JPH0117437B2 - - Google Patents

Info

Publication number
JPH0117437B2
JPH0117437B2 JP54006038A JP603879A JPH0117437B2 JP H0117437 B2 JPH0117437 B2 JP H0117437B2 JP 54006038 A JP54006038 A JP 54006038A JP 603879 A JP603879 A JP 603879A JP H0117437 B2 JPH0117437 B2 JP H0117437B2
Authority
JP
Japan
Prior art keywords
wastewater
reaction tank
oxygen
chamber
supply section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54006038A
Other languages
Japanese (ja)
Other versions
JPS5599393A (en
Inventor
Hitoshi Ishibashi
Jusaku Nishimura
Yoji Otahara
Shoji Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP603879A priority Critical patent/JPS5599393A/en
Publication of JPS5599393A publication Critical patent/JPS5599393A/en
Priority to JP63063312A priority patent/JPS6480493A/en
Publication of JPH0117437B2 publication Critical patent/JPH0117437B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、排水処理装置に係り、特に生活排水
や産業排水等いわゆる微生物が利用し得る有機物
(以下BODと称す)と窒素化合物とを含有する有
機性排水から窒素分を除去するのに硝化菌および
脱窒菌を用いる排水処理装置に関する。 BODと窒素化合物とを含有する排水は、通常
好気的条件下、すなわち酸素の存在下で、硝化菌
によりアンモニア態窒素(以下NH4 +−Nと称
す)が亜硝酸態窒素(以下NO2 -−Nと称す)や
硝酸態窒素(以下NO3 -−Nと称す)に酸化され
る。次いで、嫌気的条件下、すなわち酸素の不存
在下で脱窒菌により、NO2 -−NがNO3 -−Nが
窒素ガス(以下N2と称す)に還元され、同時に
BODが分解される。これは脱窒菌がNO2 -−Nや
NO3 -−N中の酸素を使用してBODを分解するた
めに起る。硝化菌は好気的条件下で活性を示し、
嫌気的条件下で不活性を示す。脱窒菌は好気的条
件下でも嫌気的条件下でも活性を示す。脱窒菌は
BOD酸化菌の一種であり、BOD酸化菌は脱窒菌
を除いては一般に好気的条件下で活性を示し、嫌
気的条件下で不活性を示す。一般には、BOD酸
化菌は排水中の溶存酸素を用いてBODを酸化す
るものであり、脱窒菌は例外的に窒素化合物中の
酸素を用いてBODを酸化するものである。 従つて、微生物を利用して排水処理を行なう場
合には、処理工程中に人為的に好気的雰囲気と嫌
気的雰囲気とを設ける必要がある。 こうした理由から、従来のこの種の排水処理装
置の反応槽は、好気的条件の硝化槽と、嫌気的条
件の脱窒槽とを設けていた。この装置によれば、
排水はまず硝酸槽を流過し、次いで脱窒槽を流過
する。しかし、後記するように、硝化反応ではPH
が下降し、脱窒反応ではPHが上昇するため、この
ような装置によれば、中和剤の多量な投入が必要
である。特に硝化槽におけるPHの下降速度は、脱
窒槽におけるPHの上昇速度よりも大であるため、
アルカリが多量に必要とされた。また、脱窒槽に
おいては、酸の添加ばかりでなく脱窒菌の作用を
活性化するために、メタノール等の有機炭素源が
必要とされた。 中和剤や有機炭素源の節減対策としては、第1
図のような反応槽を有する排水処理装置が提案さ
れている。この反応槽は、排水の循環する循環経
路で構成されている。すなわち、排水は反応槽内
の嫌気的雰囲気の領域(以下嫌気性ゾーンと称
す)に導入され、その後好気的雰囲気の領域(以
下好気性ゾーンと称す)に導入され、次に再び嫌
気性ゾーンに導入されている。これを第1図に従
つて説明する。反応槽1は第一反応槽1Aと第二
反応槽1Bとから成る。第一反応槽1Aは後記す
る3種の流路を除いては密閉されており、撹拌機
4が中央に取付けられている。3種の流路とは第
一反応槽1Aの上部に開口する排水供給部3と処
理不完全な排水(以下未処理水と称す)を好気性
ゾーンから嫌気性ゾーンに循環する未処理水連絡
路11b並びに第二反応槽1Bと底部で連なる未
処理水連絡口11aである。第二反応槽1Bの底
部には未処理水連絡口11aの他に酸素又は酸素
含有ガス供給部6が開口し、上部には未処理水連
絡路11bが開口し、開放された上面には処理水
排出部12が開口している。未処理水連絡路11
bの途中には循環ポンプ9が設けられている。酸
素又は酸素含有ガス供給部6の上には分散板7が
設けられ、更に上には上面に向けて管8が配置さ
れている。従つて、排水2および未処理水10の
流れは次の様になる。BODと窒素化合物とを含
有する排水2は排水供給部3を介して第一反応槽
1Aに投入される。第一反応槽1Aには排水2の
他に未処理水連絡路11bを介して未処理水10
が供給されている。未処理水10は好気性ゾーン
を経ているため、後記する如く窒素化合物は主に
NO2 -−NやNO3 -−Nである。第一反応槽1A
は空気5が吹き込まれておらず、排水2および微
生物の作用によつて嫌気性ゾーンを形成してい
る。従つて、第一反応槽1Aにおいては、未処理
水10並びに排水2中のNO2 -−NやNO3 -−N
が、脱窒菌の作用により、排水2中のBODを有
機炭素源として還元されてN2になる。排水2中
の窒素化合物中、NH4 +−Nは第一反応槽1Aに
おいては殆ど変化を受けず、未処理水連絡口11
aを介して第二反応槽1Bに送られる。第二反応
槽1Bは酸素又は酸素含有ガス供給部6および分
散部7を介して空気5が供給されており、好気性
ゾーンを形成している。従つて、第二反応槽1B
においては、残存のBODが酸化除去されると共
に、NH4 -−Nが硝化菌の作用によつて酸化さ
れ、NO2 -−NやNO3 -−Nとなる。このNO2 -
NやNO3 -−Nを含有する未処理水10は前記し
た如く第一反応槽1Aに送られる。一方、第二反
応槽1Bの上面に達した処理水13(一部未処理
水10を含有する可能性がある)は処理水排水部
12を介して排出される。 このような反応槽1を採用することにより、好
気性ゾーンの反応液と嫌気性ゾーンの反応液とは
循環混合されるため、排水2以外の有機炭素源や
中和剤の添加量を少量に止めることが可能とな
る。しかし、反応液の循環と同時に、BOD酸化
菌や硝化菌等の微生物が共存する汚泥も嫌気性ゾ
ーンおよび好気性ゾーンを循環する。それゆえ本
方法は硝化槽と脱窒槽とを完全に分離した場合に
比べ、汚泥当りの硝化活性並びに脱窒活性が低下
する。従つて、中和剤並びに有機炭素源の添加量
削減と、硝化活性並びに脱窒活性の低下防止とを
達成するには、硝化菌と脱窒菌とを分離すること
が必要となる。この対策として、第一反応槽1A
と第二反応槽1Bとの連絡部を半透膜で仕切り、
低分子だけを移動せしめて、微生物は移動せしめ
ぬようにすることが考えられるが、半透膜の強度
や目詰まり等の問題があり、実用化に適さない。 この発明の目的は、固体表面への微生物の付着
成育を効果的に発揮させることにより、硝化菌と
脱窒菌とを分離し、硝化、脱窒の効率向上を図つ
た排水処理装置を提供することにある。 上記目的達成のため、本発明は反応槽を循環経
路で構成し、該経路中2ケ所に微生物の付着生育
可能な固体表面を有する固定床を設け、両固定床
を結ぶ1つの経路にはBODと窒素化合物とを含
有する排水を、他の経路には酸素または酸素含有
ガスをそれぞれ供給するようにしたものである。 すなわち、本発明は、有機物と窒素化合物とを
含有する排水中の窒素分を微生物の利用で除去す
る反応槽を備えた排水処理装置において、反応槽
は略垂直の仕切板で第一の室と第二の室に分割
し、第一の室と第二の室とは反応槽の底部で連通
しており、第一の室の上下方向の略中間位置に排
水供給部を設け、且つ第一の室の前記排水供給部
を挾んで上下に、微生物の付着育成可能な第一の
固定床と第二の固定床を設け、第二の室の下部
で、前記仕切板の下端より上方に酸素又は酸素含
有ガス供給部を設け、第一の固定床と第二の固定
床の下部に臨んで洗浄ガス供給部を設け、前記仕
切板の上端は、反応槽に排水を所定量充満したと
き、その水面より低く設定し、前記水面とほぼ同
一高さに処理排水部を反応槽上端部に設けたこと
を特徴とするものである。 以下本発明の実施例を図面に基づいて説明す
る。尚、以下に示す実施例では循環流中に酸素を
溶存させるための原料ガス(酸素または酸素含有
ガス)として空気を用いた。 第2図は本発明による排水処理装置の実施例の
断面図である。反応槽1は上方に開放したほぼ円
筒形をしており、反応槽1の内部は仕切板14に
よつて長手方向に二室に仕切られている。ただし
仕切られた二室は、その底部にて連通されてい
る。また、仕切板14は、その高さが反応槽1の
水面よりも低くなるように設けられている。仕切
られた二室の内、第2図の右側の第1の室には、
上方と下方とにそれぞれ仕切板14と平行に複数
枚の平行板15からなる平行板群15a,15b
が第1、第2の固定床として設けられている。平
行板15は各々の間隔が10〜35ミリで設けられて
おり、その平行板15は表面が凸凹に加工された
プラスチツク板である。後記するように、排水2
および未処理水10が循還すると、平行板群15
aが設けられた領域は好気性ゾーンとなり、平行
板群15bが設けられた領域は嫌気性ゾーンとな
る。平行板群15aを構成する平行板15の間隙
には、その下端部付近に洗浄ガス供給部22aが
設けられている。平行板群15bについても同様
に洗浄ガス供給部22bが設けられている。平行
板群15aの上端部付近にはPHセンサー18が取
付けられており、また処理排水部12が開口して
いる。平行板群15aの下端部と平行板群15b
の上端部との間には排水供給部3が開口してい
る。仕切られた二室の内、第2図の左側の第2の
室には、下方に酸素又は酸素含有ガス供給部6が
開口し、その開口部よりも上方には、この一室を
反応槽1の長手方向に六室に仕切るように五枚の
分散板7が設けられ、更に上方には中和剤供給部
21が開口している。分散板7は開口率が30〜60
%のものである。次に反応槽1の外部について説
明する。PHセンサー18はPHコントローラ17に
電気的に接続されている。酸を貯めた中和剤槽1
9aには注入ポンプ20aが設けられた中和剤移
送管23aが、アルカリを貯めた中和剤槽19b
には注入ポンプ20bが設けられた中和剤移送管
23bがそれぞれ接続されている。また、中和剤
移送管23aと中和剤移送管23bとは合流して
中和剤供給部21に至る。一方、処理水排水部1
2は途中に沈降分離槽16が設けられている。こ
のような排水処理装置において、BODと窒素化
合物とを含有する排水2は、排水供給部3を介し
て反応槽1内に供給され、後記する循環流に乗つ
て平行板群15bを流過する。排水2および後記
する未処理水10は、平行板群15bを経ること
により、後記するような要領で平行板15の表面
に付着生育した微生物によるBOD酸化反応およ
び脱窒反応を受けた後、反応槽1の底部を介して
隣の第2の室に流れ込み、酸素又は酸素含有ガス
供給部6に到る。 酸素又は酸素含有ガス供給部6からは空気5が
供給されている。 酸素又は酸素含有ガス供給部6に到つた未処理
水10は気泡5aとともに上昇し、気泡5aは複
数の分散板7により細分化される。この過程で未
処理水10は酸素の取込みを行ない、仕切板14
の上端部に到り、隣の第1の室に溢流する。この
溢流した未処理水10は平行板群15aを流過
し、後記するような要領で平行板15の表面に付
着生育した微生物による硝化反応を受けた後、再
び排水供給部3に到つて排水2と含流する。以
下、循環流に従つて上記工程を繰り返す。循還流
は空気5の供給で生じた気泡5aと水とのスリツ
プで生じる。 次に微生物が平行板15に付着生育する要領を
示す。運転開始に際し、まず反応槽1内には水を
充填し、酸素又は酸素含有ガス供給部6から空気
を吹き込む。この状態で水の循環が始まり、排水
2の供給を開始する。従つて、運転を開始して間
もない内は、供給された排水2が平行板群15b
を流過する過程において、平行板15の表面上に
はBODの存在する好気性雰囲気下では、硝化菌
との生存競争に打ち勝つて、BOD酸化菌が付着
生育する。平行板群15bから酸素又は酸素含有
ガス供給部6に至る経路は排水2中の溶存酸素が
BOD酸化菌により消費されて、嫌気性雰囲気に
なる。酸素又は酸素含有ガス供給部6を経ると次
第に水中の酸素の溶存量が増し、酸素を取り込ん
だ未処理水10が平行板群15aを流過する。
BOD酸化菌も硝化菌も共に好気性雰囲気で生育
可能であるが、平行板群15aに流過する未処理
水10はBODのほとんどが酸化除去されている
ため、平行板群15aの平行板15の表面には、
BODを有機炭素源とするBOD酸化菌よりも有利
に硝化菌が付着生育する。硝化菌は未処理水10
中の溶存酸素を用いてNO4 +−Nを硝化し、
NO2 -−NやNO3 -−Nに変える。従つて、運転
開始後しばらくすると、平行板群15aを経た未
処理水10の溶存酸素濃度は低くなる。すなわち
平行板群15bは上端部から下端部にかけて次第
に嫌気性ゾーンとなり、すでに付着生育している
BOD酸化菌の内、嫌気性雰囲気でも付着生育可
能な脱窒菌が残ることになる。脱窒菌はBODを
有機炭素源にして、NO2 -−NやNO3 -−Nを還
元しN2に変える。こうして平行板群15aは好
気性ゾーンと化して、平行板15の表面には主に
硝化菌が付着生育し、主に硝化反応を担う領域と
なり、平行板群15bは嫌気性ゾーンと化して、
平行板15の表面には主に脱窒菌が付着生育し
て、脱窒反応を担う領域となる。 次に平行板群15aの上端部に設けられたPHセ
ンサ18と、反応槽1の上昇流側に設けられた中
和剤供給部21とについて説明する。後記するよ
うに、未処理水10は循環流全体としてHCO- 3
が減少方向にあり、PHセンサ18で検出されたPH
値に基づきPHコントローラ17を用いて、上昇流
中に中和剤供給部21より中和剤を供給し、PHが
7.5〜8.5の間になるようにコントロールを行な
う。通常は上昇流中にアルカリを供給することに
なり、供給はPHコントローラ17が注入ポンプ2
0bに働き、中和剤槽19bから中和剤移送管2
3bならびに中和剤供給部21を介することによ
つて行なわれる。 また、負荷変動等の外乱によつて、PHが上昇し
た際には、供給はPHコントローラ17が注入ポン
プ20aに働き、中和剤槽19aから中和剤移送
管23aならびに中和剤供給部21を介すること
によつて行なわれる。 次に、処理水13の排水と洗浄ガス供給部22
aおよび洗浄ガス供給部22bとについて説明す
る排水2の順次供給と未処理水10の循環とが続
く内に、平行板群15aの平行板15表面には微
生物の付着生育量が多量となる。微生物膜がある
程度の厚さになつたとき、酸素又は酸素含有ガス
供給部6からの空気5の供給を止め、水の循環を
止める。しかる後に、洗浄ガス供給部22aおよ
び洗浄ガス供給部22bから空気あるいは窒素ガ
スを平行板15間に吹き込んで、平行板15の表
面に付着した硝化菌や脱窒菌等からなる微生物膜
を剥離する。そして再び運転を開始し、酸素又は
酸素含有ガス供給部6から空気5の供給を行なう
一方、剥離された微生物膜は処理水13と共に、
処理水排水部12を経て反応槽1の外に除去さ
れ、沈降分離槽16に入り分離回収される。処理
水13は沈降分離槽16を経て排水される。本実
施例によれば次のような効果がある。 (1) 硝化菌付着生育領域(好気性ゾーン)と脱窒
菌付着生育領域(嫌気性ゾーン)とが循環流中
に固定されるため、硝化、脱窒効率が向上す
る。しかも中和剤の添加量が従来技術に比べは
るかに少なくてすむ。 (2) 反応槽1の中を仕切板14で二室に仕切るこ
とにより、単一の槽で循環経路を形成すること
が可能となり、装置のコンパクト化を図ること
ができる。 (3) 未処理水10および排水2の移送を気泡5a
と水とのスリツプで生じる上昇流に起因する循
環流で行なうため、循環ポンプを別途設ける必
要がなく、経済的である。なお、循環流速は吹
き込む空気5の線速度ならびに上昇および下降
面の断面積により調節が可能である。 (4) 酸素又は酸素含有ガス供給部6の位置が反応
槽1の下方に有るため、気泡5aと未処理水1
0との接触時間が長くなり、酸素を溶存させる
のに有利である。 (5) 分散板7が複数設けられているため、気泡5
aの合体および分離が数度にわたり行なわれ、
前記同様酸素を溶存させるのに有利である。 (6) 洗浄ガス供給部22aおよび洗浄ガス供給部
22bの採用により、平行板15に付着した微
生物膜が水の循環を阻害する恐れはない。 (7) 硝化反応の最適PHは7.5〜8.5であり、6.0以下
では反応はほとんど行われなくなる。一方、脱
窒反応の最適PHは7〜8.5である。硝化・脱窒
反応は、菌の合成を無視すれば、 NH4 +−N+2O2+2HCO3 - →NO3 -−N+2H2CO3+H2O ………(1) NO3 -−N+0.833CH3OH+0.167H2CO3 →0.5N2+1.33H2O+HCO3 - ………(2) のようになり、水のPHは、 PH=pK1−log(H2CO3)/(HCO3 -) ………(3) で示される。上記(1)〜(3)式から明らかなように
硝化反応ではPHが下がり、脱窒反応ではPHが上
がる。本実施例によれば、HCO3 -は好気性ゾ
ーンで消費されるが、嫌気性ゾーンで一部回収
される。しかし全体としては(1)、(2)式に示す反
応によつてHCO3 -の減少が起る。従つて、PH
コントロールの採用は、反応効率をより向上さ
せることになる。 (8) 中和剤供給部21は、平行板15の無い第2
の室に設けられており、しかもPHセンサ18よ
りも手前に設けられているため、好気性ゾーン
に入る水のPHを必ず7.5〜8.5にすることが可能
となり、また、中和剤の水との混合が良好に行
なわれる。 (9) 前記したように、嫌気性ゾーンにおける脱窒
では、排水2中のBODを利用して行なわれる。
そこで、もし除去される窒素量に対してBOD
量が少なくなつた場合には、排水2中に、ある
いは嫌気性ゾーンにメタノール等の有機炭素源
を投入してやれば良い。いずれにしても、本実
施例によればメタノール等の有機炭素源の投入
量は従来技術に比べはるかに少なくて済む。 実施例 1 第2図に示した装置を用いて合成排水からの窒
素の除去を行つた。装置の主な仕様は第1表の通
りである。
The present invention relates to a wastewater treatment system, and in particular is used to remove nitrogen from organic wastewater, such as domestic wastewater and industrial wastewater, which contains organic matter (hereinafter referred to as BOD) that can be used by microorganisms and nitrogen compounds. and a wastewater treatment device using denitrifying bacteria. Wastewater containing BOD and nitrogen compounds is normally converted into ammonia nitrogen (hereinafter referred to as NH 4 + -N) by nitrifying bacteria under aerobic conditions, that is, in the presence of oxygen, and nitrite nitrogen (hereinafter referred to as NO 2 ) . - -N) and nitrate nitrogen (hereinafter referred to as NO 3 - -N). Then, under anaerobic conditions, that is, in the absence of oxygen, NO 2 - -N is reduced to nitrogen gas (hereinafter referred to as N 2 ) by denitrifying bacteria, and at the same time
BOD is decomposed. This is because denitrifying bacteria produce NO 2 - -N and
NO 3 - - Occurs because the oxygen in the N is used to decompose BOD. Nitrifying bacteria are active under aerobic conditions;
Inert under anaerobic conditions. Denitrifying bacteria are active under both aerobic and anaerobic conditions. Denitrifying bacteria are
It is a type of BOD oxidizing bacteria, and BOD oxidizing bacteria, except for denitrifying bacteria, are generally active under aerobic conditions and inactive under anaerobic conditions. In general, BOD oxidizing bacteria use dissolved oxygen in wastewater to oxidize BOD, and denitrifying bacteria exceptionally use oxygen in nitrogen compounds to oxidize BOD. Therefore, when treating wastewater using microorganisms, it is necessary to artificially create an aerobic atmosphere and an anaerobic atmosphere during the treatment process. For these reasons, conventional reaction tanks of this type of wastewater treatment equipment have been provided with a nitrification tank under aerobic conditions and a denitrification tank under anaerobic conditions. According to this device,
The wastewater first flows through the nitric acid tank and then through the denitrification tank. However, as mentioned later, in the nitrification reaction, the pH
decreases and PH increases in the denitrification reaction, so with such an apparatus, it is necessary to input a large amount of neutralizing agent. In particular, the rate of decrease in PH in the nitrification tank is greater than the rate of increase in PH in the denitrification tank, so
Large amounts of alkali were required. Furthermore, in the denitrification tank, in addition to adding acid, an organic carbon source such as methanol was required to activate the action of denitrifying bacteria. The first measure to reduce neutralizing agents and organic carbon sources is
A wastewater treatment device having a reaction tank as shown in the figure has been proposed. This reaction tank is composed of a circulation path through which waste water circulates. That is, the wastewater is introduced into an area with an anaerobic atmosphere (hereinafter referred to as the anaerobic zone) in the reaction tank, then into an area with an aerobic atmosphere (hereinafter referred to as the aerobic zone), and then again into the anaerobic zone. has been introduced. This will be explained with reference to FIG. The reaction tank 1 consists of a first reaction tank 1A and a second reaction tank 1B. The first reaction tank 1A is sealed except for three types of flow paths described later, and a stirrer 4 is installed in the center. The three types of flow paths are a wastewater supply section 3 that opens at the top of the first reaction tank 1A, and an untreated water connection that circulates incompletely treated wastewater (hereinafter referred to as untreated water) from the aerobic zone to the anaerobic zone. This is an untreated water communication port 11a that is connected to the channel 11b and the second reaction tank 1B at the bottom. In addition to the untreated water communication port 11a, an oxygen or oxygen-containing gas supply unit 6 is opened at the bottom of the second reaction tank 1B, an untreated water communication path 11b is opened at the top, and the open upper surface is treated with Water discharge part 12 is open. Untreated water connection route 11
A circulation pump 9 is provided in the middle of b. A dispersion plate 7 is provided above the oxygen or oxygen-containing gas supply section 6, and a tube 8 is disposed above the oxygen or oxygen-containing gas supply section 6 so as to face the top surface. Therefore, the flows of the waste water 2 and untreated water 10 are as follows. The waste water 2 containing BOD and nitrogen compounds is fed into the first reaction tank 1A via the waste water supply section 3. In addition to the waste water 2, untreated water 10 is supplied to the first reaction tank 1A via an untreated water communication path 11b.
is supplied. Since the untreated water 10 has passed through the aerobic zone, nitrogen compounds are mainly
NO 2 - -N and NO 3 - -N. First reaction tank 1A
No air 5 is blown into the zone, and an anaerobic zone is formed by the action of the waste water 2 and microorganisms. Therefore, in the first reaction tank 1A, NO 2 - -N and NO 3 - -N in the untreated water 10 and the waste water 2 are
However, due to the action of denitrifying bacteria, the BOD in the wastewater 2 is reduced to N2 as an organic carbon source. Among the nitrogen compounds in the waste water 2, NH 4 + -N hardly changes in the first reaction tank 1A, and the untreated water connection port 11
It is sent to the second reaction tank 1B via a. The second reaction tank 1B is supplied with air 5 via an oxygen or oxygen-containing gas supply section 6 and a dispersion section 7, forming an aerobic zone. Therefore, the second reaction tank 1B
At the same time, the remaining BOD is oxidized and removed, and NH 4 - -N is oxidized by the action of nitrifying bacteria to become NO 2 - -N and NO 3 - -N. This NO 2 - -
The untreated water 10 containing N and NO 3 - -N is sent to the first reaction tank 1A as described above. On the other hand, the treated water 13 (which may partially contain untreated water 10) that has reached the upper surface of the second reaction tank 1B is discharged via the treated water drainage section 12. By adopting such reaction tank 1, the reaction liquid in the aerobic zone and the reaction liquid in the anaerobic zone are circulated and mixed, so the amount of organic carbon sources and neutralizing agents other than wastewater 2 added can be reduced to a small amount. It is possible to stop it. However, at the same time as the reaction solution is circulated, sludge in which microorganisms such as BOD oxidizing bacteria and nitrifying bacteria coexist also circulates between the anaerobic zone and the aerobic zone. Therefore, in this method, the nitrification activity and denitrification activity per sludge are lower than when the nitrification tank and denitrification tank are completely separated. Therefore, in order to reduce the amount of neutralizing agent and organic carbon source added and to prevent a decrease in nitrification activity and denitrification activity, it is necessary to separate nitrifying bacteria and denitrifying bacteria. As a countermeasure for this, the first reaction tank 1A
and the second reaction tank 1B are separated by a semipermeable membrane,
It is conceivable to move only low molecules and not microorganisms, but this is not suitable for practical use due to problems such as the strength of the semipermeable membrane and clogging. An object of the present invention is to provide a wastewater treatment device that can separate nitrifying bacteria from denitrifying bacteria and improve the efficiency of nitrification and denitrification by effectively promoting the adhesion and growth of microorganisms on solid surfaces. It is in. In order to achieve the above object, the present invention configures a reaction tank with a circulation path, provides two fixed beds in the path with solid surfaces on which microorganisms can attach and grow, and one path connecting both fixed beds has a BOD. and nitrogen compounds, and oxygen or oxygen-containing gas is supplied to the other routes, respectively. That is, the present invention provides a wastewater treatment device equipped with a reaction tank that uses microorganisms to remove nitrogen from wastewater containing organic matter and nitrogen compounds, in which the reaction tank is separated from a first chamber by a substantially vertical partition plate. The reaction tank is divided into a second chamber, and the first chamber and the second chamber communicate with each other at the bottom of the reaction tank. A first fixed bed and a second fixed bed capable of adhering and growing microorganisms are provided above and below the waste water supply section of the chamber, and at the bottom of the second chamber, oxygen is provided above the lower end of the partition plate. Alternatively, an oxygen-containing gas supply section is provided, and a cleaning gas supply section is provided facing the lower part of the first fixed bed and the second fixed bed, and the upper end of the partition plate is arranged such that when the reaction tank is filled with a predetermined amount of wastewater, The reactor is characterized in that a treated drainage section is provided at the upper end of the reaction tank at a level lower than the water level and approximately at the same height as the water level. Embodiments of the present invention will be described below based on the drawings. In the examples shown below, air was used as the raw material gas (oxygen or oxygen-containing gas) for dissolving oxygen in the circulating flow. FIG. 2 is a sectional view of an embodiment of the wastewater treatment device according to the present invention. The reaction tank 1 has a substantially cylindrical shape that is open upward, and the inside of the reaction tank 1 is partitioned into two chambers in the longitudinal direction by a partition plate 14. However, the two partitioned rooms are connected at the bottom. Further, the partition plate 14 is provided so that its height is lower than the water surface of the reaction tank 1. Of the two partitioned rooms, the first room on the right side of Figure 2 has a
Parallel plate groups 15a and 15b each consisting of a plurality of parallel plates 15 parallel to the partition plate 14 on the upper and lower sides.
are provided as first and second fixed beds. The parallel plates 15 are spaced apart from each other by 10 to 35 mm, and each parallel plate 15 is a plastic plate whose surface is processed to have an uneven surface. As mentioned later, drainage 2
And when the untreated water 10 circulates, the parallel plate group 15
The area where a is provided becomes an aerobic zone, and the area where the parallel plate group 15b is provided becomes an anaerobic zone. A cleaning gas supply section 22a is provided near the lower end of the gap between the parallel plates 15 constituting the parallel plate group 15a. Similarly, a cleaning gas supply section 22b is provided for the parallel plate group 15b. A PH sensor 18 is attached near the upper end of the parallel plate group 15a, and the treated drainage section 12 is open. The lower end of the parallel plate group 15a and the parallel plate group 15b
A drainage water supply section 3 is opened between the upper end of the drain and the upper end. Of the two partitioned chambers, the second chamber on the left side in FIG. 2 has an oxygen or oxygen-containing gas supply section 6 opening downward, and above the opening, this chamber is connected to a reaction tank. Five dispersion plates 7 are provided to partition the chamber into six chambers in the longitudinal direction of the chamber 1, and a neutralizing agent supply section 21 is opened above. The aperture ratio of the dispersion plate 7 is 30 to 60.
%belongs to. Next, the outside of the reaction tank 1 will be explained. The PH sensor 18 is electrically connected to the PH controller 17. Neutralizer tank 1 storing acid
A neutralizing agent transfer pipe 23a equipped with an injection pump 20a is connected to a neutralizing agent tank 19b storing alkali.
A neutralizing agent transfer pipe 23b provided with an injection pump 20b is connected to each of the neutralizing agent transfer pipes 23b. Furthermore, the neutralizing agent transfer tube 23a and the neutralizing agent transferring tube 23b join together to reach the neutralizing agent supply section 21. On the other hand, treated water drainage section 1
2 is provided with a sedimentation separation tank 16 in the middle. In such a wastewater treatment device, wastewater 2 containing BOD and nitrogen compounds is supplied into the reaction tank 1 via the wastewater supply section 3, and flows through the parallel plate group 15b in a circulating flow to be described later. . The wastewater 2 and the untreated water 10 described later pass through the parallel plate group 15b, undergo BOD oxidation reaction and denitrification reaction by microorganisms attached and grown on the surface of the parallel plate 15 in the manner described later, and then undergo a reaction. It flows into the adjacent second chamber via the bottom of the tank 1 and reaches the oxygen or oxygen-containing gas supply 6 . Air 5 is supplied from an oxygen or oxygen-containing gas supply section 6 . The untreated water 10 that has reached the oxygen or oxygen-containing gas supply section 6 rises together with the bubbles 5a, and the bubbles 5a are divided into small pieces by the plurality of dispersion plates 7. In this process, the untreated water 10 takes in oxygen, and the partition plate 14
reaches the upper end of the chamber and overflows into the adjacent first chamber. This overflowing untreated water 10 flows through the parallel plate group 15a, undergoes a nitrification reaction by microorganisms grown on the surface of the parallel plate 15 as described later, and then reaches the wastewater supply section 3 again. Contains wastewater 2. Thereafter, the above steps are repeated according to the circulation flow. The circulation flow is generated by slippage between water and bubbles 5a generated by the supply of air 5. Next, the manner in which microorganisms adhere to and grow on the parallel plate 15 will be described. At the start of operation, the reaction tank 1 is first filled with water, and air is blown from the oxygen or oxygen-containing gas supply section 6. In this state, water circulation begins and the supply of waste water 2 begins. Therefore, shortly after the start of operation, the supplied waste water 2 flows through the parallel plate group 15b.
In the process of flowing through, in an aerobic atmosphere where BOD is present, BOD oxidizing bacteria grow attached to the surface of the parallel plate 15, overcoming the competition for survival with nitrifying bacteria. The path from the parallel plate group 15b to the oxygen or oxygen-containing gas supply section 6 is such that dissolved oxygen in the waste water 2
It is consumed by BOD oxidizing bacteria and becomes an anaerobic atmosphere. After passing through the oxygen or oxygen-containing gas supply section 6, the amount of dissolved oxygen in the water gradually increases, and the untreated water 10 incorporating oxygen flows through the parallel plate group 15a.
Both BOD oxidizing bacteria and nitrifying bacteria can grow in an aerobic atmosphere, but since most of the BOD in the untreated water 10 flowing through the parallel plate group 15a has been oxidized and removed, the parallel plate 15 of the parallel plate group 15a On the surface of
Nitrifying bacteria grow more favorably than BOD oxidizing bacteria, which uses BOD as an organic carbon source. Nitrifying bacteria in untreated water 10
NO 4 + −N is nitrified using dissolved oxygen in
Change to NO 2 - -N or NO 3 - -N. Therefore, after a while after the start of operation, the dissolved oxygen concentration of the untreated water 10 that has passed through the parallel plate group 15a becomes low. In other words, the parallel plate group 15b gradually becomes an anaerobic zone from the upper end to the lower end, and there is already attached growth.
Among the BOD oxidizing bacteria, denitrifying bacteria that can adhere and grow even in an anaerobic atmosphere remain. Denitrifying bacteria use BOD as an organic carbon source and reduce NO 2 - -N and NO 3 - -N to N 2 . In this way, the parallel plate group 15a turns into an aerobic zone, where nitrifying bacteria mainly adhere and grow on the surface of the parallel plate 15, and becomes an area mainly responsible for the nitrification reaction, and the parallel plate group 15b turns into an anaerobic zone.
Denitrifying bacteria mainly adhere to and grow on the surface of the parallel plate 15, which becomes a region responsible for the denitrifying reaction. Next, the PH sensor 18 provided at the upper end of the parallel plate group 15a and the neutralizing agent supply section 21 provided on the upward flow side of the reaction tank 1 will be explained. As described later, the untreated water 10 has HCO - 3 as a whole circulating flow.
is decreasing, and the PH detected by the PH sensor 18
Based on the value, the PH controller 17 is used to supply neutralizing agent from the neutralizing agent supply section 21 during the upward flow, and the PH is
Control so that it is between 7.5 and 8.5. Normally, alkali is supplied during the upward flow, and the PH controller 17 supplies the alkali to the injection pump 2.
0b, and from the neutralizing agent tank 19b to the neutralizing agent transfer pipe 2
3b and the neutralizing agent supply section 21. Furthermore, when the pH increases due to disturbances such as load fluctuations, the PH controller 17 operates the injection pump 20a to supply the neutralizing agent from the neutralizing agent tank 19a to the neutralizing agent transfer pipe 23a and the neutralizing agent supply section 21. This is done through the Next, the treated water 13 is drained and the cleaning gas supply section 22
While the sequential supply of the waste water 2 and the circulation of the untreated water 10 described with respect to the cleaning gas supply section 22b and the cleaning gas supply section 22b continue, a large amount of microorganisms adhere to and grow on the surface of the parallel plates 15 of the parallel plate group 15a. When the microbial film reaches a certain thickness, the supply of air 5 from the oxygen or oxygen-containing gas supply section 6 is stopped, and the circulation of water is stopped. Thereafter, air or nitrogen gas is blown between the parallel plates 15 from the cleaning gas supply section 22a and the cleaning gas supply section 22b to remove the microbial film consisting of nitrifying bacteria, denitrifying bacteria, etc. adhering to the surface of the parallel plate 15. Then, the operation is started again and air 5 is supplied from the oxygen or oxygen-containing gas supply section 6, while the peeled microbial film is removed together with the treated water 13.
The treated water is removed from the reaction tank 1 through the drainage section 12, enters the sedimentation separation tank 16, and is separated and recovered. The treated water 13 is discharged through a sedimentation separation tank 16. According to this embodiment, the following effects are achieved. (1) Nitrification and denitrification efficiency is improved because the nitrifying bacteria-attached growth area (aerobic zone) and the denitrifying bacteria-attached growth area (anaerobic zone) are fixed in the circulating flow. Furthermore, the amount of neutralizing agent added can be much smaller than in the prior art. (2) By partitioning the interior of the reaction tank 1 into two chambers with the partition plate 14, it becomes possible to form a circulation path with a single tank, and the apparatus can be made more compact. (3) Transport of untreated water 10 and wastewater 2 using air bubbles 5a
Since the circulation flow is generated by the upward flow caused by the slip between the water and the water, there is no need to provide a separate circulation pump, which is economical. Note that the circulation flow rate can be adjusted by adjusting the linear velocity of the air 5 blown in and the cross-sectional areas of the rising and falling surfaces. (4) Since the oxygen or oxygen-containing gas supply section 6 is located below the reaction tank 1, the bubbles 5a and the untreated water 1
The contact time with oxygen becomes longer, which is advantageous for dissolving oxygen. (5) Since multiple dispersion plates 7 are provided, air bubbles 5
The combination and separation of a is carried out several times,
As above, it is advantageous for dissolving oxygen. (6) By employing the cleaning gas supply section 22a and the cleaning gas supply section 22b, there is no fear that the microbial film adhering to the parallel plate 15 will inhibit water circulation. (7) The optimum pH for the nitrification reaction is 7.5 to 8.5, and the reaction hardly occurs below 6.0. On the other hand, the optimum pH for denitrification reaction is 7 to 8.5. The nitrification/denitrification reaction, if bacterial synthesis is ignored, is NH 4 + −N+2O 2 +2HCO 3 →NO 3 −N+2H 2 CO 3 +H 2 O ………(1) NO 3 −N+0.833CH 3 OH+0.167H 2 CO 3 →0.5N 2 +1.33H 2 O+HCO 3 - ………(2) The pH of water is PH=pK 1 −log(H 2 CO 3 )/(HCO 3 ) ......(3). As is clear from equations (1) to (3) above, the PH decreases in the nitrification reaction, and the PH increases in the denitrification reaction. According to this example, HCO 3 - is consumed in the aerobic zone, but partially recovered in the anaerobic zone. However, overall, HCO 3 - decreases due to the reactions shown in equations (1) and (2). Therefore, PH
Adoption of controls will further improve reaction efficiency. (8) The neutralizing agent supply section 21 is a second one without the parallel plate 15.
Since it is installed in the chamber and is located before the PH sensor 18, it is possible to ensure that the pH of the water entering the aerobic zone is between 7.5 and 8.5, and it is also possible to ensure that the pH of the water entering the aerobic zone is between 7.5 and 8.5. Good mixing is achieved. (9) As mentioned above, denitrification in the anaerobic zone is carried out using BOD in the wastewater 2.
Therefore, if the amount of nitrogen removed is
If the amount is low, an organic carbon source such as methanol may be added to the waste water 2 or to the anaerobic zone. In any case, according to this embodiment, the input amount of organic carbon sources such as methanol can be much smaller than in the prior art. Example 1 Nitrogen was removed from synthetic wastewater using the apparatus shown in FIG. The main specifications of the device are shown in Table 1.

【表】 また、下降流側には仕切板14の上部、中部並
びに下部にそれぞれ溶存酸素計のセンサを固定し
た。 BOD65ppm及びNH4 +−N30ppmの合成排水か
らの窒素の除去を検討した。温度は25℃、PHはPH
コントローラ17によつて8.2±0.2でコントロー
ルした。また吹き込み空気量は100/minとし、
排水2の投入量を90/hrとして処理を開始し
た。 この結果を第3図に示す。第3図は、処理水中
のBOD、NH4 +−N、NO3 -−Nの濃度、並びに
下降流側における上部、中部及び下部の溶存酸素
濃度を処理日数に対してプロツトした図である。 曲線イは上部の、曲線ロは中部の曲線ハは下部
のそれぞれ溶存酸素濃度を示し、曲線はBOD
の曲線はNH4 +−Nの、曲線はNO3 -−Nの
それぞれ濃度を示している。図から明らかなよう
にまずBODが除去され、これに従つて中部、下
部の溶存酸素濃度も減少し始める。このとき、平
行板上には菌体が観察できる程度に付着生育して
いた。更にBODの除去率が上がると、それに比
例して中部、下部の溶存酸素濃度が減少し、つい
にはほぼ0になつた。これに至るまで20日間を要
した。この溶存酸素量の低下は、平行板上に付着
育生した菌体の作用によるものである。一方、
NH4 +−Nも次第に硝化され、NH2 -−Nが増加
した。このことから平行板群15aの平行板上で
硝化菌が増加していることが明らかである。20日
を過ぎると、増加傾向にあつたNO3 -−Nは次第
に増加率が衰え、ついには減少をし始めた。この
とき、NH4 +−Nも減少し、また中部、下部の溶
存酸素濃度はほとんど0となつていた。このこと
から脱適反応が行われていることがわかる。本処
理によれば40日以降で処理水13の組成が安定し
た。安定後のBOD及びNH4 +−Nの除去利率はそ
れぞれ92%および91%であつた。なお、このとき
の容積負荷は0.7Kg−NH4 +−N/m3・dayであつ
た。また、添加アルカリ量は11.5g−NaOH/hr
であり、硝化槽単独で行つた場合の62%であつ
た。 実験例 2 実験例1で使用した装置を用いて実排水の窒素
除去を行つた。処理条件も実験例1に同じであ
る。90日の処理を行い第4図に示す結果を得た。 曲像は排水中の、曲線は処理水中のそれぞ
れBODの濃度を示し、曲線は排水中の、曲線
は処理水中のそれぞれNH4 +−Nの濃度を示
し、そして曲線は排水中の、曲線は処理水中
のそれぞれNO3 -−Nの濃度を示している。実排
水のBOD並びにNH4 +−Nは変動したが、処理水
中のBOD並びにNH4 +−Nは安定値を示した。こ
のときの除去率は平均でそれぞれBODが80%、
NH4 +−Nが88%であつた。また、全無機窒素の
除去率は平気均85%であつた。尚、本処理では系
外よりメタノール等の有機炭素源を添加していな
い。
[Table] Further, on the downflow side, dissolved oxygen meter sensors were fixed to the upper, middle, and lower parts of the partition plate 14, respectively. The removal of nitrogen from synthetic wastewater with BOD 65ppm and NH 4 + -N 30ppm was investigated. Temperature is 25℃, PH is PH
It was controlled by controller 17 at 8.2±0.2. In addition, the amount of blown air is 100/min.
Treatment was started with the input amount of wastewater 2 being 90/hr. The results are shown in FIG. FIG. 3 is a diagram plotting the concentrations of BOD, NH 4 + -N, and NO 3 - -N in the treated water, as well as the dissolved oxygen concentrations in the upper, middle, and lower parts of the downstream side, against the number of treatment days. Curve A shows the dissolved oxygen concentration at the top, curve B shows the middle, and curve C shows the dissolved oxygen concentration at the bottom.
The curve shows the concentration of NH 4 + -N, and the curve shows the concentration of NO 3 - -N. As is clear from the figure, BOD is removed first, and accordingly the dissolved oxygen concentration in the middle and lower parts begins to decrease. At this time, bacterial cells were adhering and growing on the parallel plate to the extent that they could be observed. Furthermore, as the BOD removal rate increased, the dissolved oxygen concentration in the middle and lower portions decreased proportionally, eventually reaching almost zero. It took 20 days to reach this point. This decrease in the amount of dissolved oxygen is due to the action of bacterial cells grown on the parallel plates. on the other hand,
NH 4 + -N was also gradually nitrified, and NH 2 - -N increased. From this, it is clear that nitrifying bacteria are increasing on the parallel plates of the parallel plate group 15a. After the 20th day, the increasing rate of NO 3 - -N, which had been on the rise, gradually slowed down and finally began to decrease. At this time, NH 4 + -N also decreased, and the dissolved oxygen concentration in the middle and lower portions was almost zero. This indicates that a disadaptation reaction is occurring. According to this treatment, the composition of treated water 13 became stable after 40 days. After stabilization, the removal rates of BOD and NH 4 + -N were 92% and 91%, respectively. Note that the volumetric load at this time was 0.7Kg-NH 4 + -N/m 3 ·day. Also, the amount of alkali added is 11.5g-NaOH/hr
This was 62% of the amount obtained using the nitrification tank alone. Experimental Example 2 The apparatus used in Experimental Example 1 was used to remove nitrogen from actual wastewater. The processing conditions were also the same as in Experimental Example 1. After 90 days of treatment, the results shown in FIG. 4 were obtained. The curved image shows the concentration of BOD in the wastewater, the curve shows the concentration of BOD in the treated water, the curve shows the concentration of NH 4 + -N in the wastewater, and the curve shows the concentration of NH 4 + -N in the treated water, and the curve shows the concentration of BOD in the wastewater. Each figure shows the concentration of NO 3 - -N in the treated water. BOD and NH 4 + -N in the actual wastewater fluctuated, but BOD and NH 4 + -N in the treated water showed stable values. At this time, the average removal rate was 80% for BOD and 80% for BOD, respectively.
NH 4 + -N was 88%. Furthermore, the average removal rate of total inorganic nitrogen was 85%. In this process, no organic carbon source such as methanol was added from outside the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の排水処理装置の説明図、第2図
は本発明の排水処理装置の実施例の説明図、第3
図は第2図の装置を用いて合成排水の処理を行つ
た結果の説明図、第4図は第2図の装置を用いて
実排水の処理を行つた結果の説明図である。 1;反応槽、2;排水、3;排水供給部、5;
空気、5a;気泡、6;酸素又は酸素含有ガス供
給部、10;未処理水、13;処理水、14;仕
切板、15;平行板、15a,15b;平行板
群、22a,22b;洗浄ガス供給部。
FIG. 1 is an explanatory diagram of a conventional wastewater treatment device, FIG. 2 is an explanatory diagram of an embodiment of the wastewater treatment device of the present invention, and FIG.
This figure is an explanatory diagram of the result of treating synthetic wastewater using the apparatus shown in FIG. 2, and FIG. 4 is an explanatory diagram of the result of treating actual wastewater using the apparatus of FIG. 2. 1; Reaction tank, 2; Drainage, 3; Drainage supply section, 5;
Air, 5a; Bubbles, 6; Oxygen or oxygen-containing gas supply unit, 10; Untreated water, 13; Treated water, 14; Partition plate, 15; Parallel plates, 15a, 15b; Parallel plate group, 22a, 22b; Cleaning Gas supply section.

Claims (1)

【特許請求の範囲】 1 有機物と窒素化合物とを含有する排水中の、
窒素分を微生物の利用で除去する反応槽を備えた
排水処理装置において、 反応槽は略垂直の仕切板で第一の室と第二の室
に分割し、 第一の室と第二の室とは反応槽の底部で連通し
ており、 第一の室の上下方向の略中間位置に排水供給部
を設け、且つ第一の室の前記排水供給部を挾んで
上下に、微生物の付着育成可能な第一の固定床と
第二の固定床を設け、 第二の室の下部で、前記仕切板の下端より上方
に酸素又は酸素含有ガス供給部を設け、第一の固
定床と第二の固定床の下部に臨んで洗浄ガス供給
部を設け、 前記仕切板の上端は、反応槽に排水を所定量充
満したとき、その水面より低く設定し、前記水面
とほぼ同一高さに処理水排部を反応槽上端部に設
けたことを特徴とする排水処理装置。
[Claims] 1. In wastewater containing organic matter and nitrogen compounds,
In wastewater treatment equipment equipped with a reaction tank that removes nitrogen by using microorganisms, the reaction tank is divided into a first chamber and a second chamber by a nearly vertical partition plate, and the first chamber and the second chamber are is connected to the bottom of the reaction tank, and a wastewater supply section is provided at a position approximately midway in the vertical direction of the first chamber, and microorganisms are attached and cultivated in the upper and lower portions sandwiching the wastewater supply section of the first chamber. A possible first fixed bed and a second fixed bed are provided, an oxygen or oxygen-containing gas supply section is provided above the lower end of the partition plate in the lower part of the second chamber, and the first fixed bed and the second fixed bed are provided. A cleaning gas supply unit is provided facing the lower part of the fixed bed, and the upper end of the partition plate is set lower than the water level when the reaction tank is filled with a predetermined amount of wastewater, and the treated water is placed at approximately the same height as the water level. A wastewater treatment device characterized in that a discharge part is provided at the upper end of a reaction tank.
JP603879A 1979-01-24 1979-01-24 Method and apparatus for exhaust water treatment Granted JPS5599393A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP603879A JPS5599393A (en) 1979-01-24 1979-01-24 Method and apparatus for exhaust water treatment
JP63063312A JPS6480493A (en) 1979-01-24 1988-03-18 Process and apparatus for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP603879A JPS5599393A (en) 1979-01-24 1979-01-24 Method and apparatus for exhaust water treatment

Publications (2)

Publication Number Publication Date
JPS5599393A JPS5599393A (en) 1980-07-29
JPH0117437B2 true JPH0117437B2 (en) 1989-03-30

Family

ID=11627466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP603879A Granted JPS5599393A (en) 1979-01-24 1979-01-24 Method and apparatus for exhaust water treatment

Country Status (1)

Country Link
JP (1) JPS5599393A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016666B1 (en) * 2010-04-22 2011-02-25 강원대학교산학협력단 A device for detecting toxicity of water using sulphur oxidizing bacteria
KR101244712B1 (en) 2011-02-16 2013-03-18 강원대학교산학협력단 A seperated measuring type device for detecting toxicity of water using sulphur oxidizing bacteria
EP2381253B1 (en) * 2010-04-22 2019-12-25 University-industry Cooperation Foundation Kangwon National University Apparatus for detecting toxicity in water using sulfur-oxidizing bacteria

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122944A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122944A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water

Also Published As

Publication number Publication date
JPS5599393A (en) 1980-07-29

Similar Documents

Publication Publication Date Title
KR101473050B1 (en) Method and device for removing biological nitrogen and support therefor
KR101018772B1 (en) Method for treating water containing ammonia nitrogen
JPS5933439B2 (en) Microbiological wastewater treatment equipment for nitrogenous wastewater
KR20120079899A (en) Two-stage anoxic membrane bio-reactor system for treating wastewater in combination with an anaerobic bath and return lines
KR101237408B1 (en) Appartus for reducing nitrogen of sewage and wastewater having stayover device of active sludge and method for reducing nitrogen using it
JPH07155790A (en) Waste water treating device
JP4848144B2 (en) Waste water treatment equipment
KR100497810B1 (en) System of circulated sequencing batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
JPH0117437B2 (en)
JP2004148144A (en) Method for treating sewage
KR100465851B1 (en) Removal measure of Circulated Sequencing Batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
JPS58139793A (en) Biological denitrification device for organic waste water
JPS6320199B2 (en)
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JPH0418992A (en) Treatment of night soil sewage
JP2839065B2 (en) Septic tank
JP2006075784A (en) Biological purifying and circulating system tray
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
KR200415478Y1 (en) microbe reactor
JP4988325B2 (en) Waste water treatment equipment
KR100927178B1 (en) Advanced treatment apparatus for sewage and wastewater using single reactor
KR100860300B1 (en) Advanced treatment apparatus and method of intermittent-bubble running-treatment membrane-combination type for waste water
JP3396959B2 (en) Nitrification method and apparatus
JPH08192187A (en) Biological filtration device
JPS5948156B2 (en) water treatment equipment