JPH01175225A - Method and apparatus for vapor growth - Google Patents
Method and apparatus for vapor growthInfo
- Publication number
- JPH01175225A JPH01175225A JP33222587A JP33222587A JPH01175225A JP H01175225 A JPH01175225 A JP H01175225A JP 33222587 A JP33222587 A JP 33222587A JP 33222587 A JP33222587 A JP 33222587A JP H01175225 A JPH01175225 A JP H01175225A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- liquid
- flow rate
- growth
- tmg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000002994 raw material Substances 0.000 claims abstract description 36
- 239000012159 carrier gas Substances 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 239000007791 liquid phase Substances 0.000 claims abstract description 6
- 238000001947 vapour-phase growth Methods 0.000 claims description 10
- 230000008016 vaporization Effects 0.000 claims description 9
- 238000009834 vaporization Methods 0.000 claims description 7
- 239000012071 phase Substances 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 3
- 239000006200 vaporizer Substances 0.000 claims 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 abstract description 7
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 abstract description 5
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 2
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 abstract 1
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract 1
- 238000002309 gasification Methods 0.000 abstract 1
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 230000005587 bubbling Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 101100165186 Caenorhabditis elegans bath-34 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101001006892 Homo sapiens Krueppel-like factor 10 Proteins 0.000 description 1
- 102100027798 Krueppel-like factor 10 Human genes 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
CI!t 要〕
本発明は気相エビタキンヤル成長あるいはcVD処理に
於ける原料供給量の制御に関し、原料容器の形状や液面
の高さに無関係に一定量の原料を供給することを目的と
し、
原料が液相の状態で流量を計測し、これを気化して成長
装置に供給するように構成する。[Detailed Description of the Invention] CI! [Summary] The present invention relates to controlling the amount of raw material supplied in vapor phase Evita kinetic growth or cVD treatment, and aims to supply a constant amount of raw material regardless of the shape of the raw material container or the height of the liquid level. It is configured to measure the flow rate in a liquid phase state, vaporize it, and supply it to the growth apparatus.
本発明は気相エピタキシャル成長或いは化学気相成長法
(CV D)に於ける原材料供給量の制御に関わるもの
である。以下の説明から明らかなように、本発明の対象
はエピタキシャル或いは非エビタキシャルの如何を問わ
ないので、本明細書で単にCVDと記した場合にはエピ
タキシャル成長も含まれるものとする。The present invention relates to controlling the amount of raw material supplied in vapor phase epitaxial growth or chemical vapor deposition (CVD). As is clear from the following description, the subject of the present invention does not matter whether epitaxial growth or non-epitaxial growth is performed, so when CVD is simply referred to in this specification, epitaxial growth is also included.
CVDが半導体装置の形成に不可欠の技術であることは
論を待たないが、近年、有機金属を原料とするMOCV
Dが重用されている。これは例えば、トリメデルガリウ
ム(TMG)の薫気をキャリヤガスに混じてアルシン(
A s H3)と共に反応管に輸送し、加熱してGaA
sをエピタキシャル成長させる、というように利用され
ている。It goes without saying that CVD is an indispensable technology for forming semiconductor devices, but in recent years, MOCVD using organic metals as raw materials has become increasingly popular.
D is heavily used. For example, this can be done by mixing trimedelgallium (TMG) fumes with a carrier gas and arsine (
GaA
It is used to grow s epitaxially.
TMOなどの有機金属は常温で液体であり、これをキャ
リヤガスに混じるためにバブリングが行われる。この処
理は、第3図に示されているように、例えば7MG33
をバブラ32に収容し、H2などのキャリヤガスをバブ
リングさせてTMGで飽和させ、反応管に送り込むので
ある。Organic metals such as TMO are liquid at room temperature, and bubbling is performed to mix them with the carrier gas. This process is performed, for example, on a 7MG33, as shown in FIG.
is stored in a bubbler 32, and a carrier gas such as H2 is bubbled therein to saturate it with TMG, which is then sent into the reaction tube.
その場合、TMGの輸送量はキャリヤガスの流量によっ
て決定され、キャリヤガスの流量はマスフローメータの
ような気体?ttWk計31によって測定制御される。In that case, the amount of TMG transported is determined by the flow rate of the carrier gas, and the flow rate of the carrier gas is determined by the flow rate of the carrier gas, such as a mass flow meter. The measurement is controlled by a ttWk meter 31.
また、AsHs+Htのような他の原料は容器から送出
され、TMG包含キャリヤガスと一緒に反応管35に導
入される。、22はバルブ、34は恒温槽、36は基板
、37は高周波電力を吸収して発熱するサセプタ、38
は高周波コイルである。Also, other raw materials such as AsHs+Ht are delivered from the vessel and introduced into the reaction tube 35 along with the TMG-containing carrier gas. , 22 is a valve, 34 is a constant temperature bath, 36 is a substrate, 37 is a susceptor that generates heat by absorbing high frequency power, 38
is a high frequency coil.
〔従来の技術と発明が解決しようとする問題点〕キャリ
ヤガス中のTMG含有量を一定に保つため恒温槽34が
用いられるが、バブリングによってキャリヤガスが飽和
するのはガス流量が少ない場合であり、流量が増すと不
飽和の状態でTMGを送り出すことになるので、TMG
の輸送量が正確に制御されな(なる。[Prior art and problems to be solved by the invention] A constant temperature bath 34 is used to keep the TMG content in the carrier gas constant, but the carrier gas becomes saturated due to bubbling when the gas flow rate is small. , as the flow rate increases, TMG will be delivered in an unsaturated state, so TMG
The amount of transportation is not accurately controlled.
本発明の目的はTMGなどの液状原料を、正もiに所定
〒だけ輸送する方法及び装置を提供することであり、そ
れによって成長速度をより高精度に制御し得るCVD技
術を提供することである。The purpose of the present invention is to provide a method and apparatus for transporting a liquid raw material such as TMG by a predetermined amount, and thereby to provide a CVD technique that can control the growth rate with higher precision. be.
上記の目的を達成するため、本発明の気相成長方法では
気相成長を実行するための原材料を、液相の状態で流量
を制御しながら送出し、
該送出された原材料を蒸発気化させ、
該気化された原材料を気相の状態で反応装置に輸送する
ことがおこなわれる。In order to achieve the above object, the vapor phase growth method of the present invention involves sending raw materials for performing vapor phase growth in a liquid phase while controlling the flow rate, evaporating the delivered raw materials, The vaporized raw material is transported in the gas phase to the reactor.
また本発明の気相成長装置では、
気相成長を実行するための原材料を、液相の状態で流量
を制御しながら送出する手段と、該送出された原材料を
蒸発気化させる手段と、該気化された原材料を気相の状
態で反応装置に輸送する手段
とか(lTiえられている。Furthermore, the vapor phase growth apparatus of the present invention includes a means for delivering raw material for performing vapor phase growth while controlling the flow rate in a liquid phase, a means for evaporating the delivered raw material, and a means for evaporating the raw material to be vaporized. A means for transporting the raw materials in the gas phase to the reactor is provided.
本発明の如く液状材料を取り扱う場合、液状のま−その
体積或いは体積流量を計測する方式であれば、飽和/不
飽和による不安定は生じないので、正確な計測が行われ
る。さらに液状の場合、圧力による体積変化は殆どない
ので、この点からも高精度の計測が可能である。When handling liquid materials as in the present invention, if the method measures the volume or volumetric flow rate of the liquid mass, instability due to saturation/unsaturation will not occur, and accurate measurement will be performed. Furthermore, in the case of a liquid, there is almost no change in volume due to pressure, so highly accurate measurement is also possible from this point of view.
[実施例〕
第1図は本発明の第1の実施例の構成を示す模式図であ
る。該実施例によるCVDは次のように行われる。[Embodiment] FIG. 1 is a schematic diagram showing the configuration of a first embodiment of the present invention. CVD according to this example is performed as follows.
2個のステンレス類の容器13の夫々にトリエチルイン
ジウム(TRI)11とトリエチルガリウム(TEG)
12が収容されている。本実施例ではこれ等の有機金属
はヘキサンによって希釈され、いづれも10%の濃度に
なっている。Triethyl indium (TRI) 11 and triethyl gallium (TEG) are placed in two stainless steel containers 13, respectively.
12 are accommodated. In this example, these organic metals are diluted with hexane to a concentration of 10%.
これ等の容器内空間に加圧管14を通じてIt、或いは
N2ガスで圧力を加えると、上記の有機金属溶液は送出
管15内に押し」二げられ、ノズル17を通して気化室
18内に噴出する。ヘキサンは気化し易い溶剤であり、
TEIやTEGの含有量は僅少なので、霧状に噴出した
溶液は瞬時に気化してH2などのキャリヤガスと混合さ
れる。When pressure is applied to the internal space of these containers with It or N2 gas through the pressurizing pipe 14, the above-mentioned organometallic solution is forced into the delivery pipe 15 and is ejected into the vaporization chamber 18 through the nozzle 17. Hexane is a solvent that evaporates easily,
Since the content of TEI and TEG is small, the sprayed solution is instantaneously vaporized and mixed with a carrier gas such as H2.
キャリヤガス中にはAsHtのようなV族元素の化合物
が含まれており、これ等の混合気体は反磨管35に送ら
れて、所定の組成の材料がエピタキシャル成長する。第
3図と同様に36は基板、37はカーボンのサセプタ、
38は高周波コイルである。The carrier gas contains a compound of group V elements such as AsHt, and a mixture of these gases is sent to the anti-polishing tube 35 to epitaxially grow a material having a predetermined composition. As in FIG. 3, 36 is a substrate, 37 is a carbon susceptor,
38 is a high frequency coil.
容器!3から押し出された原料溶液は液体流量計16に
よって流量が測定され、測定結果は図示されない加圧装
置にフィードバックされる。原料溶液の送出?は圧力差
で定まるから、この制御系によって原料溶液の送出量は
一定に保たれる。container! The flow rate of the raw material solution extruded from 3 is measured by a liquid flow meter 16, and the measurement results are fed back to a pressurizing device (not shown). Delivery of raw material solution? is determined by the pressure difference, so this control system keeps the feed rate of the raw material solution constant.
本実施例では上記のように押し出し圧力によって原料の
供給速度が制御されるが、有機金属の希釈率を増減し、
最も制御し易い流量に合わせることによって、原料供給
精度を一層向上させることが可能である。In this example, the feed rate of the raw material is controlled by the extrusion pressure as described above, but the dilution rate of the organometallic is increased or decreased.
By adjusting the flow rate to the one that is easiest to control, it is possible to further improve the raw material supply accuracy.
第2図は本発明の第2の実施例を示す模式図である。成
長装置の構成は第1の実施例と同じなので、該図面では
省略されている。FIG. 2 is a schematic diagram showing a second embodiment of the present invention. The structure of the growth apparatus is the same as that of the first embodiment, so it is omitted in the drawing.
該実施例では原料であるTMGは気化室23内に滴下さ
れる。気化室内を上昇するキャリヤガスはヒータ24に
よってTMCの沸点以上且つ分解温度以下の温度に加熱
されているので、7M0滴は分解することなく気化して
キャリヤガス中に混合される。In this embodiment, the raw material TMG is dropped into the vaporization chamber 23. Since the carrier gas rising in the vaporization chamber is heated by the heater 24 to a temperature above the boiling point of TMC and below the decomposition temperature, the 7M0 droplets are vaporized and mixed into the carrier gas without being decomposed.
22はニードルバルブの如き微調整可能なバルブである
。原料ガスの供給速度はTMGの滴下速度に対応し、こ
れはバルブ22の開きかたで調節される。第1の実施例
と同様、TMGを適当に希釈することによってTMG輸
送輸送型調整精度化することが出来るが、自動滴定装置
に使用される滴下速度制御技術も本実施例に応用するこ
とが可能である。22 is a finely adjustable valve such as a needle valve. The feed rate of the raw material gas corresponds to the dropping rate of TMG, and this is adjusted by the way the valve 22 is opened. As in the first embodiment, TMG transport type adjustment can be made more precise by appropriately diluting TMG, but the dropping rate control technology used in automatic titrators can also be applied to this embodiment. It is.
該実施例では液状のTMGを一定速度で供給し、沸点以
上の温度で1発気化さ−Uるので、飽和/不飽和には無
関係となり、供給速度が安定したものとなる。In this embodiment, liquid TMG is supplied at a constant rate and vaporized in one shot at a temperature above the boiling point, so that saturation/unsaturation is irrelevant and the supply rate becomes stable.
第1、第2の実施例共に、気化室から反応管までの配管
は、有機金属が再度凝縮しないように加熱しておくこと
が望ましい。これは通常の気相成長装置でも行われてい
ることである。In both the first and second embodiments, it is desirable that the piping from the vaporization chamber to the reaction tube be heated to prevent the organometallic from condensing again. This is also done in normal vapor phase growth equipment.
本発明に於いては、常温で液体であるTMG、TUT、
TIEGなどの原料が定速度で気化されるので、CVD
の成長速度が安定なものとなる。In the present invention, TMG, TUT, which is liquid at room temperature,
Since raw materials such as TIEG are vaporized at a constant rate, CVD
The growth rate of will be stable.
第1図は第1の実施例の構成を示す模式図、第2図は第
2の実施例の構成を示す模式図、第3図は従来のCVD
装置の構成を示す図であって、
図に於いて
11はTUT、
12はTEG、
13は容器、
14は加圧管、
15は送出管、
16は流量計、
17はノズル、
18は気化室、
21はTMG。
22はバルブ、
23は気化室、
2オはヒータ、
31は気体流量計、
32はバプラ、
33はTMに。
34は恒温槽、
35は反応管、
3Gは基(反、
37はサセプタ、
38は高周波コ・イル
である。
第1の実施例の構成を示す模式図
第1図
第2の実施例の構成を示す模式図
第2図
従来のCVD装置の構成を示す図
第3図FIG. 1 is a schematic diagram showing the configuration of the first embodiment, FIG. 2 is a schematic diagram showing the configuration of the second embodiment, and FIG. 3 is a conventional CVD
11 is a diagram showing the configuration of the device, and in the diagram, 11 is a TUT, 12 is a TEG, 13 is a container, 14 is a pressurizing pipe, 15 is a delivery pipe, 16 is a flow meter, 17 is a nozzle, 18 is a vaporization chamber, 21 is TMG. 22 is a valve, 23 is a vaporization chamber, 2o is a heater, 31 is a gas flow meter, 32 is a bubbler, and 33 is a TM. 34 is a constant temperature bath, 35 is a reaction tube, 3G is a base, 37 is a susceptor, and 38 is a high frequency coil. Schematic diagram showing the configuration of the first embodiment. Figure 2 is a schematic diagram showing the configuration of a conventional CVD device. Figure 3 is a diagram showing the configuration of a conventional CVD device.
Claims (4)
で流量を制御しながら送出し、 該送出された原材料を蒸発気化させ、 該気化された原材料を気相の状態で反応装置に輸送する
こと を特徴とする気相成長方法。(1) The raw material for performing vapor phase growth is delivered in a liquid phase while controlling the flow rate, the delivered raw material is evaporated, and the vaporized raw material is transferred to a reaction device in a gas phase. A vapor phase growth method characterized by transporting to.
で流量を制御しながら送出する手段と、該送出された原
材料を蒸発気化させる手段と、該気化された原材料を気
相の状態で反応装置に輸送する手段 とを備えて成る気相成長装置。(2) A means for delivering the raw material for performing vapor phase growth while controlling the flow rate in a liquid phase, a means for evaporating the delivered raw material, and a means for converting the vaporized raw material into a gas phase. 1. A vapor phase growth apparatus comprising means for transporting the state to a reaction apparatus.
材料を加圧して気化室に噴出させる構成であることを特
徴とする特許請求の範囲第2項記載の気相成長装置。(3) The vapor phase growth apparatus according to claim 2, wherein the means for vaporizing the liquid raw material is configured to pressurize the liquid raw material and eject it into a vaporization chamber.
材料を、該原材料の沸点以上に加熱されたキャリヤガス
中を落下させる構成であることを特徴とする特許請求の
範囲第2項記載の気相成長装置。(4) The vaporizer according to claim 2, wherein the means for vaporizing the liquid raw material is configured to drop the liquid raw material into a carrier gas heated to a temperature higher than the boiling point of the raw material. Phase growth device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33222587A JPH01175225A (en) | 1987-12-29 | 1987-12-29 | Method and apparatus for vapor growth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33222587A JPH01175225A (en) | 1987-12-29 | 1987-12-29 | Method and apparatus for vapor growth |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01175225A true JPH01175225A (en) | 1989-07-11 |
Family
ID=18252571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33222587A Pending JPH01175225A (en) | 1987-12-29 | 1987-12-29 | Method and apparatus for vapor growth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01175225A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03183779A (en) * | 1989-12-12 | 1991-08-09 | Applied Materials Japan Kk | Method and device for chemical vapor growth |
-
1987
- 1987-12-29 JP JP33222587A patent/JPH01175225A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03183779A (en) * | 1989-12-12 | 1991-08-09 | Applied Materials Japan Kk | Method and device for chemical vapor growth |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5945162A (en) | Method and device for introducing precursors into chamber for chemical vapor deposition | |
US20040164089A1 (en) | Method and apparatus for delivering precursors to a plurality of epitaxial reactor sites | |
US10087523B2 (en) | Vapor delivery method and apparatus for solid and liquid precursors | |
JP3222518B2 (en) | Liquid source vaporizer and thin film forming device | |
JP2002083777A (en) | Bubbler | |
JP2015028216A (en) | Method of depositing film on substrate, and system for delivering vaporized precursor compound | |
US11788190B2 (en) | Liquid vaporizer | |
US7732308B2 (en) | Process for depositing layers containing silicon and germanium | |
JPH06509389A (en) | metal vapor deposition method | |
KR20010050136A (en) | Dual fritted bubbler | |
US20050249873A1 (en) | Apparatuses and methods for producing chemically reactive vapors used in manufacturing microelectronic devices | |
CN108291301B (en) | Method for metal organic vapor deposition using hydrocarbon solution of alkyl-indium compound | |
JPH01175225A (en) | Method and apparatus for vapor growth | |
KR20210146801A (en) | System and methods for direct liquid injection of vanadium precursors | |
JPS63272026A (en) | Manufacture of evaporation source, molecular beam epitaxy apparatus and semiconductor device | |
TWI390073B (en) | A method of depositing a silicon and germanium-containing thin film and a laminate by discontinuously ejecting a liquid and a dissolving material in a multi-channel ejection unit | |
JPH038330A (en) | Apparatus for vaporizing and supplying liquid material for semiconductor | |
JP2704705B2 (en) | Solutions used in chemical vapor deposition | |
JPH03126872A (en) | Gasifying and supplying device for liquid semiconductor forming material | |
US11492726B2 (en) | Method of feeding gases into a reactor to grow epitaxial structures based on group III nitride metals and a device for carrying out said method | |
JPH06316765A (en) | Vaporizer for liquid material | |
TW201807241A (en) | HfN film manufacturing method and HfN film | |
CN110643975B (en) | Evaporation and transportation device for metal organic chemical source liquid | |
JPH11214313A (en) | Method for mixing gases and gas piping used therefor | |
TW201704522A (en) | Film forming method and film forming apparatus for forming nitride film using mocvd apparatus, and shower head |