JPH01176053A - Martensitic stainless steel for cold forging and its manufacture - Google Patents

Martensitic stainless steel for cold forging and its manufacture

Info

Publication number
JPH01176053A
JPH01176053A JP33618687A JP33618687A JPH01176053A JP H01176053 A JPH01176053 A JP H01176053A JP 33618687 A JP33618687 A JP 33618687A JP 33618687 A JP33618687 A JP 33618687A JP H01176053 A JPH01176053 A JP H01176053A
Authority
JP
Japan
Prior art keywords
less
stainless steel
tensile strength
steel
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33618687A
Other languages
Japanese (ja)
Other versions
JP2719916B2 (en
Inventor
Yoshinobu Motokura
義信 本蔵
Hiroyuki Toki
土岐 浩之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18296539&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01176053(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP62336186A priority Critical patent/JP2719916B2/en
Publication of JPH01176053A publication Critical patent/JPH01176053A/en
Application granted granted Critical
Publication of JP2719916B2 publication Critical patent/JP2719916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a martensitic stainless steel having excellent cold forgeability by extremely reducing the contents of Si and Mn in an SUS 410 type stainless steel and regulating its crystal grain size to the specific value. CONSTITUTION:The SUS 410 type stainless steel material having the compsn. contg., by weight, 0.10-0.16% C, <0.20% Si, <0.25% Mn, <0.005% S and 11.50-12.20% Cr, or furthermore contg. one or more kinds among <1.5% Mo, <0.20% Ti, <0.15% V and <0.10% Nb and the balance consisting of Fe is heated for 2-15hr at 800-950 deg.C to regulate its crystal grain size to the range of 5-8. The martensitic stainless steel material having excellent cold forgeability in such a manner that cracks do not occur at the time of cold forging and furthermore having excellent tensile strength and corrosion resistance can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、家電製品、屋根板止め用のピン、ネジ等に用
いられる。焼なまし状態で優れた冷間鍛造性を有し、か
つ耐食性と、焼入硬化能が著しく優れた高強度マルテン
サイト系ステンレス鋼及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is used for home appliances, pins and screws for fixing roof panels, and the like. The present invention relates to a high-strength martensitic stainless steel that has excellent cold forgeability in an annealed state, and extremely excellent corrosion resistance and quench hardenability, and a method for producing the same.

〔従来技術〕[Prior art]

マルテンサイト系ステンレス鋼としては、一般に5US
410 (0,IC−12,5Cr)が耐食性と強度を
有すことから、家電製品、屋根板止め用のピン、ネジ等
に広く使用されている。
As martensitic stainless steel, generally 5US
Because 410 (0, IC-12, 5Cr) has corrosion resistance and strength, it is widely used in home appliances, pins and screws for fixing roof panels, etc.

〔解決すべき問題点〕[Problems to be solved]

しかしながら、前記5US410は、焼入れ型さがHv
427と強度については優れているが。
However, the 5US410 has a hardening type of Hv.
427, which is excellent in terms of strength.

焼なまし状態での引張強さが55kg/+が程度と高い
ため、冷間鍛造性についてはかならずしも満足すべきも
のではなかった。また、耐食性についても改善が求めら
れていた。
Since the tensile strength in the annealed state was as high as 55 kg/+, the cold forgeability was not necessarily satisfactory. There was also a need for improvement in corrosion resistance.

しかし、一般に冷間鍛造性を向上させようとすると強度
は低下するものであり、冷間鍛造性と強度とは相反する
特性であり両者を共に満足させることは困難であった。
However, in general, when trying to improve cold forgeability, strength decreases; cold forgeability and strength are contradictory characteristics, and it has been difficult to satisfy both.

本発明は、かかる問題に対処すべく、特にSi。The present invention aims to address this problem, particularly for Si.

Mn、S成分の含有量及びフェライト結晶粒度につき検
討した結果なされたもので、焼もどし状態での強度を低
下させることなく、焼なまし状態で優れた冷間鍛造性を
示し、かつ耐食性と焼入硬化能に優れた高強度マルテン
サイト系ステンレス鋼を提供しようとするものである。
This was achieved after studying the content of Mn and S components and the ferrite crystal grain size, and it shows excellent cold forgeability in the annealed state without reducing the strength in the tempered state, and has excellent corrosion resistance and annealing properties. The purpose is to provide a high-strength martensitic stainless steel with excellent hardening ability.

C問題点の解決手段〕 本発明は3重量比にしてC0,10〜0.16%、Si
n、20%以下、Mn0.25%以下。
Solution to Problem C] The present invention is based on three weight ratios of C0.10 to 0.16%, Si
n, 20% or less, Mn 0.25% or less.

s0.oos%以下、Cr11.50〜12.20%を
含有し、残部Feならびに不純物元素からなることを特
徴とする冷間鍛造用マルテンサイト系ステンレス鋼にあ
る。(以下第1発明鋼という。
s0. The martensitic stainless steel for cold forging is characterized by containing 11.50 to 12.20% of Cr, and the remainder consisting of Fe and impurity elements. (Hereinafter referred to as the first invention steel.

本発明は、前記の5US410の上記欠点に鑑みて、1
2%Crステンレス鋼について、焼なまし状態での引張
強さに及ぼすC,St、Mn、Cr等の合金元素の影響
について鋭意研究を重ねた結果、第1に固溶強化作用に
より素地の強度を向上させるSt、Mn量を極力低下さ
せること、第2に、結晶粒度を5〜8の範囲に規制する
ことにより冷間鍛造性を向上し、0.16%以下のC量
で引張強さを48 kg f /m”以下に低下させる
ことを見出したものである。即ち、C量しベル0゜10
〜0.16%と、従来鋼と同等の硬さ(Hv400以上
)を有し、かつ焼なまし状態での引張り強さを従来鋼よ
りも約5 kg f /1m”低下させることに成功し
、冷間鍛造性を大幅に改善したものである。
In view of the above-mentioned drawbacks of the above-mentioned 5US410, the present invention provides:
As a result of extensive research into the effects of alloying elements such as C, St, Mn, and Cr on the tensile strength of 2%Cr stainless steel in the annealed state, we found that, first, the strength of the base material is improved by solid solution strengthening. Second, by regulating the grain size to a range of 5 to 8, cold forgeability is improved, and tensile strength is improved with a C content of 0.16% or less. It was discovered that the C content can be reduced to 48 kg f/m or less.
~0.16%, which is the same hardness as conventional steel (Hv400 or higher), and succeeded in lowering the tensile strength in the annealed state by approximately 5 kg f/1m" compared to conventional steel. , which has significantly improved cold forgeability.

即ち、Si含有量と引張強さとの関係は第1図に示した
ように、Si含有量が増加するにしたがい引張強さが増
加している0本願発明では冷間鍛造性を向上させるため
、焼なまし状態での引張強さを48kgf/鵬8以下と
することを目的とするものでありSi量の上限を0.2
0%とした。
That is, the relationship between Si content and tensile strength is as shown in FIG. 1, where the tensile strength increases as the Si content increases. The purpose is to reduce the tensile strength in the annealed state to 48 kgf/8 or less, and the upper limit of the amount of Si is 0.2.
It was set to 0%.

また、Mn含有量と引張強さとの関係は第2図に示した
ように、Stと同様にMn含有量が増加するに従い引張
強さが増加している0本願発明では冷間鍛造性を向上さ
せるため、焼なまし状態で引張強さを48kgf/鵬冨
以下を得ることを目的とするものでありMn量の上限を
0.25%とした。
In addition, as shown in Figure 2, the relationship between Mn content and tensile strength is similar to that of St, where the tensile strength increases as the Mn content increases. In the present invention, cold forgeability is improved. The purpose is to obtain a tensile strength of 48 kgf/hofu or less in an annealed state, and the upper limit of the Mn content is set to 0.25%.

更に、結晶粒度と引張強さとの関係は第3図に示したよ
うに、結晶粒度阻が大きく(粒度は小さくなる)なるに
従い引張強さが向上している0本発明では結晶粒度を8
以下にすることにより引張強さを48kgf/閣3以下
に低下させたものである。しかし、結晶粒度が荒くなり
すぎると脆くなり、冷間鍛造時に割れが発生し易く、ま
た肌荒れの原因となるため、結晶粒度を5以上にしたも
のである。
Furthermore, as shown in Figure 3, the relationship between grain size and tensile strength is such that as the grain size becomes larger (the grain size becomes smaller), the tensile strength improves.
By doing the following, the tensile strength was lowered to 48 kgf/3 or less. However, if the crystal grain size becomes too coarse, it becomes brittle, easily cracks during cold forging, and causes rough skin, so the crystal grain size is set to 5 or more.

次に、第2発明鋼は、上記第1発明鋼に、更にMo1.
5%以下、Ti0.20%以下、 VO。
Next, the second invention steel was added to the first invention steel with Mo1.
5% or less, Ti 0.20% or less, VO.

15%以下、Nb0,10%以下のうち1種ないし2種
以上を含有させたものである。これにより。
15% or less, Nb 0.10% or less. Due to this.

第1発明鋼の焼入、焼もどし状態での引張強さをさらに
改善し、また材料使用時の強度と耐食性をさらに向上さ
せたものである。
The tensile strength of the first invention steel in the quenched and tempered state is further improved, and the strength and corrosion resistance during use of the material are further improved.

以下に本発明における成分限定理由を説明する。The reasons for limiting the components in the present invention will be explained below.

Cは、焼入硬さHv400以上を確保するに必要な元素
であり、この強度を得るため下限を0゜10%とした。
C is an element necessary to ensure a quenching hardness of Hv400 or more, and in order to obtain this strength, the lower limit was set to 0°10%.

しかし、C量が増加すると引張強さが増加し、冷間鍛造
性が大幅に低下するため。
However, as the amount of C increases, the tensile strength increases and the cold forgeability significantly decreases.

上限を0.16%とした。The upper limit was set at 0.16%.

Stは、脱酸に効果のある元素であるが1強力なフェラ
イト生成元素でもあり、かつ固溶強化作用により強度を
増加し、冷間鍛造性を低下させる元素でもあるので、そ
の含有量を極力低下させる必要があり、上限を0.20
%とした。
St is an element that is effective in deoxidizing, but it is also a strong ferrite-forming element, and it is also an element that increases strength through solid solution strengthening and reduces cold forgeability, so its content should be minimized. It is necessary to lower the upper limit to 0.20.
%.

Mnは、脱酸に効果のある元素であると共に強力なオー
ステナイト生成元素であるが2反面、固溶強化により強
度を増加し、冷間鍛造性を大幅に低下させる元素である
ので、その含有量を極力低下させる必要があり、上限を
0.25%とした。
Mn is an element that is effective in deoxidizing and is a strong austenite forming element, but on the other hand, it is an element that increases strength through solid solution strengthening and significantly reduces cold forgeability, so its content is Therefore, the upper limit was set at 0.25%.

Sは、冷間鍛造時1割れの起点となるMnSを生成し冷
間鍛造時を著しく低下させると共に、耐食性をも劣化さ
せる元素であり、その含有量を低減する必要があり、上
限を0.oos%とした。
S is an element that produces MnS, which is the starting point for cracks during cold forging, and significantly reduces cold forging performance, as well as deteriorating corrosion resistance.It is necessary to reduce its content, and the upper limit should be set at 0. It was set as oos%.

なお、さらに冷間鍛造性を向上させるには0.002%
以下にすることが好ましい。
In addition, to further improve cold forgeability, add 0.002%.
It is preferable to do the following.

Crは、ステンレス鋼の耐食性を付与する基本元素であ
り、この効果を大きくするには11.50%以上含有さ
せる必要があるため、その下限を11.50%とした。
Cr is a basic element that imparts corrosion resistance to stainless steel, and to increase this effect it is necessary to contain it in an amount of 11.50% or more, so the lower limit was set at 11.50%.

一方Crは強力なフェライト生成元素でもあり、焼入れ
性を損なうので、その上限は12.20%とした。
On the other hand, Cr is also a strong ferrite-forming element and impairs hardenability, so its upper limit was set at 12.20%.

次に、M0.Ti、V、Nbは焼もどし状態での引張強
さの改善に寄与する元素であるが1反面強力なフェライ
ト生成元素であり、焼入性を損なうため、その上限をM
oは0.15%、Tiは0゜20%、■は0.15%、
Nbは0.10%とした。
Next, M0. Ti, V, and Nb are elements that contribute to improving the tensile strength in the tempered state, but on the other hand, they are strong ferrite-forming elements and impair hardenability, so their upper limit is set to M.
o is 0.15%, Ti is 0°20%, ■ is 0.15%,
Nb was set at 0.10%.

次に、上記第1発明鋼を製造する方法としては。Next, as a method for manufacturing the above-mentioned first invention steel.

重量比にしてC0,10〜0.16%、Si0゜20%
以下、Mn0.25%以下、30.005%以下、Cr
11.50〜12゜20%を含有し。
Weight ratio: C0.10~0.16%, Si0°20%
Below, Mn 0.25% or less, 30.005% or less, Cr
Contains 11.50-12°20%.

残部Feならびに不純物元素からなる鋼を、800〜9
50℃で2〜16時間加熱し、結晶粒度を5〜8に制御
し冷間鍛造性を改善したことを特徴とする冷間鍛造用マ
ルテンサイト系ステンレス鋼の製造方法がある(以下、
第3発明という)。
Steel consisting of the balance Fe and impurity elements is heated to 800 to 9
There is a method for producing martensitic stainless steel for cold forging, which is characterized by heating at 50°C for 2 to 16 hours and controlling the grain size to 5 to 8 to improve cold forgeability (hereinafter referred to as
(referred to as the third invention).

また、上記第2発明鋼を製造する方法としては。Further, as a method for manufacturing the above-mentioned second invention steel.

重量比にしてC0.to〜0.16%、Sin。C0. in terms of weight ratio. to ~0.16%, Sin.

20%以下、Mn0.25%以下、S0.005%以下
、Crtl、50〜12.20%を含有し。
20% or less, Mn 0.25% or less, S 0.005% or less, and Crtl 50 to 12.20%.

さらにMo1.5%以下、Ti0.20%以下。Furthermore, Mo is 1.5% or less and Ti is 0.20% or less.

V0.15%以下、Nb0.10%以下のうち1種ない
し2種以上を含有し、残部Feならびに不純物元素から
なる鋼を、800〜950℃で2〜16時間加熱し、結
晶粒径を5〜8に制御し冷間鍛造性を改善したことを特
徴とする冷間鍛造用マルテンサイト系ステンレス鋼の製
造方法がある(以下、第4発明という)。
A steel containing one or more of V0.15% or less and Nb0.10% or less, with the balance consisting of Fe and impurity elements, is heated at 800 to 950°C for 2 to 16 hours to reduce the grain size to 5. There is a method for producing martensitic stainless steel for cold forging, characterized in that the cold forgeability is improved by controlling the temperature to 8.

しかして、上記2つの方法において、加熱温度を800
〜950℃としたのは、800℃未満では結晶粒度が8
以下とならず、所望する冷間鍛造性が得られ難いからで
ある。また、950℃を越えると結晶粒度が却って粗く
なりすぎて、冷間鍛造時にワレ、肌荒れの原因を生ずる
おそれがある。
However, in the above two methods, the heating temperature was set to 800
~950℃ is because the crystal grain size is 8 below 800℃.
This is because the desired cold forgeability is difficult to obtain. On the other hand, if the temperature exceeds 950°C, the grain size becomes too coarse, which may cause cracking or rough skin during cold forging.

また、加熱時間を2〜16時間としたのは、2時間未満
では結晶粒度が8以下とならず、所望する冷間鍛造性が
得られ難いからである。また、16時間を越えると結晶
粒度が却って粗くなりすぎて。
Further, the reason why the heating time is set to 2 to 16 hours is because if it is less than 2 hours, the crystal grain size will not be reduced to 8 or less, making it difficult to obtain the desired cold forgeability. Moreover, if it exceeds 16 hours, the crystal grain size will become too coarse.

冷間鍛造時にワレ、肌荒れの原因を生ずるおそれがある
There is a risk of cracking and rough skin during cold forging.

〔作用及び効果〕[Action and effect]

前記第1発明は、特にSi量を0.20%以下。 In the first aspect of the invention, the amount of Si is particularly 0.20% or less.

Mn量を0.25%以下、S量を0.005%以下とい
う低い値とし、これらと上記C,P、Crの最適範囲と
の相乗的効果により、従来鋼の欠点である冷間鍛造性を
改善したものである。また。
By setting the Mn content to a low value of 0.25% or less and the S content to a low value of 0.005% or less, the synergistic effect of these and the above-mentioned optimal ranges of C, P, and Cr improves cold forgeability, which is a drawback of conventional steels. This is an improved version of Also.

従来鋼の結晶粒度が微細(約随12)であったものを、
上記組成範囲と関連して熱処理条件を考慮することによ
り、結晶粒度を8以下となし、冷間鍛造性を改善したも
のである。
The grain size of conventional steel was fine (approximately 12),
By considering the heat treatment conditions in relation to the above composition range, the grain size is set to 8 or less, and cold forgeability is improved.

したがって3本第1発明によれば、焼なまし状態での引
張強さは48 kg f /ltm”以下であり、冷間
鍛造性を改善することができ、また、焼入、焼もどし状
態での引張強さと強度を向上させ、さらに耐食性を向上
させることができる。そのため。
Therefore, according to the first invention, the tensile strength in the annealed state is 48 kg f /ltm" or less, and the cold forgeability can be improved, and also in the quenched and tempered state. Therefore, it can improve the tensile strength and strength of the steel and further improve the corrosion resistance.

本発明鋼は家電製品、屋根板止め用のビン、ネジなどに
好適なマルテンサイト系ステンレス調である。
The steel of the present invention is a martensitic stainless steel suitable for home appliances, roof plate fixing bottles, screws, etc.

また、第2発明は、第1発明にM0.TI、V。Further, the second invention provides the first invention with M0. T.I., V.

Nbの1種または2種以上を特定量含有させているので
、第1発明と同様の効果が得られる外、−層焼入、焼も
どし状態での強度をさらに改善する。
Since one or more types of Nb are contained in a specific amount, not only the same effects as the first invention can be obtained, but also the strength in the -layer quenched and tempered states is further improved.

また、第3発明によれば、前記冷間鍛造性等に優れた前
記第1発明鋼を製造することができる。
Further, according to the third invention, the first invention steel having excellent cold forgeability and the like can be manufactured.

更に、第4発明によれば、前記のごとき一層優れた第2
発明鋼を得ることができる。
Furthermore, according to the fourth invention, the second invention is even more excellent as described above.
Invention steel can be obtained.

〔実施例〕〔Example〕

次に9本発明鋼の特徴を従来鋼、比較鋼と対比させつつ
、実施例により明らかにする。
Next, the characteristics of nine inventive steels will be clarified through examples while comparing them with conventional steels and comparative steels.

第1表は、これらの供試鋼の化学成分を示すものである
Table 1 shows the chemical composition of these test steels.

なお、第1表において、A−L鋼は本発明鋼で。In Table 1, A-L steel is the steel of the present invention.

A〜Dは第1発明鋼、E〜には第2発明鋼、L〜Pは比
較鋼、Qは従来鋼の5US410である。
A to D are the first invention steel, E to the second invention steel, L to P are comparative steels, and Q is the conventional steel 5US410.

次に、第2表、第3表は、第1表に示す供試鋼について
、それぞれの試験結果を示すものである。
Next, Tables 2 and 3 show the test results for the steel samples shown in Table 1.

即ち、第2表は、第1表の供試鋼について、各種の温度
及び時間で保持し、冷却速度25℃/Hrで600℃ま
で炉冷し、その後空冷という条件で焼なましを施したも
のについて、その引張強さ。
That is, Table 2 shows that the test steels in Table 1 were held at various temperatures and times, furnace-cooled at a cooling rate of 25°C/Hr to 600°C, and then annealed under the conditions of air cooling. The tensile strength of something.

絞り、結晶粒度を示したものである。It shows the aperture and grain size.

そして、第3表は、1000℃で1時間保持し。Table 3 shows that the temperature was maintained at 1000°C for 1 hour.

油焼入れをしたものの硬さ、また上記焼入後750℃で
IHr焼もどしを行ったものについて、硬さと引張強さ
及び腐食速度を示したものである。
The hardness, tensile strength, and corrosion rate of the specimens subjected to oil quenching and those subjected to IHr tempering at 750° C. after the quenching are shown.

なお、上記の引張強さ、絞りについてはJIS4号の試
験片を作製して測定したものである。
Note that the above tensile strength and reduction of area were measured by preparing a JIS No. 4 test piece.

第2表から明らかなように、820℃×16時間焼鈍状
態の場合は、焼なまし後の性質は、従来鋼である5US
410鋼については引張強さが54kgf/閣3と高く
、また比較!IM、 N、 Oとも57〜51kgf 
1m−8と高く、冷間鍛造性が劣る。
As is clear from Table 2, in the case of annealing at 820°C for 16 hours, the properties after annealing are lower than that of conventional steel 5US.
For 410 steel, the tensile strength is as high as 54 kgf/Kaku 3, and let's compare! IM, N, O both 57-51kgf
It is as high as 1 m-8, and its cold forging properties are poor.

これらの傾向は、860℃×10時間、900℃×3時
間の場合もほぼ同様である。
These trends are almost the same in the cases of 860°C x 10 hours and 900°C x 3 hours.

また、第3表から明らかなように、比較鋼りが焼入れ硬
さHv363.焼入れ焼戻し硬さがHv235とかなり
低い、また、比較鋼Pは焼入れ焼戻し状態のものの腐食
速度が4 、 1 g/m、Hrと大きい。
Furthermore, as is clear from Table 3, the comparative steel has a quenched hardness of Hv363. The quenched and tempered hardness is quite low at Hv235, and the corrosion rate of comparative steel P in the quenched and tempered state is as high as 4.1 g/m, Hr.

以上のごとく、従来鋼及び比較鋼は、いずれも焼なまし
後の引張強さ、絞り、結晶粒度、或いは焼入、焼入れ焼
戻し後の硬さ、引張強さ、腐食速度に関して、いずれか
の欠点を有していることが分かる。
As mentioned above, both the conventional steel and the comparative steel have some drawbacks in terms of tensile strength, area of area, grain size after annealing, or hardness, tensile strength, and corrosion rate after quenching, quenching and tempering. It can be seen that it has

これに対して1本発明鋼であるA−に鋼は、第2表より
知られるごとく820℃X16時間の焼なまし後の引張
強さが46〜48 kgf/ms”、絞りが80〜81
%、結晶粒度が6.5〜7.6である。
On the other hand, as is known from Table 2, steel A-, which is the steel of the present invention, has a tensile strength of 46 to 48 kgf/ms and an area of area of 80 to 81 after annealing at 820°C for 16 hours.
%, and the grain size is 6.5-7.6.

そして、他の焼きなまし状態の場合もほぼ同様である。The same applies to other annealing states.

また1本発明鋼は、焼入硬さがHv425〜469.焼
入れ焼戻、後が硬さHv241〜272、引張強さが7
2〜81kgf/翔■8で、腐食速度は2.5〜2.9
g/m、Hrと低い。
Further, the steel of the present invention has a quenching hardness of Hv425 to 469. Hardness after quenching and tempering is Hv241-272, tensile strength is 7
2-81kgf/sho■8, corrosion rate is 2.5-2.9
g/m, low Hr.

以上より知られるごとく9本発明によれば、焼なまし状
態での引張強さが48kgfl閣す以下の冷間鍛造性に
優れ、また焼入、焼戻し後の引張強さ及び耐食性に優れ
たマルテンサイト系ステンレス鋼を得ることができる。
As is known from the above, according to the present invention, marten has excellent cold forgeability with a tensile strength of 48 kgfl or less in an annealed state, and excellent tensile strength and corrosion resistance after quenching and tempering. Site-based stainless steel can be obtained.

なお、比較のために1本発明鋼のうち、 N11B。For comparison, one of the steels of the present invention, N11B.

C,C及び■鋼につき、760℃×16時間又は100
0”CX2時間保持した後、前記と同様に冷却して焼な
ましを行った。そして、これらのものにつき、第4表に
示す性能につき測定した。その結果、上記焼鈍条件が7
60℃と低い場合は、引張り強さが高く、絞りが低く、
結晶粒度が細かくなった。
For C, C and ■ steel, 760℃ x 16 hours or 100℃
After holding at 0"CX for 2 hours, they were cooled and annealed in the same manner as above.Then, these products were measured for the performance shown in Table 4.As a result, the above annealing conditions were 7.
When it is as low as 60℃, the tensile strength is high and the area of area is low.
The grain size has become finer.

また、1000”Cの場合は引張強さが低く、絞りが高
く、結晶粒度が粗くなった。
Furthermore, in the case of 1000''C, the tensile strength was low, the area of area was high, and the grain size was coarse.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSi量と引張強さとの関係を示した線図、第2
図はMn量と引張強さとの関係を示した線図、第3図は
結晶粒度と引張強さとの関係を示した線図である。 Si(%) MAL(%)
Figure 1 is a diagram showing the relationship between Si content and tensile strength, Figure 2 is a diagram showing the relationship between Si content and tensile strength.
The figure is a diagram showing the relationship between Mn content and tensile strength, and FIG. 3 is a diagram showing the relationship between crystal grain size and tensile strength. Si (%) MAL (%)

Claims (4)

【特許請求の範囲】[Claims] (1)重量比にしてC0.10〜0.16%、Si0.
20%以下、Mn0.25%以下、S0.005%以下
、Cr11.50〜12.20%を含有し、残部Feな
らびに不純物元素からなることを特徴とする冷間鍛造用
マルテンサイト系ステンレス鋼。
(1) C0.10-0.16% by weight, Si0.
A martensitic stainless steel for cold forging, characterized in that it contains 20% or less, Mn 0.25% or less, S 0.005% or less, Cr 11.50 to 12.20%, and the balance consists of Fe and impurity elements.
(2)重量比にしてC0.10〜0.16%、Si0.
20%以下、Mn0.25%以下、S0.005%以下
、Cr11.50〜12.20%を含有し、さらにMo
1.5%以下、Ti0.20%以下、V0.15%以下
、Nb0.10%以下のうち1種ないし2種以上を含有
し、残部Feならびに不純物元素からなることを特徴と
する冷間鍛造用マルテンサイト系ステンレス鋼。
(2) C0.10-0.16% by weight, Si0.
20% or less, Mn 0.25% or less, S 0.005% or less, Cr 11.50 to 12.20%, and further Mo
Cold forging characterized by containing one or more of 1.5% or less, Ti 0.20% or less, V 0.15% or less, and Nb 0.10% or less, with the remainder consisting of Fe and impurity elements. martensitic stainless steel.
(3)重量比にしてC0.10〜0.16%、Si0.
20%以下、Mn0.25%以下、S0.005%以下
、Cr11.50〜12.20%を含有し、残部Feな
らびに不純物元素からなる鋼を、800〜950℃で2
〜16時間加熱し、結晶粒度を5〜8に制御し冷間鍛造
性を改善したことを特徴とする冷間鍛造用マルテンサイ
ト系ステンレス鋼の製造方法。
(3) C0.10-0.16% by weight, Si0.
A steel containing 20% or less, Mn 0.25% or less, S 0.005% or less, Cr 11.50 to 12.20%, and the balance consisting of Fe and impurity elements is heated at 800 to 950°C for 2
A method for producing martensitic stainless steel for cold forging, characterized in that cold forgeability is improved by heating for ~16 hours and controlling grain size to 5 to 8.
(4)重量比にしてC0.10〜0.16%、Si0.
20%以下、Mn0.25%以下、S0.005%以下
、Cr11.50〜12.20%を含有し、さらにMo
1.5%以下、Ti0.20%以下、V0.15%以下
、Nb0.10%以下のうち1種ないし2種以上を含有
し、残部Feならびに不純物元素からなる鋼を、800
〜950℃で2〜16時間加熱し、結晶粒径を5〜8に
制御し冷間鍛造性を改善したことを特徴とする冷間鍛造
用マルテンサイト系ステンレス鋼の製造方法。
(4) C0.10-0.16% by weight, Si0.
20% or less, Mn 0.25% or less, S 0.005% or less, Cr 11.50 to 12.20%, and further Mo
1.5% or less, Ti 0.20% or less, V 0.15% or less, Nb 0.10% or less, and the balance is Fe and impurity elements.
A method for producing martensitic stainless steel for cold forging, characterized in that cold forgeability is improved by heating at ~950°C for 2 to 16 hours and controlling the crystal grain size to 5 to 8.
JP62336186A 1987-12-29 1987-12-29 Martensitic stainless steel for cold forging and its manufacturing method Expired - Fee Related JP2719916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336186A JP2719916B2 (en) 1987-12-29 1987-12-29 Martensitic stainless steel for cold forging and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336186A JP2719916B2 (en) 1987-12-29 1987-12-29 Martensitic stainless steel for cold forging and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01176053A true JPH01176053A (en) 1989-07-12
JP2719916B2 JP2719916B2 (en) 1998-02-25

Family

ID=18296539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336186A Expired - Fee Related JP2719916B2 (en) 1987-12-29 1987-12-29 Martensitic stainless steel for cold forging and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2719916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953427A (en) * 2021-10-26 2022-01-21 江阴市洪峰五金锻造有限公司 Hot forging forming method for 410 steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208055A (en) * 1983-05-13 1984-11-26 Kawasaki Steel Corp Martensitic stainless steel for seamless steel pipe
JPS6021358A (en) * 1983-07-15 1985-02-02 Nippon Steel Corp Tough and hard steel for cold forging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208055A (en) * 1983-05-13 1984-11-26 Kawasaki Steel Corp Martensitic stainless steel for seamless steel pipe
JPS6021358A (en) * 1983-07-15 1985-02-02 Nippon Steel Corp Tough and hard steel for cold forging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953427A (en) * 2021-10-26 2022-01-21 江阴市洪峰五金锻造有限公司 Hot forging forming method for 410 steel

Also Published As

Publication number Publication date
JP2719916B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
KR20010051451A (en) Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
JPS59232220A (en) Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JPH0564215B2 (en)
JP2756549B2 (en) Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
JPS61174322A (en) Method for softening rolled material of machine structural steel
JPH0421718A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JPS6220857A (en) High-strength stainless steel
JPS625986B2 (en)
KR102170945B1 (en) Austenitic stainless steels excellent in fatigue life and manufacturing method thereof
JPH04214841A (en) Stainless steel for engine gasket excellent in formability and its manufacture
JPH01176053A (en) Martensitic stainless steel for cold forging and its manufacture
JPH0454726B2 (en)
JPS6130653A (en) High strength spring steel
JPH04329824A (en) Production of martensitic stainless steel for cold forging
JPS63312917A (en) Production of high-strength steel plate having excellent spring property and ductility
JPH04214842A (en) High strength stainless steel excellent in workability
JPH02310342A (en) Martensitic stainless steel for cold forging and its manufacture
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JPS594487B2 (en) Manufacturing method for strong steel with excellent SR embrittlement resistance
JPS6365055A (en) High hardness stainless steel for cold forging
JPH0463247A (en) High strength and high ductility stainless steel
JPH03138335A (en) Martensitic stainless steel for cold forging and its manufacture
JPS6372830A (en) Manufacture of cold rolled steel sheet having single ferrite phase-mixed grain structure, superior artificial age hardenability and deep drawability
JPS6240313A (en) Production of extra-thick tempered steel material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees