JPH01175733A - Exposure method - Google Patents

Exposure method

Info

Publication number
JPH01175733A
JPH01175733A JP62334568A JP33456887A JPH01175733A JP H01175733 A JPH01175733 A JP H01175733A JP 62334568 A JP62334568 A JP 62334568A JP 33456887 A JP33456887 A JP 33456887A JP H01175733 A JPH01175733 A JP H01175733A
Authority
JP
Japan
Prior art keywords
exposure
substrate
resist
film
secondary electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62334568A
Other languages
Japanese (ja)
Inventor
Yasuhiro Takasu
高須 保弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP62334568A priority Critical patent/JPH01175733A/en
Publication of JPH01175733A publication Critical patent/JPH01175733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce the influence of secondary electrons and facilitate formation of a finer pattern and facilitate suppression of difference in exposure rate caused by the difference in pattern width by a method wherein a resist film and a conductive film are successively built up on a substrate and the exposure to X rays or charge beams is carried out while a voltage is applied between the substrate and the conductive film. CONSTITUTION:A resist film 2 and a conductive film 3 are successively built up on a substrate 1 and the exposure to X rays or charged beams 10 is carried out while a voltage is applied between the substrate 1 and the conductive film 3. For instance, a PMMA resist film 2 with a thickness of 1mum is applied to the silicon wafer 1 and, after the wafer is pre-baked at 170 deg.C, a carbon film 3 with a thickness of 1000Angstrom is deposited by vacuum evaporation. Then a stainless steel foil 6 is attached to the carbon film 3 of the upper surface of the exposed substrate and connected to the cathode of a 100V source 9 and to the ground 7. Also, a stainless steel foil 8 is attached to the wafer 1 and connected to the anode of the 100V source 9. In this state, the exposure is carried out with electron beams 10. With this constitution, a force toward the silicon wafer 1 is applied to secondary electrons by an electric field in the resist so that the lateral spread of the secondary electrons can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、露光方法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an exposure method.

従来の技術 パターンの微細化につれて、光露光によるパターン転写
技術では、回折光の影響で解像度が落ちるという欠点が
ある。そこで、回折光の影響がないX線露光や、電子ビ
ーム、イオンビームの露光技術の開発が行われている。
BACKGROUND ART As patterns become finer, pattern transfer techniques using light exposure have the disadvantage that resolution deteriorates due to the influence of diffracted light. Therefore, X-ray exposure, electron beam, and ion beam exposure techniques that are free from the influence of diffracted light are being developed.

特に、X線露光は、−括露光によるパターン転写ができ
るので高いスルーブツトが期待できる。
In particular, X-ray exposure can be expected to have a high throughput because pattern transfer can be performed by negative exposure.

X線露光方法は、露光基板の上に塗布されたレジストに
X線マスクを通してX線を照射し、露光する方法である
。レジスト中に入射したX線は、レジスト形成分子(炭
素、酸素、水素等)に衝突し、レジスト形成分子より発
生する2次電子によって露光する。
The X-ray exposure method is a method of exposing a resist coated on an exposure substrate by irradiating X-rays through an X-ray mask. The X-rays entering the resist collide with resist-forming molecules (carbon, oxygen, hydrogen, etc.) and are exposed to secondary electrons generated by the resist-forming molecules.

発明が解決しようとする間層点 通常、X線源[電子励起形X線源、プラズマX線源、シ
ンクロトロン放射光(SOR)]から発生するX線は波
長分布を持っている。単色光のX線で発生する2次電子
は前方散乱により約0.1μmの領域に影響を与える。
Interlayer points to be solved by the invention Normally, X-rays generated from an X-ray source [electronically excited X-ray source, plasma X-ray source, synchrotron radiation (SOR)] have a wavelength distribution. Secondary electrons generated by monochromatic X-rays affect an area of approximately 0.1 μm due to forward scattering.

X線の制動ふ(射によって発生する2次電子では0.8
μmの領域に影響を与える。特に、基板での後方散乱が
顕著となる。このため、パターン形成を行う場合、発生
する2次電子の飛程以下のパターンを形成することがで
きす、超微細パターンの形成が困難である。また、パタ
ーン幅の大きい領域と小さい領域が共存しているパター
ンを同一露光量で露光した場合、上記のように2次電子
の影響でパターン幅の小さい領域の露光量はパターン幅
の大きい領域の露光量に対して少な(なる問題があった
。これらのことは、荷電ビーム(電子線、イオン等)露
光についても2次電子の前方散乱および基板からの後方
散乱電子によってレジストが露光されるため、X線露光
の場合と同じ問題(近接効果)が生じる。
The damping force of X-rays (0.8 for secondary electrons generated by radiation)
Affects the μm range. In particular, backscattering at the substrate becomes significant. Therefore, when forming a pattern, it is difficult to form a pattern that is smaller than the range of the generated secondary electrons, and it is difficult to form an ultra-fine pattern. In addition, when a pattern in which a large pattern width area and a small pattern width area coexist is exposed with the same exposure amount, the exposure amount in the small pattern width area is lower than that in the large pattern width area due to the influence of secondary electrons as described above. There was a problem with the amount of exposure being too small.This is because the resist is exposed by forward scattering of secondary electrons and backscattered electrons from the substrate even in charged beam (electron beam, ion, etc.) exposure. , the same problem (proximity effect) arises as with X-ray exposure.

問題点を解決するための手段 本発明の露光方法は、基板の上にレジスト膜と導電性膜
を順次積層し、前記基板と前記導電性膜の間に電圧を印
加しながらX線もしくは荷電ビームで露光するものであ
る。
Means for Solving the Problems The exposure method of the present invention involves sequentially laminating a resist film and a conductive film on a substrate, and applying an X-ray or a charged beam while applying a voltage between the substrate and the conductive film. It is exposed to light.

作用 本発明の露光方法によれば、基板に対して垂直な電界を
与えてX線もしくは荷電ビームで露光するため、2次電
子の散乱による飛程距離を短くすることができる。
Effect: According to the exposure method of the present invention, since an electric field perpendicular to the substrate is applied to expose the substrate with X-rays or a charged beam, the range due to scattering of secondary electrons can be shortened.

実施例 本発明の露光方法の一実施例を第1図に示した露光基板
の断面図を参照して説明する。
Embodiment An embodiment of the exposure method of the present invention will be described with reference to a sectional view of an exposure substrate shown in FIG.

なお、ここでは電子ビームを用いた露光の場合について
述べる。基板として直径が3インチ、面方位が(100
)、比抵抗が10ohm−c+aのシリコンウェーハ1
を用いた。シリコンウェーハ1の上に1μm厚のPMM
A (ポリメチルメタクリレート)レジスト2を塗布し
、170℃の温度で30分間プリベークする。次にPM
MAレジスト2の上に真空蒸着を用いてカーボン膜3を
100OAの厚さに堆積する。これは、電子ビーム蒸着
装置を用いてエミッション電流250mAで15秒間蒸
着を行った。シリコンウェーハ1の上にPMMAレジス
ト2とカーボン膜3が積層された露光基板を電子ビーム
露光装置の基板ホルダー4に取りつけるが、通常、電子
ビーム露光では露光時の電子が基板に蓄積しないように
基板がアースされているが、本実施例では基板ホルダー
4と露光基板を絶縁体5で電気的に分離する。さらに、
露光基板上面のカーボン膜3にステンレス箔6を取りつ
け100V電源9の負極とアース7に接続する。また、
シリコンウェーハ1も同様にステンレス箔8を取りつけ
、ここに100V電源9の正極を接続する。
Note that the case of exposure using an electron beam will be described here. The substrate has a diameter of 3 inches and a plane orientation of (100
), silicon wafer 1 with specific resistance of 10ohm-c+a
was used. 1 μm thick PMM on silicon wafer 1
A (polymethyl methacrylate) resist 2 is applied and prebaked at a temperature of 170° C. for 30 minutes. Then P.M.
A carbon film 3 is deposited on the MA resist 2 to a thickness of 100 OA using vacuum evaporation. This was carried out using an electron beam evaporator with an emission current of 250 mA for 15 seconds. An exposure substrate, in which a PMMA resist 2 and a carbon film 3 are laminated on a silicon wafer 1, is mounted on a substrate holder 4 of an electron beam exposure device.Usually, in electron beam exposure, the substrate is However, in this embodiment, the substrate holder 4 and the exposure substrate are electrically separated by an insulator 5. moreover,
A stainless steel foil 6 is attached to the carbon film 3 on the upper surface of the exposed substrate, and connected to the negative electrode of a 100V power supply 9 and ground 7. Also,
Similarly, a stainless steel foil 8 is attached to the silicon wafer 1, and the positive electrode of a 100V power supply 9 is connected thereto.

このような構成の露光基板を用いて電子ビーム露光を行
う。露光装置の電子銃より出た電子10はカーボン膜3
を通り抜は下のPMMAレジスト2を露光する。通常、
入射電子はカーボン膜3とPMMAレジスト2の中の粒
子と衝突し、2次電子の散乱が生じる。散乱電子はラン
ダムな方向に移動するが、レジスト中の電界によってシ
リコンウェーハ1の方向に力を受けるため横方向への広
がりが小さくなる。また、散乱断面積が増加するためレ
ジストのエネルギー損失は大きくなり電子の飛程が短(
なるため見かけ上レジストの感度が高くなる。
Electron beam exposure is performed using an exposure substrate having such a configuration. Electrons 10 emitted from the electron gun of the exposure device are sent to the carbon film 3
The PMMA resist 2 below is exposed. usually,
The incident electrons collide with particles in the carbon film 3 and the PMMA resist 2, causing scattering of secondary electrons. The scattered electrons move in random directions, but because they are subjected to force in the direction of the silicon wafer 1 due to the electric field in the resist, their spread in the lateral direction is reduced. In addition, as the scattering cross section increases, the energy loss of the resist increases and the range of electrons becomes shorter (
Therefore, the apparent sensitivity of the resist increases.

なお、実施例で露光源として電子ビームを用いたが、露
光源にイオンを用いた荷電ビーム露光についても、レジ
スト中において同様のメカニズムで露光が行われる。ま
た、X線露光においてもレジスト中で発生する2次電子
によって露光が行われるため電界は荷電ビーム露光、X
線露光に対しても同じ効果を与える。第2図(a)に0
.5μm厚のPMMAレジストに2μm幅のパターンと
0.2μm幅のパターンを従来の方法で露光した時のレ
ジスト中の蓄積エネルギー損失を示めす。第2図(b)
に本発明を用いて同様に露光した場合のレジスト中の蓄
積エネルギー分布を示めす。このとき、電界強度をIK
V/mとした。これより、本発明を用いてパターン幅の
異なるパターンを露光した場合、パターン幅にかかわら
ず、はぼ一定のパターン露光量となる。第3図に電界強
度をパラメーターとして、0.5μm厚のPMMAレジ
ストに電子線が入射した時の入射点からの距離とレジス
ト中の蓄積エネルギーの関係を示めす。ここで電界が零
は従来の方法に相当する。これより、従来の方法に比べ
て本発明方法での蓄積エネルギー分布は急峻になってお
り、レジスト中での電子の広がりが小さい′ことが分か
る。レジスト中での電子の広がりは電界強度が弱い程大
きくなり、強い程小さくなる。第4図に電界強度と電子
のレジスト中での横方向への散乱距離の関係を示す。電
界強度が大きくなるにつれて散乱距離は短くなり、ある
強度以上では、はぼ一定となる。
Although an electron beam is used as an exposure source in the embodiment, exposure is performed in the resist using a similar mechanism in charged beam exposure using ions as an exposure source. In addition, in X-ray exposure, exposure is performed by secondary electrons generated in the resist, so the electric field is
The same effect is given to line exposure. 0 in Figure 2(a)
.. This figure shows the accumulated energy loss in the resist when a 2 μm wide pattern and a 0.2 μm wide pattern are exposed on a 5 μm thick PMMA resist using a conventional method. Figure 2(b)
2 shows the accumulated energy distribution in the resist when exposed in the same manner using the present invention. At this time, the electric field strength is IK
V/m. From this, when patterns with different pattern widths are exposed using the present invention, the pattern exposure amount is approximately constant regardless of the pattern width. FIG. 3 shows the relationship between the distance from the point of incidence and the energy stored in the resist when an electron beam is incident on a 0.5 μm thick PMMA resist using electric field strength as a parameter. Here, the electric field of zero corresponds to the conventional method. From this, it can be seen that the stored energy distribution in the method of the present invention is steeper than in the conventional method, and the spread of electrons in the resist is small. The spread of electrons in the resist increases as the electric field strength becomes weaker, and decreases as the electric field strength increases. FIG. 4 shows the relationship between electric field strength and electron scattering distance in the lateral direction in the resist. As the electric field strength increases, the scattering distance becomes shorter, and above a certain strength, it becomes almost constant.

発明の効果 本発明の露光方法によれば、2次電子の影響が軽減され
、より微細なパターン形成が可能となるとともに露光領
域の異なる領域を一度に露光した時、パターン幅による
露光量の差が軽減できる。
Effects of the Invention According to the exposure method of the present invention, the influence of secondary electrons is reduced, making it possible to form finer patterns and reducing the difference in exposure amount depending on the pattern width when different areas of the exposure area are exposed at once. can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の露光方法を説明するための露光基板の
断面図、第2図は0.5μm厚のPMMAレジストにパ
ターン幅の異なるパターンを電子ビーム露光した時のレ
ジストの蓄積エネルギーの分布を示した図、第3図は電
界強度をパラメーターとして、0.5μm厚のP M 
M Aレジストに電子線が入射した時の入射点からの距
離とレジスト中の蓄槽エネルギーの関係を示した図、第
4図は電界強度と電子のレジスト中での横方向への散乱
距離の関係を示した図である。 1・・・・・・シリコンウェーハ、2・・・・・・PM
MAレジスト、3・・・・・・カーボン膜、4・・・・
・・基板ホルダー、5・・・・・・絶縁体、6 、8・
・・・・・ステンレス箔、7・・・・・・・・・アース
、9・・・・・・100V電源、10・・・・・・電子
。 代理人の氏名 弁理士 中爪敏男 ほか1名イー・−シ
リコンウェーへ 2−PMAMレジスに 5−一一光影裂1不 C,8〜ステンレス岳 第4図 ノ町′PI−凭/¥(V/rn ) 8−−l1leI     偏櫨尾− c′J   i       各 丙   Vψ5I一致一七一
Figure 1 is a cross-sectional view of an exposed substrate for explaining the exposure method of the present invention, and Figure 2 is the distribution of energy stored in the resist when patterns with different pattern widths are exposed to electron beams on a 0.5 μm thick PMMA resist. Figure 3 shows a 0.5 μm thick P M with electric field strength as a parameter.
A diagram showing the relationship between the distance from the incident point when an electron beam is incident on the M A resist and the storage tank energy in the resist. Figure 4 shows the relationship between the electric field strength and the horizontal scattering distance of electrons in the resist. It is a diagram showing the relationship. 1...Silicon wafer, 2...PM
MA resist, 3... carbon film, 4...
...Substrate holder, 5...Insulator, 6, 8.
...Stainless steel foil, 7...Earth, 9...100V power supply, 10...Electronic. Name of agent: Patent attorney Toshio Nakatsume and 1 other person E-Siliconway 2-PMAM Regis 5-11 Light shadow crack 1fuC, 8~Stainless Mt. /rn) 8--l1leI Biyoshio-c'J i Each C Vψ5I match 171

Claims (1)

【特許請求の範囲】[Claims]  基板の上にレジスト膜と導電性膜を順次積層し、前記
基板と前記導電性膜の間に電圧を印加しながらX線もし
くは荷電ビームで露光することを特徴とする露光方法。
An exposure method comprising sequentially laminating a resist film and a conductive film on a substrate, and exposing the substrate to X-rays or a charged beam while applying a voltage between the substrate and the conductive film.
JP62334568A 1987-12-29 1987-12-29 Exposure method Pending JPH01175733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62334568A JPH01175733A (en) 1987-12-29 1987-12-29 Exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62334568A JPH01175733A (en) 1987-12-29 1987-12-29 Exposure method

Publications (1)

Publication Number Publication Date
JPH01175733A true JPH01175733A (en) 1989-07-12

Family

ID=18278858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62334568A Pending JPH01175733A (en) 1987-12-29 1987-12-29 Exposure method

Country Status (1)

Country Link
JP (1) JPH01175733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170048197A (en) * 2015-10-23 2017-05-08 신에쓰 가가꾸 고교 가부시끼가이샤 Resist composition and patterning process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170048197A (en) * 2015-10-23 2017-05-08 신에쓰 가가꾸 고교 가부시끼가이샤 Resist composition and patterning process
JP2017083505A (en) * 2015-10-23 2017-05-18 信越化学工業株式会社 Resist material and pattern forming method
US10162262B2 (en) 2015-10-23 2018-12-25 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process

Similar Documents

Publication Publication Date Title
US5395738A (en) Electron lithography using a photocathode
Liu et al. Resist charging in electron beam lithography
US20090242800A1 (en) Electron-beam dimension measuring apparatus and electron-beam dimension measuring method
Hutchinson Energy requirements for the inactivation of bovine serum albumin by radiation
Hanson et al. Energy spreading in the hydrogen field ionization source
US8546776B2 (en) Optical system for EUV lithography with a charged-particle source
JPH01175733A (en) Exposure method
JPS5878350A (en) Electric field emission generator and method of producing same
Comins et al. Preparation and evaluation of P-47 scintillators for a scanning electron microscope
Sobierajski et al. Experimental station to study the interaction of intense femtosecond vacuum ultraviolet pulses with matter at TTF1 free electron laser
Torrisi et al. An unconventional ion implantation method for producing Au and Si nanostructures using intense laser-generated plasmas
WO1998036268A1 (en) Charged particle analysis
Chaustowski et al. Magnetic hexapole lens focusing of a metastable helium atomic beam for UV-free lithography
Yang et al. Internal charge distribution of iodine adatoms on silicon and silicon oxide investigated with alkali ion scattering
US20060151719A1 (en) Electron beam duplication lithography method
Kim et al. Application of the LIGA process for fabrication of gas avalanche devices
Miyamoto et al. An aging study of semiconductive microstrip gas chambers and a gas electron multiplier
JPH10239254A (en) Particle scattering analysis method and device and manufacture of semiconductor device
Kubo et al. Investigation of non-charging exposure conditions for insulating resist films in electron beam lithography
Iijima et al. Low‐energy Ar neutral beam etching method for x‐ray photoelectron spectroscopy
JP2805795B2 (en) Ion beam irradiation equipment
JPS622700B2 (en)
Villa Developing and evaluating new micropattern gas detectors
Schweigert et al. Controlling the breakdown delay time in pulsed gas discharge
Kotera et al. Simulation of fogging electrons in electron beam lithography