JPH01176080A - Plating pretreatment of liquid crystal polyester resin molded article - Google Patents

Plating pretreatment of liquid crystal polyester resin molded article

Info

Publication number
JPH01176080A
JPH01176080A JP62335859A JP33585987A JPH01176080A JP H01176080 A JPH01176080 A JP H01176080A JP 62335859 A JP62335859 A JP 62335859A JP 33585987 A JP33585987 A JP 33585987A JP H01176080 A JPH01176080 A JP H01176080A
Authority
JP
Japan
Prior art keywords
molded article
plating
polyester
aqueous solution
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62335859A
Other languages
Japanese (ja)
Other versions
JPH0745717B2 (en
Inventor
Koji Suzuki
鈴木 好治
Toshiro Murao
村尾 俊郎
Michiaki Ogura
通彰 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP62335859A priority Critical patent/JPH0745717B2/en
Priority to EP19880304473 priority patent/EP0311232B2/en
Priority to DE3884546T priority patent/DE3884546T3/en
Priority to AT88304473T priority patent/ATE95210T1/en
Priority to KR1019880006133A priority patent/KR910005863B1/en
Priority to US07/198,255 priority patent/US4997724A/en
Publication of JPH01176080A publication Critical patent/JPH01176080A/en
Publication of JPH0745717B2 publication Critical patent/JPH0745717B2/en
Priority to HK195496A priority patent/HK195496A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To uniformly impart a catalyst and to improve the plating property by dipping the title molded article in a specified alkaline soln. to rough the surface, and then treating the article with an aq. soln. contg. a surfactant. CONSTITUTION:A resin composition consisting of the hot-workable polyester (expressed liq. crystal polyester hereunder) capable of forming an anisotropic molten phase and contg. 5-80% of >=1 kind of filler selected from a group II element of the periodic table, its oxide and sulfate, elements such as Al and Si, or their oxides is used for the molded article. The article is dipped in an aq. soln. contg. >=20% oxide of an alkali (earth) metal to rough the surface, and then dipped in the aq. soln. of an amphoteric surfactant to activate the roughed surface. In addition, the amphoteric surfactant has >=1 cationic or anionic functional group in its molecular structure, and belongs to an aminocarboxylate type, a carboxybetaine type, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は異方性溶融相を形成しうる溶融加工性ポリエス
テル(以後単に「液晶性ポリエステル」と略す)成形品
のメッキ前処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for pre-plating a molded article of melt-processable polyester (hereinafter simply referred to as "liquid crystalline polyester") capable of forming an anisotropic melt phase.

更に詳しくは、耐熱性、成形加工性に優れた液晶性ポリ
エステル樹脂成形品に効率よくメッキを付与するための
前処理法に関する。
More specifically, the present invention relates to a pretreatment method for efficiently applying plating to a liquid crystalline polyester resin molded product having excellent heat resistance and moldability.

〔従来の技術とその問題点〕[Conventional technology and its problems]

液晶性ポリエステルは、一般に知られている熱可塑性ポ
リエステル、例えばポリブチレンテレフタレート、ポリ
エチレンテレフタレートと異なり、剛直な高分子よりな
り、溶融状態でも分子鎖は折れ曲がり難く棒状を保って
いるため、溶融時に分子の絡み合いが少なく、僅かな剪
断応力を受けるだけで一方向に配向し、液状でも結晶性
を示すいわゆる液晶性を示す。
Unlike generally known thermoplastic polyesters such as polybutylene terephthalate and polyethylene terephthalate, liquid crystalline polyester is made of a rigid polymer, and its molecular chains are difficult to bend and maintain a rod shape even in the molten state. It has little entanglement, is oriented in one direction when subjected to a slight shear stress, and exhibits so-called liquid crystallinity, which means that it exhibits crystallinity even in liquid form.

斯かる液晶性ポリエステルは、液晶性を示さない一般の
ポリエステル樹脂(前記ポリブチレンテレフタレート、
ポリエチレンテレフタレート等)比べ化学的には一層安
定で、一般のポリエステルに使用される表面粗化用エツ
チング液がそのままでは適用できない。又、粗化されて
も表面はメッキ用に調合された触媒液に対しては活性が
不十分であり、その後に続く無電解メッキが付着しにく
く、未だ満足のいく方法は知られていない。
Such liquid crystalline polyester is a general polyester resin that does not exhibit liquid crystallinity (such as polybutylene terephthalate, polybutylene terephthalate, etc.).
It is chemically more stable than polyethylene terephthalate (e.g., polyethylene terephthalate), and the surface roughening etching liquid used for general polyester cannot be applied as is. Furthermore, even if the surface is roughened, its activity is insufficient for the catalyst solution prepared for plating, and subsequent electroless plating is difficult to adhere to, and no satisfactory method is known yet.

〔問題点を解決するための手段) 本発明者等は液晶性ポリエステルの耐ノ1ンダ性等、熱
的に有益な特徴を生かし、物理的・化学的性質を損なう
ことなしに化学的に表面を活性なものとし、樹脂表面へ
のメッキ付与工程で必須な触媒付着を可能とするメッキ
前処理工程について鋭意研究した結果、特定のアルカリ
溶液に浸漬して表面粗化した後、特定の界面活性剤を含
む水溶液で処理することにより、触媒を均一に付与する
ことが可能であることを見出し、本発明に至った。
[Means for Solving the Problems] The present inventors took advantage of the thermally beneficial characteristics of liquid crystalline polyester, such as its dust resistance, and chemically modified the surface of the liquid crystalline polyester without impairing its physical or chemical properties. As a result of extensive research into a plating pretreatment process that makes it active and enables the adhesion of a catalyst that is essential in the plating process to the resin surface, we found that after roughening the surface by immersing it in a specific alkaline solution, a specific surface activity The inventors have discovered that it is possible to uniformly apply a catalyst by treating with an aqueous solution containing a catalyst, leading to the present invention.

本発明で用いられる特定の界面活性剤とは、その分子構
造に陽イオン性官能基と陰イオン性官能基を1つ又はそ
れ以上同時に持っているもので、以下の様な構造を含む
両性の界面活性剤、に属するもの、3)アミノカルボン
酸塩型−NH2−CODに属するもの、4)イミダゾリ
ン誘導す る。
The specific surfactant used in the present invention has one or more cationic functional groups and anionic functional groups in its molecular structure, and is an amphoteric surfactant containing the following structure. 3) Those belonging to the aminocarboxylate type -NH2-COD; 4) Imidazoline-derived.

更に望ましくは以下の構造を持った中性付近(弱酸性)
に等電点を持つアミノカルボン酸塩型R−N)I−(C
H2)、CDDH(R:CI2〜CI8+ 11=l〜
2)が望ましい。
More preferably, it is near neutral (weakly acidic) with the following structure.
Aminocarboxylate type R-N)I-(C
H2), CDDH (R: CI2~CI8+ 11=l~
2) is desirable.

両性の界面活性剤が表面粗化後の液晶性ポリエステル成
形品に対して有効な触媒付与効果を発揮する理由は次の
ように推定される。
The reason why an amphoteric surfactant exhibits an effective catalyst-imparting effect on a liquid crystalline polyester molded article after surface roughening is presumed to be as follows.

即ち、表面粗化が実施される前は液晶性ポリエステルの
表面は一般の樹脂成形品と同様に表面張力が小さく、水
濡れ性が悪いため、無電解メッキに必須なPd−3nコ
ロイド触媒を付与できない。水溶解性の良い界面活性剤
を用いて、水の表面張力を下げて表面を親水性にしても
、−時的に触媒が付着したにすぎず、すぐとれてしまう
。特定のアルカリ性水溶液に浸漬すると液晶性ポリエス
テルの表面に加水分解が生じ、表面に活性な極性基がで
き、又充填材添加液晶性ポリエステルの場合には、表面
の粗化が進むため成形品の表面張力が大きくなり、表面
は均一な水濡れ状態が得られる。通常、表面がこの様に
親水性になるとキャタリスト溶液の酸性中で安定なメッ
キのための触媒であるPd−3nコロイドは樹脂の表面
の極性の助けを借りて付着が容易になる場合が多い。然
しながら液晶性ポリエステルの場合はその分子構造上、
触媒の吸着が不十分でそのままではメッキに適さない。
In other words, before surface roughening, the surface of liquid crystalline polyester has low surface tension and poor water wettability, similar to general resin molded products, so it is necessary to add Pd-3n colloidal catalyst, which is essential for electroless plating. Can not. Even if a highly water-soluble surfactant is used to lower the surface tension of water and make the surface hydrophilic, the catalyst only temporarily attaches to the surface and quickly comes off. When immersed in a specific alkaline aqueous solution, hydrolysis occurs on the surface of liquid crystalline polyester, forming active polar groups on the surface, and in the case of filler-added liquid crystalline polyester, the surface of the molded product becomes rougher. The tension increases and the surface becomes uniformly wet. Normally, when the surface becomes hydrophilic in this way, Pd-3n colloid, which is a catalyst for stable plating in the acidic state of the catalyst solution, often adheres easily with the help of the polarity of the resin surface. . However, in the case of liquid crystalline polyester, due to its molecular structure,
Catalyst adsorption is insufficient and it is not suitable for plating as it is.

そこで界面活性剤の適用を検討したところ、非イオン界
面活性剤、陰イオン界面活性剤では触媒の付着力向上に
効果がなく、陽イオン界面活性剤は触媒の吸着に対して
は有効に働くものの、液晶性ポリエステルに対しては十
分な吸着力を持たないためメッキ表面があばた状になり
易い。
When we considered the application of surfactants, we found that nonionic surfactants and anionic surfactants were not effective in improving the adhesion of catalysts, and cationic surfactants were effective in adsorbing catalysts, but Since it does not have sufficient adsorption power for liquid crystalline polyester, the plating surface tends to become pocked.

一方、本発明の両性界面活性剤の陰イオン性官能基は、
粗化された液晶性ポリエステル表面の極性基に対し吸着
し易く、吸着した界面活性剤はキャタリスト溶液の酸性
触媒中で陽イオン界面活性剤として働くため容易に触媒
を吸着していくことから、触媒の樹脂表面への吸着を容
易にするものと推定される。
On the other hand, the anionic functional group of the amphoteric surfactant of the present invention is
It easily adsorbs to the polar groups on the surface of the roughened liquid crystalline polyester, and the adsorbed surfactant acts as a cationic surfactant in the acidic catalyst of the catalyst solution, so it easily adsorbs the catalyst. It is presumed that this facilitates the adsorption of the catalyst onto the resin surface.

両性界面活性剤の中でも特にアミノカルボン酸塩は、等
電点付近において沈澱付着を生じ、前記効果は更に促進
され、良好な結果が得られた。
Among the amphoteric surfactants, aminocarboxylic acid salts in particular caused precipitation near the isoelectric point, and the above effect was further promoted, resulting in good results.

本発明の両性界面活性剤水溶液の処理は、例えば成形品
をこの水溶液中に浸漬して処理するという方法が採られ
るが、この他、この水溶液を吹きつけ、塗布等の他の操
作を用いてもよい。
The amphoteric surfactant aqueous solution of the present invention can be treated by, for example, immersing a molded article in this aqueous solution, but it is also possible to use other operations such as spraying or coating with this aqueous solution. Good too.

本発明におけるエツチング処理液であるアルカリ水溶液
とは、アルカリ金属の水酸化物又はアルカリ土類金属の
水酸化物を主成分とする水溶液であり、水酸化ナトリウ
ム、水酸化カリウム、水酸化リチウム等のアルカリ金属
の水酸化物の水溶液、水酸化ストロンチウム、水酸化バ
リウム等のアルカリ土類金属の水酸化物の水溶液である
。好ましいアルカリ水溶液は水酸化カリウム水溶液であ
る。アルカリ水溶液は、更に液晶性ポリエステルの表面
分解物を溶解し、かつアルカリ水溶液に可溶な有機溶媒
、例えばメチルアルコール、エチルアルコール、イソプ
ロピルアルコ−/L/、イソブチルアルコール等のアル
コーノペテトラヒドロフランの様なフラン化合物、エチ
ルアミン、ジメチルアミン、トリメチルアミン、プロピ
ルアミン、アニリン、ピリジン、ホルムアミド等の窒素
化合物、クロロベンゼン、O−ジクロロベンゼン等の芳
香族ハロゲン化炭化水素等の中から選ばれた1種又は2
種以上の溶剤を添加し、複合液として用いることができ
る。
The alkaline aqueous solution that is the etching treatment liquid in the present invention is an aqueous solution whose main component is an alkali metal hydroxide or an alkaline earth metal hydroxide, and includes sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. These are aqueous solutions of alkali metal hydroxides, and aqueous solutions of alkaline earth metal hydroxides such as strontium hydroxide and barium hydroxide. A preferred aqueous alkaline solution is an aqueous potassium hydroxide solution. The alkaline aqueous solution further dissolves the surface decomposition product of the liquid crystalline polyester and contains an organic solvent soluble in the alkaline aqueous solution, such as alconopetetrahydrofuran such as methyl alcohol, ethyl alcohol, isopropyl alcohol/L/, and isobutyl alcohol. One or two selected from among furan compounds, nitrogen compounds such as ethylamine, dimethylamine, trimethylamine, propylamine, aniline, pyridine, and formamide, and aromatic halogenated hydrocarbons such as chlorobenzene and O-dichlorobenzene.
It can be used as a composite liquid by adding more than one type of solvent.

また、かかる水溶液で液晶性ポリエステル成形品をエツ
チング処理するに当たり、エツチング液への浸漬処理条
件はエツチング液の組成に応じ適宜最適条件が探索、選
択されるが、−船釣な処理条件は前記水酸化物20〜6
0重量%の水溶液を用い、30〜80℃で3〜120分
の範囲で、好ましくは水酸化物40〜50重量%水溶液
を用い40〜60℃で10〜30分である。特に好まし
い処理条件例を示せば水酸化カリウムの約45重量%水
溶液で、60℃×30分程度の処理が適当である。
In addition, when etching a liquid crystalline polyester molded product with such an aqueous solution, optimal conditions for immersion in the etching solution are searched and selected as appropriate depending on the composition of the etching solution. Oxide 20-6
A 0% by weight aqueous solution is used at 30-80°C for 3-120 minutes, preferably a 40-50% by weight aqueous hydroxide solution is used at 40-60°C for 10-30 minutes. As an example of particularly preferable treatment conditions, treatment with an aqueous solution of about 45% by weight of potassium hydroxide at 60° C. for about 30 minutes is suitable.

本発明で用いられる液晶性ポリエステル成形品には、更
にそのメッキ性を向上するため、周期律表■族元素及び
その酸化物、硫酸塩、リン酸塩、珪酸塩、又はアルミニ
ウム、珪素、スズ、鉛、アンチモン、ビスマスの元素及
びその酸化物からなる群より選ばれた1種又は2種以上
よりなる無機充填材を配合したものであることが好まし
い。
In order to further improve the plating properties of the liquid crystalline polyester molded product used in the present invention, elements of group I of the periodic table and their oxides, sulfates, phosphates, silicates, or aluminum, silicon, tin, It is preferable that one or more inorganic fillers selected from the group consisting of lead, antimony, and bismuth elements and their oxides are blended.

周期律表■族の元素の酸化物とは、酸化マグネシウム、
酸化カルシウム、酸化バリウム、酸化亜鉛等の如き化合
物であり、リン酸塩とはリン酸マグネシウム、リン酸カ
ルシウム、リン酸バリウム、リン酸亜鉛、ビロリン酸マ
グネシウム、ピロリン酸カルシウム等の如き化合物であ
り、硫酸塩とは硫酸マグネシウム、硫酸カルシウム、硫
酸バリウム等の化合物であり、珪酸塩とは珪酸マグネシ
ウム、珪酸カルシウム、珪酸アルミニウム、カオリン、
タルク、クレー、珪藻土、ウオラストナイト等の化合物
であり、特にリン酸塩が好適である。
Oxides of elements in group ■ of the periodic table include magnesium oxide,
These are compounds such as calcium oxide, barium oxide, zinc oxide, etc. Phosphates are compounds such as magnesium phosphate, calcium phosphate, barium phosphate, zinc phosphate, magnesium birophosphate, calcium pyrophosphate, etc. are compounds such as magnesium sulfate, calcium sulfate, and barium sulfate, and silicates include magnesium silicate, calcium silicate, aluminum silicate, kaolin,
These are compounds such as talc, clay, diatomaceous earth, and wollastonite, with phosphates being particularly preferred.

この他、前記無機充填材の他にアルミニウム、珪素、ス
ズ、鉛、アンチモン、ビスマス等の両性金属元素、又は
その元素の酸化物からなる群より選ばれた1種又は2種
以上も好ましい。
In addition to the above-mentioned inorganic fillers, one or more selected from the group consisting of amphoteric metal elements such as aluminum, silicon, tin, lead, antimony, and bismuth, or oxides of these elements are also preferable.

これらの無機充填材の配合量は液晶性ポリエステル樹脂
組成物全量に対して0〜80重量%、好ましくは10〜
70重量%である。これらの充填材を配合しないと、成
形品表面に不均一な流れマークが発生することがあり、
また成形品表層は粘着テープを表面に貼り付は引き剥が
すと容易に薄皮状の剥がれが生じることがあり、また表
面処理品はエツチングのムラを生じ易い。−方、80重
量%を超えると樹脂の流動性が低下し、表面の良好な成
形品が得られず、エツチングにより表面にざらつきを生
じてしまうと同時に成形品の機械的強度も低下してしま
い好ましくない。又、無機充填材の粒径は平均粒径0.
01〜100μmの範囲、好ましくは0,1〜30μm
1更に好ましくは0.5〜10μmが適切である。0.
01μm未満では分散不良により成形品表面に凝集塊が
生じ易く、100μmを超えるとエツチング後の表面の
面粗度が大きくなり、良い外観が得られない。
The blending amount of these inorganic fillers is 0 to 80% by weight, preferably 10 to 80% by weight based on the total amount of the liquid crystalline polyester resin composition.
It is 70% by weight. If these fillers are not included, uneven flow marks may occur on the surface of the molded product.
Furthermore, when an adhesive tape is applied to the surface of a molded article and then peeled off, a thin film may easily peel off, and surface-treated articles tend to have uneven etching. - On the other hand, if it exceeds 80% by weight, the fluidity of the resin will decrease, making it impossible to obtain a molded product with a good surface, causing roughness on the surface due to etching, and at the same time reducing the mechanical strength of the molded product. Undesirable. In addition, the particle size of the inorganic filler is an average particle size of 0.
in the range of 0.01 to 100 μm, preferably 0.1 to 30 μm
1, more preferably 0.5 to 10 μm. 0.
If it is less than 100 μm, aggregates tend to form on the surface of the molded product due to poor dispersion, and if it exceeds 100 μm, the roughness of the surface after etching becomes large and a good appearance cannot be obtained.

これら無機充填材を液晶性ポリエステル中に配合する方
法としては、種々の方法が用いられるが、望ましくは押
出機による溶融混練方法で成形に先立って均一に混練、
分散させることが好ましい。
Various methods can be used to blend these inorganic fillers into the liquid crystalline polyester, but it is preferable to use a melt-kneading method using an extruder to uniformly knead them prior to molding.
Dispersion is preferred.

本発明における液晶性ポリエステルとは、溶融加工性ポ
リエステルで、溶融状態でポリマー分子鎖が規則的な平
行配列をとる性質を有している。分子がこのように配列
した状態をしばしば液晶状態または液晶性物質のネマチ
ック相という。このようなポリマー分子は、一般に細長
く、偏平で、分子の長軸に沿ってかなり剛性が高く、普
通は同軸または平行のいずれかの関係にある複数の連鎖
伸長結合を有しているようなポリマーからなる。
The liquid crystalline polyester in the present invention is a melt-processable polyester, and has the property that polymer molecular chains are regularly arranged in parallel in a molten state. The state in which the molecules are arranged in this way is often called the liquid crystal state or the nematic phase of liquid crystal materials. Such polymer molecules are generally elongated, oblate, fairly rigid along the long axis of the molecule, and have multiple chain extensions, usually in either coaxial or parallel relationships. Consisting of

異方性溶融相の性質は、直交偏光子を利用した慣用の偏
光検査法により確認することができる。より具体的には
、異方性溶融相の確認は、Leitz偏光顕微鏡を使用
し、Leitzホットステージにのせた溶融試料を窒素
雰囲気下で40倍の倍率で観察することにより実施でき
る。上記ポリマーは光学的に異方性である。すなわち、
直交偏光子の間で検査したときに光を透過させる。
The nature of the anisotropic melt phase can be confirmed by conventional polarization testing using crossed polarizers. More specifically, the anisotropic melt phase can be confirmed by observing a molten sample placed on a Leitz hot stage at 40x magnification under a nitrogen atmosphere using a Leitz polarizing microscope. The polymer is optically anisotropic. That is,
Transmits light when examined between orthogonal polarizers.

試料が光学的に異方性であると、たとえ静止状態であっ
ても偏光は透過する。
If the sample is optically anisotropic, polarized light will pass through it even if it is at rest.

上記の如き異方性溶融相を形成するポリマーの構成成分
としては ■ 芳香族ジカルボン酸、脂環族ジカルボン酸の1つま
たはそれ以上からなるもの ■ 芳香族ジオール、脂環族ジオール、脂肪族ジオール
の1つまたはそれ以上からなるもの■ 芳香族ヒドロキ
シカルボン酸の1つまたはそれ以上からなるもの ■ 芳香族チオールカルボン酸の1つまたはそれ以上か
らなるもの ■ 芳香族ジチオーノペ芳香族チオールフェノールの1
つまたはそれ以上からなるもの■ 芳香族ヒドロキシア
ミン、芳香族ジアミンの1つまたはそれ以上からなるも
の 等から選ばれ、異方性溶融相を形成するポリマーは ■)■と■からなるポリエステル ■)■だけからなるポリエステル ■)■と■と■からなるポリエステル ■)■だけからなるポリチオールエステル■)■と■か
らなるポリチオールエステル■)■と■と■からなるポ
リチオールエステル■)■と■と■からなるポリエステ
ルアミド■)■と■と■と■からなるポリエステルアミ
ド 等の組み合わせから構成される異方性溶融相を形成する
ポリエステルである。
Constituent components of the polymer that forms the anisotropic melt phase as described above include: - Consisting of one or more of aromatic dicarboxylic acids and alicyclic dicarboxylic acids - Aromatic diols, alicyclic diols, and aliphatic diols ■ Consisting of one or more aromatic hydroxycarboxylic acids ■ Consisting of one or more aromatic thiol carboxylic acids ■ One of aromatic dithionope aromatic thiol phenol
Polyesters consisting of one or more of aromatic hydroxyamines and aromatic diamines and forming an anisotropic melt phase are polyesters consisting of ■)■ and ■■) Polyester consisting of only ■ Polyester consisting of ■) ■, ■ and ■ ■) Polythiol ester consisting only of ■ ■) Polythiol ester consisting of ■ and ■ ■) Polythiol ester consisting of ■ and ■ ■) ■ and ■ It is a polyester that forms an anisotropic melt phase composed of a combination of polyester amide consisting of ■), ■, polyester amide consisting of ■, and ■.

更に上記の成分の組み合わせの範鴫には含まれないが、
異方性溶融相を形成するポリマーには芳香族ポリアゾメ
チンが含まれ、かかるポリマーの具体例としては、ポリ
 にトリロー2=メチル−1,4−フェニレンニトリロ
メチリジン−1,4−7二二レンエチリジン);ポリ 
にトリロー2−メチル−1,4−フェニレンニトリロメ
チリジン−1,4−フェニレンメチリジン);およびポ
リ にトリロー2−クロロ−1,4−フェニレンニトリ
ロメチリジン−1,4−フェニレンメチリジン)が挙げ
られる。
Furthermore, although not included in the above combination of ingredients,
Polymers that form an anisotropic melt phase include aromatic polyazomethines; specific examples of such polymers include polytrilo-2=methyl-1,4-phenylenenitrilomethylidine-1,4-72 lenethyridine); poly
trilo-2-methyl-1,4-phenylenenitrilomethylidine-1,4-phenylenemethylidine); Can be mentioned.

更に上記の成分の組み合わせの範鴫には含まれないが、
異方性溶融相を形成するポリマーとしてポリエステルカ
ーボネートが含まれる。これは本質的に4−オキシベン
ゾイル単位、ジオキシフェニル単位、ジオキシカルボニ
ル単位及びテレフタロイル単位からなるものがある。
Furthermore, although not included in the above combination of ingredients,
Polyester carbonate is included as a polymer that forms an anisotropic melt phase. It may consist essentially of 4-oxybenzoyl units, dioxyphenyl units, dioxycarbonyl units and terephthaloyl units.

本発明で用いるのに好適な異方性溶融相を形成するポリ
マーである上記I) 、It) 、III)のポリエス
テル及び■)のポリエステルアミドは、縮合により所要
の反復単位を形成する官能基を有している有機モノマー
化合物同士を反応させることのできる多様なエステル形
成法により生成させることができる。たとえば、これら
の有機モノマー化合物の官能基はカルボン酸基、ヒドロ
キシル基、エステル基、アシルオキシ基、酸ハロゲン化
物、アミン基などでよい。上記有機モノマー化合物は、
溶融アシドリシス法により熱交換流体を存在させずに反
応させることができる。この方法ではモノマーをまず一
緒に加熱して反応物質の溶融溶液を形成する。反応を続
けていくと固体のポリマー粒子が液中に懸濁するように
なる。縮合の最終段階で副生じた揮発物(例、酢酸また
は水)の除去を容易にするために真空を適用してもよい
The polyesters (I), It), and III) and the polyesteramide (ii) above, which are polymers that form an anisotropic melt phase suitable for use in the present invention, contain functional groups that form the required repeating units by condensation. It can be produced by various ester formation methods that allow the organic monomer compounds that are present to react with each other. For example, the functional groups of these organic monomer compounds may be carboxylic acid groups, hydroxyl groups, ester groups, acyloxy groups, acid halides, amine groups, and the like. The above organic monomer compound is
The melt acidolysis method allows the reaction to occur without the presence of a heat exchange fluid. In this method, the monomers are first heated together to form a molten solution of the reactants. As the reaction continues, solid polymer particles become suspended in the liquid. Vacuum may be applied to facilitate removal of by-product volatiles (eg acetic acid or water) during the final stage of condensation.

また、スラリー重合法も本発明に用いるのに好適な液晶
性ポリエステルの形成に採用できる。
Additionally, slurry polymerization methods can also be employed to form liquid crystalline polyesters suitable for use in the present invention.

この方法では、固体生成物は熱交換媒質中に懸濁した状
態で得られる。
In this process, a solid product is obtained in suspension in a heat exchange medium.

本発明に使用するのに適した液晶性ポリマーは、一般溶
剤には実質的に不溶である傾向を示し、したがって溶液
加工には不向きである。しかし、既に述べたように、こ
れらのポリマーは普通の溶融加工法により容易に加工す
ることができる。
Liquid crystalline polymers suitable for use in the present invention tend to be substantially insoluble in common solvents and are therefore unsuitable for solution processing. However, as previously mentioned, these polymers can be readily processed using conventional melt processing techniques.

本発明で用いるのに好適な液晶性ポリエステルは一般に
重量平均分子量が約2.000〜200.000、好ま
しくは約10.000〜50. (100、特に好まし
くは約20.000〜25.000である。一方、好適
な完全芳香族ポリエステルアミドは一般に分子量が約5
、000〜50.000、好ましくは約10.000〜
30.000、例えば15.000〜17.000であ
る。かかる分子量の測定は、ゲルパーミェーションクロ
マトグラフィーならびにその他のポリマーの溶液形成を
伴わない標準的測定法、たとえば圧縮成形フィルムにつ
いて赤外分光法により末端基を定量することにより実施
できる。また、ペンタフルオロフェノール溶液にして光
散乱法を用いて分子量を測定することもできる。
Liquid crystalline polyesters suitable for use in the present invention generally have a weight average molecular weight of about 2.000 to 200.000, preferably about 10.000 to 50.00. (100, particularly preferably from about 20,000 to 25,000; on the other hand, suitable fully aromatic polyesteramides generally have a molecular weight of about 5
, 000 to 50,000, preferably about 10,000 to
30,000, for example 15,000 to 17,000. Such molecular weight measurements can be carried out by gel permeation chromatography as well as other standard methods of measuring polymers that do not involve solution formation, such as quantification of end groups by infrared spectroscopy on compression molded films. Alternatively, the molecular weight can be measured using a light scattering method using a pentafluorophenol solution.

本発明で用いられる異方性溶融相を示すポリマーは、芳
香族ポリエステル及び芳香族ポリエステルアミドが好ま
しく、芳香族ポリエステル及び芳香族ポリエステルアミ
ドを同一分子鎖中に部分的に含むポリエステルも好まし
い例である。
The polymer exhibiting an anisotropic melt phase used in the present invention is preferably an aromatic polyester or an aromatic polyester amide, and a polyester partially containing an aromatic polyester or an aromatic polyester amide in the same molecular chain is also a preferred example. .

それらを構成する化合物の好ましい例は、2゜6−ナフ
タレンジカルボン酸、2,6−ジヒドロキシナフタレン
、1,4−ジヒドロキシナフタレン及び6−ヒドロキシ
−2−ナフトエ酸等のナフタレン化合物、4.4′−ジ
フェニルジカルボン112.4.4°−ジヒドロキシビ
フェニル等のビフェニル化合物、下記一般式(I)、(
n)又は(II[)で表わされる化合物: (但し、x:アルキレン(C,〜C4)、アルキリテン
、−O−、−5O−1−8O□−1−8−1−CD−よ
り選ばれる基 Yニー(C)12)、−(n=1〜4)、−0(CH,
) hO−(n:1〜4)より選ばれる基) p−ヒドロキシ安息香酸、テレフタル酸、ハイドロキノ
ン、p−アミノフェノール及びp −フェニレンジアミ
ン等のパラ位置換のベンゼン化合物及びそれらの核置換
ベンゼン化合物(置換基は塩素、臭素、メチノペフェニ
ル、1−フェニルエチルより選ばれる)、イソフタル酸
、レゾルシン等のメタ位置換のベンゼン化合物である。
Preferred examples of the compounds constituting them are naphthalene compounds such as 2°6-naphthalene dicarboxylic acid, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, and 6-hydroxy-2-naphthoic acid; Diphenyl dicarbonate 112. Biphenyl compounds such as 4.4°-dihydroxybiphenyl, the following general formula (I), (
Compound represented by n) or (II[): (However, x: selected from alkylene (C, to C4), alkyritene, -O-, -5O-1-8O□-1-8-1-CD- Group Y (C) 12), -(n=1-4), -0(CH,
) a group selected from hO-(n: 1 to 4)) para-substituted benzene compounds such as p-hydroxybenzoic acid, terephthalic acid, hydroquinone, p-aminophenol, and p-phenylenediamine, and their nuclear-substituted benzene compounds (The substituent is selected from chlorine, bromine, methinopephenyl, 1-phenylethyl), isophthalic acid, resorcinol, and other meta-substituted benzene compounds.

又、本発明に使用される液晶性ポリエステルは、上述の
構成成分の他に同−分子鎮中に部分的に異方性溶融相を
示さないポリアルキレンテレフタレートであってもよい
。この場合のアルキル基の炭素数は2乃至4である。
In addition to the above-mentioned constituents, the liquid crystalline polyester used in the present invention may also be a polyalkylene terephthalate that does not show a partially anisotropic melt phase in the same molecular chain. In this case, the alkyl group has 2 to 4 carbon atoms.

上述の構成成分の内、ナフタレン化合物、ビフェニル化
合物、パラ位置換ベンゼン化合物より選ばれる1種若し
くは2種以上の化合物を必須の構成成分として含むもの
が更に好ましい例である。又、p−位置換ベンゼン化合
物の内、p−ヒドロキシ安息香酸、メチルハイドロキノ
ン及び1−フェニルエチルハイドロキノンは特に好まし
い例である。
Among the above-mentioned components, a more preferred example is one containing one or more compounds selected from naphthalene compounds, biphenyl compounds, and para-substituted benzene compounds as an essential component. Among the p-substituted benzene compounds, p-hydroxybenzoic acid, methylhydroquinone and 1-phenylethylhydroquinone are particularly preferred examples.

本発明で用いられるのに特に好ましい異方性溶融相を形
成するポリエステルは、6−ヒドロキシ−2−ナフトイ
ル、2.6−シヒドロキシナフタレン及び2,6−ジカ
ルボキシナフタレン等のナフタレン部分含有反復単位を
約10モル%以上の量で含有するものである。好ましい
ポリエステルアミドは上述ナフタレン部分と4−アミノ
フェノール又は1,4−フェニレンジアミンよりなる部
分との反復単位を含有するものである。
Particularly preferred anisotropic melt phase forming polyesters for use in the present invention include repeat units containing naphthalene moieties such as 6-hydroxy-2-naphthoyl, 2,6-hydroxynaphthalene and 2,6-dicarboxynaphthalene. It contains about 10 mol% or more. Preferred polyesteramides are those containing repeating units of the naphthalene moiety described above and a moiety consisting of 4-aminophenol or 1,4-phenylenediamine.

尚、上記I)〜■)の構成成分となる化合物の具体例及
び本発明で用いられるのに好ましい異方性溶融相を形成
するポリエステルの具体例については特開昭61−69
866号公報に言己載されている。
For specific examples of the compounds constituting the above-mentioned components I) to (ii) and specific examples of polyesters forming an anisotropic melt phase that are preferable for use in the present invention, see JP-A-61-69.
His words are published in Publication No. 866.

本発明においては、種々の特性を改良する目的で、上記
特定の無機充填材の外に、更に他の各種の併用無機物を
配合することができる。かかる併用無機物は機械的特性
、耐熱性、寸法安定性(耐変形、そり)等の性質に優れ
た成形品を得るためには配合することが好ましく、これ
には目的に応じて繊維状、粉粒状、板状の併用無機物が
用いられる。
In the present invention, in addition to the above-mentioned specific inorganic filler, various other concomitant inorganic substances may be blended for the purpose of improving various properties. It is preferable to incorporate such inorganic materials in order to obtain molded products with excellent properties such as mechanical properties, heat resistance, and dimensional stability (deformation resistance, warping). Particulate and plate-like inorganic materials are used.

繊維状充填剤としては、ガラス繊維、炭素繊維、アスベ
スト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミ
ナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維
、硼素繊維、チタン酸カリ繊維、更にステンレス、アル
ミニウム、チタン、銅、真鍮等の金属の繊維状物などの
無機繊維状物質が挙げられる。
Examples of fibrous fillers include glass fiber, carbon fiber, asbestos fiber, silica fiber, silica/alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, stainless steel, and aluminum. Examples include inorganic fibrous materials such as fibrous materials of metals such as titanium, copper, and brass.

一方、粉粒状無機物としては、カーボンブラック、黒鉛
、ガラスピーズ、ミルドガラスファイバー、ガラスバル
ーン、ガラス粉、酸化鉄、アルミナの如き金属の酸化物
、その他フェライト、炭化珪素、窒化珪素、窒化硼素等
が挙げられる。
On the other hand, granular inorganic substances include carbon black, graphite, glass beads, milled glass fibers, glass balloons, glass powder, iron oxide, metal oxides such as alumina, and other ferrites, silicon carbide, silicon nitride, boron nitride, etc. Can be mentioned.

又、板状無機物としては、マイカ、ガラスフレーク、各
種の金属箔等が挙げられる。
In addition, examples of the plate-like inorganic material include mica, glass flakes, and various metal foils.

これらの併用無機物は一種又は二種以上併用することが
できる。
These inorganic substances can be used alone or in combination.

特に好ましく用いられる併用無機物は繊維状無機物、特
にガラス繊維であり、その配合量は成形品組成物の全重
量に対し、1〜60重量%の範囲であり、好ましくは5
〜40重量%である。
Particularly preferably used concomitant inorganic substances are fibrous inorganic substances, particularly glass fibers, and the amount thereof is in the range of 1 to 60% by weight, preferably 5% by weight, based on the total weight of the molded article composition.
~40% by weight.

ただし、前記無機充填材と併用無機物との総記合量が成
形品組成物中の85重量%を越えることは成形加工性及
び各種の物性面から好ましくない。又、繊維状無機物の
みを単一充填したものは表面粗度がやや太き(なり、装
飾を目的とするメッキには不適切である。併用する繊維
状無機物としては、直径1〜30μ0、長さ5μm〜1
mm 、好ましくは10μm〜100μmの範囲にある
もの、特にガラス繊維を前記無機充填材に組み合わせる
と、予想に反し成形品の表面は一層均一化して、成形品
上にメッキにより導電性回路を形成する様な場合 その
密着力が向上することが見出された。表面粗度と材料の
機械的物性のバランスの面からガラス繊維と微粉状ガラ
スの中間に当たるミルドファイバーガラスが特に好まし
い。
However, it is not preferable for the total amount of the inorganic filler and the combined inorganic substance to exceed 85% by weight of the molded article composition from the viewpoint of moldability and various physical properties. In addition, the surface roughness of single-filling with only fibrous inorganic material is slightly thick (which makes it unsuitable for plating for decorative purposes.The fibrous inorganic material to be used in combination is 1 to 30μ0 in diameter and long Thickness 5 μm ~ 1
mm, preferably in the range of 10 μm to 100 μm, especially glass fiber, when combined with the inorganic filler, unexpectedly the surface of the molded article becomes more uniform and conductive circuits are formed on the molded article by plating. It has been found that the adhesion can be improved in such cases. Milled fiber glass, which is between glass fiber and fine powder glass, is particularly preferred in terms of the balance between surface roughness and mechanical properties of the material.

これらの無機充填材及び併用無機物の使用にあたっては
必要ならば収束剤又は表面処理剤を使用することが望ま
しい。
When using these inorganic fillers and concomitant inorganic substances, it is desirable to use a sizing agent or a surface treatment agent if necessary.

本発明組成物には従来使用されている核剤を併用しても
悪影響はない。
There is no adverse effect when the composition of the present invention is used in combination with a conventionally used nucleating agent.

更に本発明の組成物は、本発明の範囲でその意図する目
的を損なわない程度に他の熱可塑性樹脂を補助的に添加
したものであってもよい。
Furthermore, the composition of the present invention may be supplemented with other thermoplastic resins within the scope of the present invention to the extent that the intended purpose thereof is not impaired.

この場合に使用する熱可塑性樹脂は特に限定されないが
、例を示すと、ポリエチレン、ポリプロピレン等のポリ
オレフィン、ポリアセタール(ホモ又はコポリマー)、
ポリスチレン、ポリ塩化ビニル、ポリアクリル酸エステ
ル、及びそれらの共重合体、ポリアミド、ポリカーボネ
ート、ABS、ポリフェニレンオキシド、ポリフェニレ
ンスルフィド、フッ素樹脂等を挙げることができる。ま
たこれらの熱可塑性樹脂は2種以上混合して使用するこ
とができる。。
The thermoplastic resin used in this case is not particularly limited, but examples include polyolefins such as polyethylene and polypropylene, polyacetal (homo or copolymer),
Examples include polystyrene, polyvinyl chloride, polyacrylic acid ester, and copolymers thereof, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, and fluororesin. Further, two or more of these thermoplastic resins can be used in combination. .

更に一般の熱可塑性樹脂及び熱硬化性樹脂に添加される
公知の物質、即ち、可塑剤、酸化防止剤や紫外線吸収剤
等の安定剤、帯電防止剤、表面処理剤、難燃剤、染料や
顔料等の着色剤及び流動性や離型性の改善のための滑剤
、潤滑剤及び結晶化促進剤(核剤)等もその目的とする
要求性能に応じ適宜使用することができる。
Furthermore, known substances added to general thermoplastic resins and thermosetting resins, such as plasticizers, stabilizers such as antioxidants and ultraviolet absorbers, antistatic agents, surface treatment agents, flame retardants, dyes and pigments. A lubricant, a lubricant, a crystallization accelerator (nucleating agent), etc. for improving fluidity and mold releasability can also be used as appropriate depending on the desired desired performance.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明の液晶性ポリエステル樹脂成形
品のメッキ前処理法によれば、当該樹脂成形品の均一な
表面粗化が可能となり、かつ工程上必須である触媒付与
を極めて均一に行えるので、メッキ性が向上し、これま
で期待されながら実現できなかったプリント配線基板を
対象とした用途への展開が可能となった。
As described above, according to the plating pretreatment method for liquid crystalline polyester resin molded products of the present invention, it is possible to uniformly roughen the surface of the resin molded products, and to apply catalyst extremely uniformly, which is essential in the process. As a result, plating performance has been improved, and it has become possible to develop applications for printed wiring boards, which had been expected but could not be realized until now.

〔実 施 例〕〔Example〕

以下実施例及び比較例をもって本発明の処理法を更に具
体的に説明するが、本発明はこれに限定されるものでは
ない。
The treatment method of the present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1〜8 後述の液晶性ポリエステル樹脂Aと表−1に示した充填
材(重量%は、対組成物全量に対する値を示す)とを押
出機による溶融混練方法により混線分散させペレット化
し、140℃で3時間乾燥した後、成形機により140
〜160℃に温調された金型を用いて50mm x 7
Qmm x 3mmの平板を成形した。
Examples 1 to 8 The liquid crystalline polyester resin A described below and the filler shown in Table 1 (wt% indicates the value relative to the total amount of the composition) were cross-dispersed and pelletized by a melt-kneading method using an extruder. After drying at 140℃ for 3 hours, the molding machine
50mm x 7 using a mold temperature controlled to ~160℃
A flat plate of Qmm x 3mm was molded.

成形した平板は後記する工程に従いメッキした。エツチ
ング条件は表に示す条件で実施した。
The formed flat plate was plated according to the process described below. The etching conditions were as shown in the table.

エツチング後、付着残液を中和した後、表−1に示す両
性の界面活性剤を使用し、1重量%溶液に浸漬して粗化
表面を十分活性化し、次工程の触媒の均一な付着を容易
ならしめた。
After etching, after neutralizing the adhering residual liquid, use the amphoteric surfactant shown in Table 1 and immerse it in a 1% solution to fully activate the roughened surface to ensure uniform adhesion of the catalyst in the next step. made it easy.

無電解銅メッキを25℃×20分間実施した後、150
℃で60分間乾燥した後、室温にて1日放置後、メッキ
の付着状態を観察し、両性界面活性剤の効果を判定した
。判定は、試験した平板10枚の内、全面付着を確認で
きた枚数で表した。
After performing electroless copper plating at 25°C for 20 minutes,
After drying at ℃ for 60 minutes and leaving at room temperature for 1 day, the adhesion state of the plating was observed and the effect of the amphoteric surfactant was determined. The judgment was expressed by the number of plates on which full-surface adhesion was confirmed among the 10 plates tested.

無電解メッキの良好なものは引き続き電気メッキを実施
し、メッキ中に溶解やふくれのないことを観察し、また
メッキ後150℃で60分間乾燥した後、室温にて1日
放置後の付着状態を観察して電気メッキ性を判定した。
For those with good electroless plating, electroplating is performed to check that there is no dissolution or blistering during plating, and after drying at 150℃ for 60 minutes, the adhesion state after being left at room temperature for 1 day. The electroplating property was determined by observing.

判定は上記判定と同様に平板10枚の内、ふくれのない
枚数で表した。
As in the above-mentioned judgment, the evaluation was based on the number of non-blistered plates out of 10 plates.

比較例1〜5 実施例1と同様に作成した平板を用いて表−1に示す条
件でメッキ処理後界面活性剤処理したが、両性界面活性
剤を使用した場合のような良好なメッキ状態は得られな
かった。
Comparative Examples 1 to 5 Flat plates prepared in the same manner as in Example 1 were plated and then treated with a surfactant under the conditions shown in Table 1, but the plating condition was not as good as when an amphoteric surfactant was used. I couldn't get it.

実施例9〜13 実施例1で用いた液晶性ポリエステルAを他の液晶性ポ
リエステルB−Fに代えた他は同様に評価した。
Examples 9 to 13 Evaluations were made in the same manner as in Example 1, except that liquid crystalline polyester A used in Example 1 was replaced with other liquid crystalline polyesters B-F.

結果を表−1に示す。The results are shown in Table-1.

いずれのベースポリマーについても同一条件下で差は認
められなかった。
No difference was observed under the same conditions for either base polymer.

くメッキ処理法〉 (水 洗)   1 (水 洗)   1 (希硫酸)   1 尚、実施例で使用した液晶性ポリエステルは下記の構成
単位を有するものである。
Plating treatment method> (Water washing) 1 (Water washing) 1 (Dilute sulfuric acid) 1 The liquid crystalline polyester used in the examples has the following structural units.

=60/20/20 =70/15/15 =60/20/20 出願人代理人  古 谷   馨=60/20/20 =70/15/15 =60/20/20 Applicant's agent Kaoru Furutani

Claims (1)

【特許請求の範囲】 1 異方性溶融相を形成し得る溶融加工性ポリエステル
からなる成形品をアルカリ性水溶液にて表面粗化した後
、両性界面活性剤水溶液にて処理することを特徴とする
液晶性ポリエステル樹脂成形品のメッキ前処理法。 2 異方性溶融相を形成しうる溶融加工性ポリエステル
が、周期律表II族元素及びその酸化物、硫酸塩、リン酸
塩、珪酸塩、又はアルミニウム、珪素、スズ、鉛、アン
チモン、ビスマスの元素及びその酸化物からなる群より
選ばれた1種又は2種以上の無機充填材を、成形品組成
物全量に対して5〜80重量%含有せしめてなる液晶性
ポリエステル樹脂組成物である特許請求の範囲第1項記
載の液晶性ポリエステル成形品のメッキ前処理法。 3 アルカリ性水溶液がアルカリ金属又はアルカリ土類
金属の水酸化物を20重量%以上含む水溶液である特許
請求の範囲第1項記載の液晶性ポリエステル樹脂成形品
のメッキ前処理法。 4 両性界面活性剤がカルボキシベタイン型、スルホベ
タイン型、アミノカルボン酸塩型及びイミダゾリン誘導
体型から選ばれた両性界面活性剤である特許請求の範囲
第1〜3項の何れか1項記載の液晶性ポリエステル成形
品のメッキ前処理法。
[Claims] 1. A liquid crystal characterized in that a molded article made of a melt-processable polyester capable of forming an anisotropic melt phase is surface roughened with an alkaline aqueous solution and then treated with an amphoteric surfactant aqueous solution. Plating pretreatment method for polyester resin molded products. 2. The melt-processable polyester capable of forming an anisotropic melt phase is composed of Group II elements of the periodic table and their oxides, sulfates, phosphates, silicates, or of aluminum, silicon, tin, lead, antimony, and bismuth. A patent for a liquid crystal polyester resin composition containing 5 to 80% by weight of one or more inorganic fillers selected from the group consisting of elements and their oxides, based on the total amount of the molded article composition. A method for pre-plating a liquid crystalline polyester molded article according to claim 1. 3. The method for pre-plating a liquid crystalline polyester resin molded article according to claim 1, wherein the alkaline aqueous solution is an aqueous solution containing 20% by weight or more of an alkali metal or alkaline earth metal hydroxide. 4. The liquid crystal according to any one of claims 1 to 3, wherein the amphoteric surfactant is an amphoteric surfactant selected from carboxybetaine type, sulfobetaine type, aminocarboxylate type, and imidazoline derivative type. Pre-treatment method for plating polyester molded products.
JP62335859A 1987-10-02 1987-12-28 Pretreatment method for plating of liquid crystalline polyester resin molded products Expired - Lifetime JPH0745717B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62335859A JPH0745717B2 (en) 1987-12-28 1987-12-28 Pretreatment method for plating of liquid crystalline polyester resin molded products
EP19880304473 EP0311232B2 (en) 1987-10-02 1988-05-18 Process for surface treatment of moldings of liquid-crystalline polyester resin
DE3884546T DE3884546T3 (en) 1987-10-02 1988-05-18 Process for the surface treatment of objects made of liquid crystalline polyester resin.
AT88304473T ATE95210T1 (en) 1987-10-02 1988-05-18 PROCESS FOR SURFACE TREATMENT OF OBJECTS MADE OF LIQUID CRYSTALLINE POLYESTER RESIN.
KR1019880006133A KR910005863B1 (en) 1987-10-02 1988-05-25 Process for surface treatment of moldings of liquid-crystalline polyester resin
US07/198,255 US4997724A (en) 1987-10-02 1988-05-25 Process for surface treatment of moldings of liquid-crystalline polyester resin
HK195496A HK195496A (en) 1987-10-02 1996-10-24 Process for surface treatment of moldings of liquid-crystalline polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335859A JPH0745717B2 (en) 1987-12-28 1987-12-28 Pretreatment method for plating of liquid crystalline polyester resin molded products

Publications (2)

Publication Number Publication Date
JPH01176080A true JPH01176080A (en) 1989-07-12
JPH0745717B2 JPH0745717B2 (en) 1995-05-17

Family

ID=18293183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335859A Expired - Lifetime JPH0745717B2 (en) 1987-10-02 1987-12-28 Pretreatment method for plating of liquid crystalline polyester resin molded products

Country Status (1)

Country Link
JP (1) JPH0745717B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032521A1 (en) * 1995-04-10 1996-10-17 Kao Corporation Electroless plating method, and method and apparatus for producing stamper
JP2003027250A (en) * 2001-07-18 2003-01-29 Toyota Motor Corp Method for forming electroless plating film of resin
JP2003261699A (en) * 2002-03-08 2003-09-19 Toray Eng Co Ltd Etching solution for liquid crystal polymer and etching method using the same
JP2006028207A (en) * 2004-07-12 2006-02-02 Polyplastics Co Method for plating-pretreating liquid-crystalline polymer molded article
JP2007119518A (en) * 2005-10-25 2007-05-17 Polyplastics Co High-dielectric constant resin composition for plating
JP2007162037A (en) * 2005-12-09 2007-06-28 Okuno Chem Ind Co Ltd Plating method for polylactic acid resin molding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254073A (en) * 1985-09-02 1987-03-09 Polyplastics Co Surface-metallized resin molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254073A (en) * 1985-09-02 1987-03-09 Polyplastics Co Surface-metallized resin molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032521A1 (en) * 1995-04-10 1996-10-17 Kao Corporation Electroless plating method, and method and apparatus for producing stamper
JP2003027250A (en) * 2001-07-18 2003-01-29 Toyota Motor Corp Method for forming electroless plating film of resin
JP2003261699A (en) * 2002-03-08 2003-09-19 Toray Eng Co Ltd Etching solution for liquid crystal polymer and etching method using the same
JP2006028207A (en) * 2004-07-12 2006-02-02 Polyplastics Co Method for plating-pretreating liquid-crystalline polymer molded article
JP4519548B2 (en) * 2004-07-12 2010-08-04 ポリプラスチックス株式会社 Plating pretreatment method for liquid crystalline polymer molded products
JP2007119518A (en) * 2005-10-25 2007-05-17 Polyplastics Co High-dielectric constant resin composition for plating
JP4727381B2 (en) * 2005-10-25 2011-07-20 ポリプラスチックス株式会社 High dielectric resin composition for plating
JP2007162037A (en) * 2005-12-09 2007-06-28 Okuno Chem Ind Co Ltd Plating method for polylactic acid resin molding

Also Published As

Publication number Publication date
JPH0745717B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US4997724A (en) Process for surface treatment of moldings of liquid-crystalline polyester resin
TWI660656B (en) Kunststoffformmasse und deren verwendung
JP2513728B2 (en) Surface treatment method for liquid crystalline polyester resin moldings
KR20070015002A (en) Laminate of liquid crystalline polyester with copper foil
JP3096142B2 (en) Liquid crystalline polyester resin composition
JPH03140221A (en) Two-color molded product for formation of circuit
JP2012513500A (en) A chromium-free method of conditioning and etching of thermoplastic substrates for metal plating.
JPH0765154B2 (en) Resin molded product with surface metal treatment
JPH01176080A (en) Plating pretreatment of liquid crystal polyester resin molded article
JP2002179776A (en) Whole aromatic polyester and polyester resin composition
JPH0335585A (en) Manufacture of molding for precise fine line circuit
US20230368948A1 (en) Insulating material for circuit substrate, and metal foil-clad laminate
KR930010846B1 (en) Process for producing board for precision fine wire circuit
JP2002138187A (en) Liquid crystalline polyester resin composition
US20230371188A1 (en) Insulating material for circuit substrate, and method for manufacturing the same, and metal foil-clad laminate
JP3096141B2 (en) Liquid crystalline polyester resin composition
JPH0819251B2 (en) Surface treatment method for liquid crystalline polyester resin moldings
JP4519548B2 (en) Plating pretreatment method for liquid crystalline polymer molded products
JP3224204B2 (en) Thermoplastic resin molded product with a metal layer formed on the surface
JP2513728C (en)
JPS63264340A (en) Composite metallic plate
WO1997022730A1 (en) Thermoplastic resin molding with metallic layer formed on the surface thereof
JP7538712B2 (en) Resin composition, resin film, metal-clad laminate, and printed wiring board
JP4727381B2 (en) High dielectric resin composition for plating
JP7572234B2 (en) Resin composition, resin film, metal-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 13