変化を与える位相差点上で位相差判定出力
Cが示す2イ直状態、及びその逆の状態に対し第2また
は第1微分出力D2またはり2、及び第1または第2微
分出力L、またはD2をそれぞれ選択L、切替出力する
ように構成したものである。
That is, the circuit of the present invention includes a local oscillation circuit 1 that obtains a local oscillation output having the same frequency as the center frequency of the input signal R, and a polarity inverter 2 that inverts the polarity of the local oscillation output and obtains a polarity inverted output ■. , the input signal R and the local oscillation output L, and the input signal R and the polarity inverted output τ are input, respectively.
In accordance with the sawtooth-shaped phase difference characteristic, which repeats a linear rise or fall with a period of 2π radian for the phase difference between the two inputs R and L, and R and τ, the first. Second phase difference detection output θ8. 1st to obtain θ2. The second phase difference detection circuits 31 and 32 input the input signal R and the local oscillation output to obtain a phase difference judgment output C that exhibits a binary judgment value for every π radian with a period of 2π radians for these phase differences. A phase difference determination circuit 4, a first . The first and second phase difference detection outputs θ1 and θ2 are inputted and the first and second differential outputs Dr and Dz are obtained by time differential operation thereof, respectively. a second differentiator 51°52; a first differentiator 51°52; Second differential output D+
. A low-pass filter 7 that removes noise components outside the baseband generated by noise to obtain a frequency discrimination output S, a human power signal R that provides a binary change in the phase difference judgment output C, and a local oscillation output. The phase difference point with the first. The first phase difference detection outputs θ1 and θ2 have a phase difference of ±π/2 radians with respect to a phase difference point that gives a discontinuous change in the sawtooth-shaped phase difference detection characteristics. Configures the second phase difference detection circuits 31 and 32 and the phase difference determination circuit 4, and
The switching circuit 6 switches the second or first phase difference detection output θ1 or θ2 to a 2-direct state indicated by the phase difference determination output C on the phase difference point where the first or second phase difference detection output θ1 or θ2 changes discontinuously, and to the opposite state. The differential output D2 or RI2 and the first or second differential output L or D2 are respectively selectively output.

〔作 用〕 局部発振回路1より入力信号Rの中心周波数と同一周波
数を有する局部発振出力りが得られ、この局部発振出力
りと入力信号Rが第1位相差検出回路31に入力されて
これより再入力の位相差に対し周期2πラジアンで直線
的上昇または下降を繰り返す鋸歯状形の位相差特性に従
って第1位相差検出出力θ、が得られる。
[Function] A local oscillation output having the same frequency as the center frequency of the input signal R is obtained from the local oscillation circuit 1, and this local oscillation output and the input signal R are input to the first phase difference detection circuit 31, which detects the input signal R. The first phase difference detection output θ is obtained according to a sawtooth-shaped phase difference characteristic that repeats a linear rise or fall at a period of 2π radian with respect to the re-input phase difference.

また、局部発振出力しは極性反転器2に入力されてこれ
より極性が反転された極性及転出ガ丁が得られ、この極
性反転出力一り一と入力信号Rが第2位相差検出回路3
2に入力され、両人力Rとτの位相差に対し周期2πラ
ジアンで直線的上昇または下降を繰り返す鋸歯状形の位
相差特性に従って第2位相差検出出力θ2が得られる。
Further, the local oscillation output is input to a polarity inverter 2, from which a polarity and output signal whose polarity is inverted is obtained, and each of the polarity inversion outputs and the input signal R are input to a second phase difference detection circuit 3.
2, and a second phase difference detection output θ2 is obtained according to a sawtooth-shaped phase difference characteristic that repeats a linear rise or fall at a period of 2π radian with respect to the phase difference between the human forces R and τ.

入力信号Rと局部発振出力りが位相差判定回路4に入力
されてこれらの位相差に対し周期2πラジアンでπラジ
アン毎に2値判定値を呈する位相差判定出力Cが得られ
る。
The input signal R and the local oscillation output are input to a phase difference determination circuit 4, and a phase difference determination output C is obtained that exhibits a binary determination value for every π radian with a period of 2π radians for these phase differences.

この位相差判定出力Cの2値変化を与える入力信号Rと
局部発振出力りとの位相差点は、第1゜第2位相差検出
出力θ1 、θ2の鋸歯状形の位相差検出特性における
不連続変化を与える位相差点に対し±π/2ラジアンの
位相差を有するものとなる。
The phase difference point between the input signal R and the local oscillation output that gives a binary change in the phase difference judgment output C is the discontinuity in the sawtooth-shaped phase difference detection characteristics of the 1st and 2nd phase difference detection outputs θ1 and θ2. It has a phase difference of ±π/2 radians with respect to the phase difference point that gives the change.

第1.第2位相差検出出力θ1 、θ2はそれぞれ第1
.第2微分器51 、52に入力され、その時間微分動
作によってこれよりそれぞれ第1.第2微分出力D+ 
、 Dzが得られる。これらの2つの入力θ1、θ2の
一方は切替回路6により位相差判定出力Cの2値状態に
対応して選択され、切替出力りとして取り出される。
1st. The second phase difference detection outputs θ1 and θ2 are the first
.. This is input to the second differentiators 51 and 52, and the first . Second differential output D+
, Dz is obtained. One of these two inputs θ1 and θ2 is selected by the switching circuit 6 in accordance with the binary state of the phase difference determination output C, and is taken out as a switching output.

即ち、切替回路6は第1または第2位相差検出出力θ1
またはθ2の不連続変化を与える位相差点上で位相差判
定出力Cが示す2値状態、及びその逆の状態に対し第2
または第1微分出力D2またはDI+及び第1または第
2微分出力L、またはD2をそれぞれ選択L、切替出力
する。
That is, the switching circuit 6 selects the first or second phase difference detection output θ1.
Or, for the binary state indicated by the phase difference judgment output C on the phase difference point that gives a discontinuous change in θ2, and the opposite state, the second
Alternatively, the first differential output D2 or DI+ and the first or second differential output L or D2 are selectively output L and switched.

この切替出力りは低域濾波器7に入力され、伝送回路に
おける雑音によって生じたベースバンド帯域外の雑音成
分が除去され、第1.第2位相差検出出力θ1 、θ2
の不連続変化に起因する第1゜第2微分出力D+ 、 
02上のインパルス出力の影響が回避されて低域濾波器
7より周波数弁別出力Sが得られることになる。
This switching output is input to a low-pass filter 7, where noise components outside the baseband caused by noise in the transmission circuit are removed. Second phase difference detection output θ1, θ2
The first degree second differential output D+ due to discontinuous changes in
The influence of the impulse output on 02 is avoided, and the frequency discrimination output S is obtained from the low-pass filter 7.

〔実施例〕〔Example〕

図面に基づいて本発明の詳細な説明する。 The present invention will be described in detail based on the drawings.

第1図は本発明回路の一実施例の構成を示すブロック図
、第2図(a) 、 (b)はそれぞれ本発明における
第1.第2位相差検出回路の位相差検出特性及び位相差
判定回路の出力特性を示す図、第3図<al、(b)は
それぞれ第1.第2位相差検出回路の一構成例及び位相
差判定回路の一構成例を示す接続図である。
FIG. 1 is a block diagram showing the configuration of one embodiment of the circuit of the present invention, and FIGS. A diagram showing the phase difference detection characteristics of the second phase difference detection circuit and the output characteristics of the phase difference determination circuit, FIG. FIG. 3 is a connection diagram showing a configuration example of a second phase difference detection circuit and a configuration example of a phase difference determination circuit.

第1図においてRは直流を含むベースバンド信号によっ
て周波数変調が施された入力信号、1は局部発振器で、
入力信号Rの中心周波数と同一の周波数を有する局部発
振出力りを発する。2は極性反転器で、局部発振出力り
を入力L、この人力りの極性反転出力、即ちπラジアン
の位相差を持つ出力τを得る。
In Figure 1, R is an input signal frequency-modulated by a baseband signal containing DC, 1 is a local oscillator,
A local oscillation output having the same frequency as the center frequency of the input signal R is generated. Reference numeral 2 denotes a polarity inverter, which inputs the local oscillation output L and obtains an manually inverted polarity output, that is, an output τ having a phase difference of π radians.

31 、32はそれぞれ第1.第2位相差検出回路で、
入力信号Rと局部発振出力τ、及び入力信号Rと極性反
転出力τをそれぞれ入力し各々の位相差に対し周期2π
ラジアンで直線的上昇または下降を繰り返す鋸歯状形の
位相差特性に従って第1.第2位相差検出出力θ1 、
θ2を発する。
31 and 32 are the first. In the second phase difference detection circuit,
The input signal R and the local oscillation output τ, and the input signal R and the polarity inverted output τ are input, and the period is 2π for each phase difference.
1. According to the sawtooth-shaped phase difference characteristic that repeats a linear rise or fall in radians. Second phase difference detection output θ1,
Emit θ2.

4は位相差判定回路で、入力信号Rと局部発振出力りを
入力し両者の位相差に対し周期2πラジアンでπラジア
ン毎に2値判定値“L”、“H”を出力する特性を有す
る。Cはその位相差判定出力である。この位相差判定出
力Cの2値状態“H”−“L”、“L”−“H”の変化
を与える入力信号Rと局部発振出力りとの位相差点は第
1.第2位相差検出出力θ1 、θ2の鋸歯状形の位相
差検出特性の不連続変化(垂直下降または上昇)を与え
る位相点に対し±π/2の偏差を有している。
Reference numeral 4 designates a phase difference judgment circuit which has the characteristic of inputting the input signal R and the local oscillation output, and outputting binary judgment values "L" and "H" for each π radian with a period of 2π radians for the phase difference between the two. . C is the phase difference determination output. The phase difference point between the input signal R and the local oscillation output that causes the phase difference determination output C to change between the binary states "H"-"L" and "L"-"H" is the first. The second phase difference detection outputs θ1 and θ2 have a deviation of ±π/2 with respect to the phase point that gives a discontinuous change (vertical fall or rise) in the sawtooth-shaped phase difference detection characteristics.

第1.第2位相差検出回路31 、32及び位相差判定
回路4の特性例を図示すると、それぞれ第2図(a) 
、 (b)のようになる。第2図(a) 、 (b)の
縦軸はそれぞれ第1.第2位相差検出回路31 、32
の出力θ1、θ2のレベル及び位相差判定回路4の出力
Cの2値論理状態を表L、横軸はいずれも入力信号Rに
対する局部発振出力しの位相差θラジアンを表している
1st. Examples of characteristics of the second phase difference detection circuits 31 and 32 and the phase difference determination circuit 4 are shown in FIG. 2(a).
, as shown in (b). The vertical axes in FIGS. 2(a) and (b) are the 1st. Second phase difference detection circuits 31, 32
The levels of the outputs θ1 and θ2 and the binary logic state of the output C of the phase difference determination circuit 4 are shown in Table L, and the horizontal axis represents the phase difference θ radian between the input signal R and the local oscillation output.

第2図(a)の実線で示す特性はθ1の特性で、最大値
+v1.最小値−■を有L、θが2πラジアンの整数倍
の点で不向きの不連続変化を示す鋸歯状形を呈する場合
を示す。このときθ2の特性は第2位相差検出回路32
の一方の入力τが局部発振出力しに対しπラジアンの位
相差を有するため、位相差θに対しては破線で示したよ
うにθ、の特性をπラジアンだけ移位した特性となる。
The characteristic shown by the solid line in FIG. 2(a) is the characteristic of θ1, and the maximum value +v1. The case where L has a minimum value of -■ and θ exhibits a sawtooth shape showing an undesirable discontinuous change at a point where θ is an integer multiple of 2π radians is shown. At this time, the characteristic of θ2 is determined by the second phase difference detection circuit 32.
Since one input τ has a phase difference of π radians with respect to the local oscillation output, the phase difference θ has a characteristic shifted by π radians from the characteristic of θ, as shown by the broken line.

第2図(b)の位相差判定出力Cの特性は、前述したよ
うにθ3.θ2の垂直下降点より±π/2ラジアンだけ
ずれた位相差点で変化するから図の例では、θがπ/2
ラジアンの奇数倍の点で“H”。
As mentioned above, the characteristics of the phase difference determination output C in FIG. 2(b) are as follows: θ3. It changes at a phase difference point that is shifted by ±π/2 radians from the vertical descent point of θ2, so in the example shown in the figure, θ is π/2.
“H” at a point that is an odd multiple of radians.

“L”状態が交番する、矩形特性となっている。It has a rectangular characteristic with alternating "L" states.

このような緒特性を有する第1.第2位相差検出回路3
1 、32および位相差判定回路4は、入力信号R9局
部発振出力L、極性反転出力τが2値論理値に整形され
ている場合、それぞれ第3図(a)及び(blに示す構
成例によって実現できる。
The first type with such characteristics. Second phase difference detection circuit 3
1, 32 and the phase difference determination circuit 4 are configured according to the configuration examples shown in FIGS. 3(a) and (bl), respectively, when the input signal R9, the local oscillation output L, and the polarity inverted output τ are shaped into binary logical values. realizable.

第3図(a)の311はLまたはτを入力L、その立ち
上がりに同期して入力信号Rの周期に比べ充分短いパル
スを発生する単安定マルチバイブレーク、312はRを
トリガ入力(T)とL、単安定マルチバイブレータ31
1のパルス出力をリセット入力(R)とするDタイプフ
リップフロップ回路で、データ入力(D)は論理状態“
H”に保持されている。
311 in Fig. 3(a) is a monostable multi-by-break that generates a sufficiently short pulse compared to the period of the input signal R in synchronization with the rising edge of L or τ as input L, and 312 as R as trigger input (T). L, monostable multivibrator 31
It is a D type flip-flop circuit that uses the pulse output of 1 as the reset input (R), and the data input (D) is in the logic state "
It is held at "H".

313はこのフリップフロップ回路312のデータ出力
(ロ)を入力L、入力信号Rの搬送波周波数成分やその
高調波成分を除去する低域濾波器で、その出力は第1.
第2位相差検出出力θ1 、θ2となる。
313 is a low-pass filter that receives the data output (b) of this flip-flop circuit 312 as input L and removes the carrier frequency component and its harmonic components of the input signal R;
The second phase difference detection outputs are θ1 and θ2.

以上の構成によると、入力信号Rの立ち上がりによって
Dタイプフリップフロン1回路312はデータ入力(D
)の”H”状態をサンプル出力するので、セント状態(
Q=“H”)となL、L、L−の立ち上がりによL、リ
セット状g(Q−“L”)に復旧するからRの位相に対
するL、■の位相差QがOくθ〈2πの範囲ではDタイ
プフリップフロン1回路312の出力の“H”状態のデ
ユーティ比率は、θに比例する。従って、これを低域濾
波器313で平滑化すると、低域濾波器313の出力は
θに比例する電圧になL、第2図(a)の実線の特性が
得られることがわかる。
According to the above configuration, when the input signal R rises, the D type flip-flop 1 circuit 312 inputs the data (D
) sample outputs the “H” state, so the cent state (
With the rise of L, L, and L- (Q = "H"), L and reset state g (Q - "L") are restored, so the phase difference Q of L and ■ with respect to the phase of R becomes O and θ In the range of 2π, the duty ratio of the output of the D-type flip-flop 1 circuit 312 in the "H" state is proportional to θ. Therefore, it can be seen that when this is smoothed by the low-pass filter 313, the output of the low-pass filter 313 becomes a voltage proportional to θ, L, and the characteristic shown by the solid line in FIG. 2(a) is obtained.

第3図(blの41は入力信号Rおよび局部発振出力り
を入力とする排他的論理和回路、42はこの回路41の
出力を入力L、第3図(a)の313と同様の機能を有
する低域濾波器、43は低域濾波器42の出力を2値論
理値に整形するレベル比較器で、その出力は位相差判定
出力Cとなる。
Figure 3 (41 in BL is an exclusive OR circuit which receives the input signal R and the local oscillation output, 42 has the output of this circuit 41 as input L, and has the same function as 313 in Figure 3(a)). A low-pass filter 43 is a level comparator that shapes the output of the low-pass filter 42 into a binary logical value, and its output becomes a phase difference determination output C.

以上の構成によL、排他的論理和回路41の出力は、R
とLが同相(θ=0)のとき、および逆相(θ=±π)
のとき、それぞれ全て“L”、及び全て“H”となL、
π/2ラジアンの位相差(θ=±π/2)の場合には“
H”と“L”が同一の割合で発生するから、低域濾波器
42によるその平滑化出力は、θ=0.θ=±π、θ=
±π/2のそれぞれにおいて、最小値、最大値、および
前2者の平均値を与える三角形の特性を呈する。従って
レベル比較器43において前記の平均値をしきい値とし
て、これを2値判定すれば、第2図(b)の矩形の特性
が得られることがわかる。
With the above configuration, the output of the exclusive OR circuit 41 is R.
and L are in phase (θ=0) and out of phase (θ=±π)
When , all are “L” and all are “H”, respectively.
In the case of a phase difference of π/2 radians (θ=±π/2), “
Since "H" and "L" are generated at the same rate, the smoothed output by the low-pass filter 42 is θ=0.θ=±π, θ=
Each of ±π/2 exhibits triangular characteristics giving a minimum value, a maximum value, and an average value of the former two. Therefore, it can be seen that if the level comparator 43 uses the above-mentioned average value as a threshold value and performs binary judgment, the rectangular characteristic shown in FIG. 2(b) can be obtained.

次に、第1図にもどって、51 、52はそれぞれのθ
1及びθ2を入力L、その微分波形を出力する第1.第
2微分器で、DlおよびD2はその微分出力である。6
は微分出力L、、D2および位相判定出力Cを入力L、
Cの2値状態に対応して、D、  、D。
Next, returning to Figure 1, 51 and 52 are the respective θ
1 and θ2 are input L, and the differential waveform thereof is output. In the second differentiator, Dl and D2 are its differential outputs. 6
inputs the differential output L, ,D2 and the phase judgment output C,
Corresponding to the binary state of C, D, ,D.

のいずれか一方を選択L、切替出力する切替回路で、ア
ナログスイッチにより構成できる。7は低域は波器で、
切替回路6の出力D (D、またはOX)を入力L、伝
送回線における雑音によって切替出力りに生じたベース
バンド帯域外の雑音成分を除去する低域濾波器であL、
その出力Sは、低域濾波動作によって抽出されたベース
バンド信号から成る周波数弁別出力である。
This is a switching circuit that selects and outputs either one of these, and can be configured with an analog switch. 7 is a wave device in the low range,
The output D (D or OX) of the switching circuit 6 is input L, and it is a low-pass filter L that removes noise components outside the baseband band generated at the switching output due to noise in the transmission line.
Its output S is a frequency-discriminating output consisting of a baseband signal extracted by a low-pass filtering operation.

上記の構成において第1図に示した本発明回路の構成例
と第3図(a) 、 (b)に示した本発明における第
1.第2位相差検出回路及び位相差判定回路の構成例並
びに第2図(a) 、 (b)に示した第1.第2位相
差検出回路及び位相差判定回路の特性例に基づき、その
周波数弁別動作と効果を数式およびタイムチャートを用
いて詳細に説明する。
In the above configuration, the configuration example of the circuit according to the present invention shown in FIG. 1 and the first circuit according to the present invention shown in FIGS. Configuration examples of the second phase difference detection circuit and phase difference determination circuit and the first phase difference detection circuit shown in FIGS. 2(a) and (b). Based on characteristic examples of the second phase difference detection circuit and the phase difference determination circuit, the frequency discrimination operation and effects thereof will be explained in detail using mathematical formulas and time charts.

今、第1図の各信号θ1.θz+D++Dz+Dおよび
第2図のθの時間波形をそれぞれθ+(1)、  θz
(t)。
Now, each signal θ1 in FIG. The time waveforms of θz+D++Dz+D and θ in Figure 2 are θ+(1) and θz, respectively.
(t).

貼(t)、  Dz(t)、  D(t)、 θ(1)
とおき、またCの2値状態“H”、“L”をそれぞれ+
1,0に置き換えた時間波形をC(t)とおく。さらに
、切替回路6の動作はC=“H”(C(t) = + 
1 )のときDlを、またC=“L”(C(t) = 
0 ) (7)ときD2を、それぞれ選択し出力するも
のとする。このとき、第1図、第2図から以下の諸関係
式が導出できる。
Paste (t), Dz(t), D(t), θ(1)
Also, the binary states “H” and “L” of C are +
Let the time waveform replaced with 1 and 0 be C(t). Furthermore, the operation of the switching circuit 6 is as follows: C=“H” (C(t)=+
1), then Dl, and C=“L”(C(t)=
0 ) (7) When D2 is selected and output, respectively. At this time, the following relational expressions can be derived from FIGS. 1 and 2.

Dt =D+(t)、c(t)+oz(t)(1−c(
t))・・・・・・・・・(5)但L、δ (・)は、
デイラックのインパルス関数で第2図で説明したθ2.
θ2の不連続点での微分により生成されるものである。
Dt = D+(t), c(t)+oz(t)(1-c(
t))・・・・・・・・・(5) However, L, δ (・) are,
θ2. explained in Fig. 2 using the Dirac impulse function.
It is generated by differentiation at a discontinuous point of θ2.

ここで、第2図(a) 、 (b)に示したθ0.θ2
とCとの関係によL、次式 %式%(6) が成立するから、(11〜(7)式をまとめると、最終
的に下式 %式% この(8)式によって、切替出力波形D(t)はdθ(
t) / dt 、即ち、入力信号Rの中心角周波数か
らの角周波数偏差(Δωとおく)に比例するから、D(
t)は周波数弁別出力になることが明らかである。
Here, θ0 shown in FIGS. 2(a) and (b). θ2
According to the relationship between L and C, the following formula % formula % (6) holds true, so if we summarize formulas (11 to (7)), we finally get the following formula % formula % By this formula (8), the switching output The waveform D(t) is dθ(
t)/dt, that is, it is proportional to the angular frequency deviation (denoted as Δω) from the center angular frequency of the input signal R, so D
It is clear that t) becomes the frequency discrimination output.

以上の数式により示した周波数弁別動作の具体例を次に
タイムチャートを用いて示すと、第4図(al 、 (
blのようになる。
A specific example of the frequency discrimination operation shown by the above formula is shown below using a time chart in Fig. 4 (al, (
It becomes like bl.

第4図(a) 、 (b)はそれぞれ前記角周波数偏差
Δωの絶対値が相対的に大きい場合(Δω=±ω、とす
る)、および小さい場合(Δω−±ω1とする)の各時
間波形を示しておL、Δω=ΔωH、ΔωL〉0.およ
びΔω=−Δω8、−Δω、〈0の場合をそれぞれ実線
および破線で表している(但しΔωH〉ΔωL)。
Figures 4 (a) and (b) show the times when the absolute value of the angular frequency deviation Δω is relatively large (assuming Δω = ±ω) and when it is small (assuming Δω − ±ω1), respectively. The waveform is shown as L, Δω=ΔωH, ΔωL〉0. The cases where Δω=−Δω8, −Δω, and <0 are represented by solid lines and broken lines, respectively (however, ΔωH>ΔωL).

第4図(a)では(b)に比べ位相差θの変化(位相回
転)が速いため、θI(t)、θ2(t)の鋸歯状波の
変化は(alO方が(b)よりも速くなる。このため、
これらの時間微分波形Dt(t)  、oz(t)はθ
1(t)、θ2(L)の変化の、不連続点に生ずる下向
き、または上向きの鋭いインパルス列以外の部分はθ1
(t)、θ2(t)の直線傾斜部分の傾きに比例した一
定電圧を呈L、(a)の方が(b)よりも大きい。この
ことは、この一定電圧値をΔω−Δωや、ΔωL (実
線)のそれぞれに対L、ν□ +  VL とおくと、
Δω=−Δω、。
In Fig. 4 (a), the change in phase difference θ (phase rotation) is faster than in (b), so the changes in the sawtooth waves of θI (t) and θ2 (t) are (alO is better than (b)). Faster.For this reason,
These time differential waveforms Dt(t) and oz(t) are θ
1(t), θ2(L) other than the sharp downward or upward impulse train that occurs at the discontinuous point is θ1.
(t), exhibits a constant voltage L proportional to the slope of the linear slope portion of θ2(t), (a) is larger than (b). This means that if we set this constant voltage value as L and ν□ + VL for Δω-Δω and ΔωL (solid line), respectively,
Δω=−Δω,.

−Δω、 (破線)ではそれぞれ、  v、、 l  
 VLとなL、かつ、vH2vLは(1)〜(4)式よ
L、下式■ シ□−□Δω□   ・・・・・・・・・・・・・・・
・・・(9)π ■ ■、=□Δω、   ・・・・・・・・・・・・・・・
・・・α0)π で与えられることからも明らかである。
−Δω, (dashed line), respectively, v,, l
VL and L, and vH2vL are L according to formulas (1) to (4), and the following formula■ C□−□Δω□ ・・・・・・・・・・・・・・・
...(9)π ■ ■, =□Δω, ......
...It is clear from the fact that it is given by α0)π.

一方、前述の鋭いインパルス列は、(31、(4)式の
各右辺の0内筒2項に該当するもので、その周期はo+
(t)  、ox(t)の各々において角周波数Δωで
発生するので、このままではΔωが小さい場合、インパ
ルス列の基本波成分は周波数弁別出力のベースバンド信
号帯域内に混入L、低域濾波器7では除去不可能な歪成
分となることから、Dl(t)あるいはDz(t)をそ
のまま低域濾波する処理は不適当である。
On the other hand, the above-mentioned sharp impulse train corresponds to the 0 inner cylinder 2 term on the right side of each equation (31, (4)), and its period is o +
(t) and ox(t) are generated at an angular frequency Δω, so if Δω is small, the fundamental wave component of the impulse train will be mixed into the baseband signal band of the frequency discrimination output L, and the low-pass filter 7 becomes a distortion component that cannot be removed, so it is inappropriate to perform low-pass filtering on Dl(t) or Dz(t) as they are.

ここで位相差判定回路40判定出力波形C(t)は第2
図(a) 、 (b)の関係により第4図(a) 、 
(blの下から2段目に示したように、0+(1)のイ
ンパルス発生時にC(t) = 0 (C=“L”) 
、0X(t)のインパルス発生時にc(t) = +H
C−“H”)となることがわかる。
Here, the phase difference determination circuit 40 determination output waveform C(t) is the second
Due to the relationship in Figures (a) and (b), Figure 4 (a),
(As shown in the second row from the bottom of bl, when an impulse of 0+(1) occurs, C(t) = 0 (C=“L”)
, when an impulse of 0X(t) occurs, c(t) = +H
C-“H”).

従って第1図の切替回路6の入力DI (t) 、 o
2(t)の切替出力動作論理を、 となるように構成すればD(t)は実効的には(5)式
で表され0.(1)とD2(t)のインパルス発生時点
を交互に回避した切替出力波形となるので、第4図(a
) 、 (b)の最下段に示したようにD(t)には、
ベースバンド信号帯域内に歪を含まず、周波数弁別出力
±Δω83.±Δω、に比例する一定出力±v。
Therefore, the input DI (t), o of the switching circuit 6 in FIG.
If the switching output operation logic of 2(t) is configured as follows, D(t) is effectively expressed by equation (5) and becomes 0. Since the switching output waveform alternately avoids the impulse generation points of (1) and D2(t), the output waveform shown in FIG.
), as shown at the bottom of (b), D(t) has the following:
Does not include distortion within the baseband signal band, and frequency discrimination output ±Δω83. A constant output ±v proportional to ±Δω.

、±VLをそれぞれ得ることができる。, ±VL can be obtained, respectively.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように本発明によれば、理論的に
無歪で不要高調波を含まない周波数弁別動作を得ること
ができる。またこれを実現するに当たL、局部発振回路
として従来の直交検波方式にあった互いにπ/2ラジア
ンの位相差を有する2つの局部発振出力や、アナログ乗
算器等を必要とせず、単に演算増幅器、レベル比較器、
アナログスイッチ、論理回路等を主要構成要素とL、リ
ニアIC,スイソチドキャパシタ回路やCMOS回路等
の技術の応用で回路が形成でき、回路規模が小さいので
IC化、小形低消費電力化に適する。さらに応用に関し
ては、スーパーヘテロダイン受信機に限らず、受信波を
直接ベースバンド領域に変換する方式の受信機にも適用
できるなど、汎用性に優れるという利点がある。
As described in detail above, according to the present invention, it is possible to theoretically obtain a frequency discrimination operation without distortion and without unnecessary harmonics. In addition, in order to realize this, there is no need for two local oscillation outputs with a phase difference of π/2 radians from each other, which were required in the conventional quadrature detection method, or an analog multiplier, etc., as a local oscillation circuit. amplifier, level comparator,
Circuits can be formed by applying technologies such as analog switches, logic circuits, etc. as main components, linear ICs, swissotide capacitor circuits, and CMOS circuits, and the circuit scale is small, making it suitable for ICs and miniaturization and low power consumption. . Furthermore, in terms of applications, it has the advantage of being excellent in versatility, as it can be applied not only to superheterodyne receivers but also to receivers that convert received waves directly into the baseband domain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明回路の一実施例の構成を示すブロック図
、第2図(a) 、 (b)はそれぞれ本発明における
第1.第2位相差検出回路の位相差検出特性及び位相差
判定回路の出力特性を示す図、第3図(a)、(b)は
それぞれ第1.第2位相差検出回路の一構成例及び位相
差判定回路の一構成例を示す接続図、第4図(a) 、
 (b)はそれぞれ入力信号の角周波数偏差Δωの絶対
値が相対的に大きい場合及び小さい場合の各時間波形例
を示すタイムチャートである。 ■・・・・・・局部発振回路、R・・・・・・入力信号
、L・・・・・・局部発振出力、2・・・・・・極性反
転器、L・・・・・・極性反転出力、31.32・・・
・・・第1.第2位相差検出回路、θ1 、θ2・・・
・・・その第1.第2位相差検出出力、4・・・・・・
位相差判定回路、C・・・・・・その位相差判定出力、
51.52・・・・・・第1.第2微分器、D+ 、 
Dz・・・・・・その第1.第2微分出力、6・・・・
・・切替回路、D・・・・・・切替出力、7・・・・・
・低域濾波器、S・・・・・・周波数弁別出力。 (得 −−−−−−−−−−−−−−−−−−VH9q量 (b) −−−−−−−一−−−一−−Vi。
FIG. 1 is a block diagram showing the configuration of one embodiment of the circuit of the present invention, and FIGS. FIGS. 3(a) and 3(b) are diagrams showing the phase difference detection characteristics of the second phase difference detection circuit and the output characteristics of the phase difference determination circuit, respectively. A connection diagram showing a configuration example of a second phase difference detection circuit and a configuration example of a phase difference determination circuit, FIG. 4(a),
(b) is a time chart showing examples of time waveforms when the absolute value of the angular frequency deviation Δω of the input signal is relatively large and small, respectively. ■...Local oscillation circuit, R...Input signal, L...Local oscillation output, 2...Polarity inverter, L... Polarity inversion output, 31.32...
...First. Second phase difference detection circuit, θ1, θ2...
...The first thing. Second phase difference detection output, 4...
Phase difference judgment circuit, C... Its phase difference judgment output,
51.52...1st. Second differentiator, D+,
Dz...The first. Second differential output, 6...
...Switching circuit, D...Switching output, 7...
・Low pass filter, S... Frequency discrimination output. (obtained --------VH9q amount (b) --------1---1--Vi.

Claims (1)

【特許請求の範囲】[Claims] 入力信号Rの中心周波数と同一周波数を有する局部発振
出力Lを得る局部発振回路1と、局部発振出力Lの極性
を反転し極性反転出力@L@を得る極性反転器2と、入
力信号Rと局部発振出力L、及び入力信号Rと極性反転
出力@L@をそれぞれ入力しそれぞれ2つの入力RとL
、Rと@L@の位相差に対し周期2πラジアンで直線的
上昇または下降を繰り返す鋸歯状形の位相差特性に従っ
て第1、第2位相差検出出力θ_1、θ_2を得る第1
、第2位相差検出回路31、32と、入力信号Rと局部
発振出力Lを入力しこれらの位相差に対し周期2πラジ
アンでπラジアン毎に2値判定値を呈する位相差判定出
力Cを得る位相差判定回路4と、第1、第2位相差検出
出力θ_1、θ_2を入力しその時間微分動作によって
それぞれ第1、第2微分出力D_1、D_2を得る第1
、第2微分器51、52と、第1、第2微分出力D_1
、D_2を入力しこれらの2つの入力の一方を位相差判
定出力Cの2値状態に対応して選択し、これらの切替出
力Dを得る切替回路6と、切替出力Dを入力し伝送回線
における雑音によって生じたベースバンド帯域外の雑音
成分を除去して周波数弁別出力Sを得る低域濾波器7と
よりなり、位相差判定出力Cの2値変化を与える入力信
号Rと局部発振出力Lとの位相差点は、第1、第2位相
差検出出力θ_1、θ_2の鋸歯状形の位相差検出特性
における不連続変化を与える位相差点に対し±π/2ラ
ジアンの位相差を有するように第1、第2位相差検出回
路31、32及び位相差判定回路4を構成すると共に、
切替回路6は第1または第2位相差検出出力θ_1また
はθ_2の不連続変化を与える位相差点上で位相差判定
出力Cが示す2値状態、及びその逆の状態に対し第2ま
たは第1微分出力D_2またはD_1、及び第1または
第2微分出力D_1またはD_2をそれぞれ選択し、切
替出力するように構成した周波数弁別回路。
A local oscillation circuit 1 that obtains a local oscillation output L having the same frequency as the center frequency of the input signal R, a polarity inverter 2 that inverts the polarity of the local oscillation output L and obtains a polarity inverted output @L@, and an input signal R. Local oscillation output L, input signal R and polarity inverted output @L@ are input respectively, and two inputs R and L are respectively input.
, the first and second phase difference detection outputs θ_1 and θ_2 are obtained in accordance with a sawtooth-shaped phase difference characteristic that repeats a linear rise or fall at a period of 2π radian with respect to the phase difference between R and @L@.
, input the input signal R and the local oscillation output L to the second phase difference detection circuits 31 and 32, and obtain a phase difference judgment output C that exhibits a binary judgment value for every π radian with a period of 2π radians for these phase differences. A first circuit inputs the phase difference determination circuit 4 and the first and second phase difference detection outputs θ_1 and θ_2 and obtains first and second differential outputs D_1 and D_2, respectively, by time differentiation operation thereof.
, second differentiators 51 and 52, and first and second differential outputs D_1
, D_2 and selects one of these two inputs corresponding to the binary state of the phase difference judgment output C to obtain these switching outputs D. It consists of a low-pass filter 7 that removes noise components outside the baseband caused by noise and obtains a frequency discrimination output S, and an input signal R and a local oscillation output L that provide a binary change in the phase difference judgment output C. The first phase difference point has a phase difference of ±π/2 radian with respect to the phase difference point that gives a discontinuous change in the sawtooth-shaped phase difference detection characteristics of the first and second phase difference detection outputs θ_1 and θ_2. , constitutes the second phase difference detection circuits 31 and 32 and the phase difference determination circuit 4, and
The switching circuit 6 provides a second or first differential for the binary state indicated by the phase difference determination output C on the phase difference point that gives a discontinuous change in the first or second phase difference detection output θ_1 or θ_2, and the opposite state. A frequency discrimination circuit configured to select and switch output D_2 or D_1 and first or second differential output D_1 or D_2, respectively.
JP62336618A 1987-12-31 1987-12-31 Frequency discrimination circuit Expired - Lifetime JP2517035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336618A JP2517035B2 (en) 1987-12-31 1987-12-31 Frequency discrimination circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336618A JP2517035B2 (en) 1987-12-31 1987-12-31 Frequency discrimination circuit

Publications (2)

Publication Number Publication Date
JPH01176103A true JPH01176103A (en) 1989-07-12
JP2517035B2 JP2517035B2 (en) 1996-07-24

Family

ID=18301018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336618A Expired - Lifetime JP2517035B2 (en) 1987-12-31 1987-12-31 Frequency discrimination circuit

Country Status (1)

Country Link
JP (1) JP2517035B2 (en)

Also Published As

Publication number Publication date
JP2517035B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JP2982567B2 (en) Receiver
US5293408A (en) FSK data receiving system
JP5829264B2 (en) Frequency multiplier transceiver
JPH0129469B2 (en)
JP3088110B2 (en) Wireless receiver
JPS6189702A (en) Frequency multiplier
JPH01176103A (en) Frequency discrimination circuit
EP1662653B1 (en) Demodulator of frequency modulated signals
US7916813B2 (en) Receiver device
JP2517028B2 (en) Frequency detection circuit
JPH0590903A (en) Frequency divider circuit
RU2514160C2 (en) Device for determining frequency, type of modulation and keying of received signals
JP4267786B2 (en) Direct conversion receiver for frequency shift keyed signals
CN103701476B (en) Reflector
JP3368936B2 (en) Direct conversion FSK receiver
JP2005348208A (en) Phase lock circuit
JP2003283253A (en) Iq modulation/demodulation circuit
JP3658768B2 (en) FM receiver
KR940000929B1 (en) Digital frequency shift keying modulating circuit
RU2007886C1 (en) Device for detection of signals having double relative phase modulation
SU1392630A1 (en) Duplex phase telegraphy signal demodulator
JP2005094534A (en) Local oscillation signal generator
JP3658769B2 (en) Receiver
SU1385245A2 (en) Frequency-phase comparator
JPH0129341B2 (en)