JPH0117376B2 - - Google Patents

Info

Publication number
JPH0117376B2
JPH0117376B2 JP59073785A JP7378584A JPH0117376B2 JP H0117376 B2 JPH0117376 B2 JP H0117376B2 JP 59073785 A JP59073785 A JP 59073785A JP 7378584 A JP7378584 A JP 7378584A JP H0117376 B2 JPH0117376 B2 JP H0117376B2
Authority
JP
Japan
Prior art keywords
nozzle
gelatin
tube
hydrophobic solvent
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59073785A
Other languages
Japanese (ja)
Other versions
JPS60215365A (en
Inventor
Hironobu Hirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHO YAKUHIN KOGYO KK
Original Assignee
TOHO YAKUHIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHO YAKUHIN KOGYO KK filed Critical TOHO YAKUHIN KOGYO KK
Priority to JP7378584A priority Critical patent/JPS60215365A/en
Publication of JPS60215365A publication Critical patent/JPS60215365A/en
Publication of JPH0117376B2 publication Critical patent/JPH0117376B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は真球ゼラチン粒またはゼラチンマイク
ロカプセル等を製造する液中滴下法において、従
来法の下記に説明する方式の欠陥を改良し、簡単
な装置、手段をもつて大量生産に適した新方式を
提唱することに関する。 一般に真球ゼラチン粒またはゼラチンマイクロ
カプセル等を製造するには、第1図に例示するよ
うに所要の薬剤を溶解もしくは分散させたゼラチ
ン水溶液1(以下“ゼラチン溶液”という)をゼ
ラチンのゲル化温度(大体40℃)以上に保温され
た疎水性溶媒(例えば油類、特に植物油)2が充
填された疎水性溶媒槽(滴下槽)3中に落し、撹
拌翼4で撹拌または分散させる液中分散法と呼ば
れる方式によるか、第2図に例示するようにゼラ
チン溶液1をノズル5(第2図ではスポイト)を
通して前記液中分散法の場合と同様に保温槽6お
よび冷却槽7によりそれぞれ所定温度に保持され
た疎水性溶媒2中に圧吐出させ、その時前記ノズ
ル先において機械的あるいは電気的手段で切断す
る液中滴下法と呼ばれる方式によつている。 そして、上記の液中分散法は簡単ではあるが、
製品の粒度分布が広くて所期する粒径のものゝ収
得率が悪く、顆粒等の小型製剤の製造には不適で
あり、かゝる場合には専ら液中滴下法が行われて
いる。 しかしながら、従来の液中滴下法ではノズル先
におけるゼラチン溶液8の切断手段として、第3
図に図示するように二重筒管ノズル5の下方に設
備された放電発生装置9より電気パルス10を発
生させ、このパルス10で切断する電気的手段
と、第4図イ,ロに図示するように二重筒管ノズ
ル5の下方に内外二重の円筒リング11,12を
設け、外側リング11を固定し、内側リング12
を上下に可動させることにより疎水性溶媒2を流
動させて切断する機械的手段とがあり、これらは
いずれもノズル先に特別な切断装置およびその補
助的設備を設けることが必要であり、そのために
生産工業的にノズル数を多くすることに障害があ
り、大量生産にはおのずと限界がある実情であ
る。 本発明は従来の液中滴下法の生産工業的欠陥を
改良すべく想到されたものであつて、従来法のノ
ズル先に種々の切断用装置を設備することを止
め、ノズル先自身を疎水性溶媒中で運動させるこ
とによりゼラチン溶液を適当の大きさに切断しよ
うとするものである。 本発明方法により真球ゼラチン粒またはゼラチ
ンマイクロカプセル等を製造する場合に、それら
の粒径はノズルの振幅と振動数、ノズルの形状お
よび口径およびノズルからのゼラチン溶液の吐出
圧等に関連して決まるものであるが、ノズルの形
状および口径が一定の場合は製品粒度の微調整は
ノズルの振幅と振動数およびゼラチン溶液のノズ
ルよりの吐出圧を操作することで容易に行えるの
である。 本発明方法におけるノズルの疎水性溶液内にお
ける運動軌跡は一支点吊下げによる振り子式の左
右往復運動(第6図参照)、二支点間を前後また
は左右に往復移動させる水平運動(第8図参照)
あるいは曲線施回運動などいずれの運動でも差し
支えないが、実用上は前二者のいずれかの運動が
簡単で便利であり、また、これらの運動の駆動手
段は在来のものを適用すれば足り、なんら特別の
ものを要しない。 なお、本発明方法においてもノズルより圧吐出
されるゼラチン溶液を受ける疎水性溶媒の温度は
ゼラチンのゲル化温度以上に保つておくことが必
要で、こうすることによりゼラチン溶液と疎水性
溶媒との間にW/O型のエマルジヨンを形成しゼ
ラチン粒の真球性が形成されるのである。若し疎
水性溶媒の温度がゼラチンのゲル化温度と同じま
たはそれ以下であるとノズル先でゼラチン溶液が
ゲル化してしまい、ノズルが詰つたり、ノズル先
でうまく切断されずに絲を引いたりする悪現象が
起こる。 次に以上詳述した真球ゼラチン粒またはゼラチ
ンマイクロカプセル等を製造するために使用され
る装置について説明する。 本発明装置は第5図および第6図に示すように
カプセル化すべき薬剤または該薬剤が溶解もしく
は分散されたゼラチン溶液(すなわち芯物質)2
1を液状で、かつ所定温度で収容するための薬剤
用容器22と、カプセル皮膜用材料23を液状で
収容するための皮膜剤容器24と、同心二重管か
らなるノズル25と、前記薬剤用容器22から前
記二重筒管ノズル25の内管25A内に薬剤また
はゼラチン溶液21を液状で供給するための送液
管26と、前記皮膜剤容器24から前記ノズル2
5の外管25B内に皮膜剤23を液状で供給する
ための送液管28と、前記二重筒管ノズル25の
下方にあつて、該ノズルの先端(下端)を内部の
疎水性溶媒0に浸漬させるための疎水性溶媒槽
(滴下槽)31と、該疎水性溶媒槽内の疎水性溶
媒30を所定温度に維持するための保温手段、す
なわち前記ノズル付近ではゼラチンのゲル化温度
以上に保つための温水槽32と溶媒槽の底部付近
では内部の疎水性溶媒30を約5℃以下に保つた
めの冷却槽33とを有し、さらに本発明装置は前
記二重筒管ノズル25が揺動自在に構成されてお
り、該二重筒管ノズル25を、前記疎水性溶媒3
0にその先端を漬けたまゝ所定の周期で反復移動
させるためのノズル駆動機構34が設けられたも
のである。 前記温水槽32は図示するとおりその内部をポ
ンプ35により温水を強制的に循環させる方式と
するのが有利である。 また、前記ノズルの揺動は、第5図、第6図に
例示するような1点支点によるいわゆる振り子振
幅振動か、もしくは第7図、第8図に例示するよ
うな2点支点による水平振幅振動とするのが機構
的に有利である。そして該ノズルの揺動駆動源と
しては図示するクランク方式の他カム機構を利用
してもよい。 なお、第5図〜第8図中27,29は、それぞ
れゼラチン溶液21および皮膜剤23の送出用ポ
ンプを示すものである。 本発明装置は以上のような構成を有し、その二
重筒管ノズル25からゼラチン溶液21および皮
膜剤23が疎水性溶媒30中に吐出されるとき
に、該ノズルが所定の周期(ピツチ)で規則的に
揺動するので、前記ゼラチン液(および皮膜剤)
が切断され、ほゞ均一な大きさの真球ゼラチン粒
またはゼラチンマイクロカプセル36等が形成さ
れるものである。 以下に実施例をあげて本発明の実施の態様を説
明し、併わせて本発明の効果を示す: 実施例 1 (真球ゼラチン顆粒) 滴下槽中にサラダ油約2000mlを入れ、上部を40
〜45℃に保温し、下部を5℃以下に冷却し、ノズ
ルをその先がサラダ油に漬かる程度に取り付け
る。 ゼラチン50gを40〜50℃の温水100mlに溶かし、
脱気し、これを前記ノズル内に注入し、ノズル先
を振り子方式で振幅15〜20mmで左右に振動させる
とサラダ油層中に顆粒が生じた。 粒度分布は次記の通りであつた。
The present invention is a new method for producing true spherical gelatin particles or gelatin microcapsules by improving the deficiencies of the conventional method described below, and is suitable for mass production using simple equipment and means. Relating to advocating for. Generally, in order to produce true spherical gelatin particles or gelatin microcapsules, a gelatin aqueous solution 1 (hereinafter referred to as "gelatin solution") in which a necessary drug is dissolved or dispersed is prepared at a gelatin temperature of (approximately 40°C) or higher and is poured into a hydrophobic solvent tank (dropping tank) 3 filled with a hydrophobic solvent (e.g. oil, especially vegetable oil) 2, and stirred or dispersed with a stirring blade 4 for dispersion in a liquid. As shown in FIG. 2, the gelatin solution 1 is passed through a nozzle 5 (a dropper in FIG. 2) and heated to a predetermined temperature in a heating tank 6 and a cooling tank 7, respectively, as in the case of the dispersion method in liquid. This method is based on a method called a submerged dropping method, in which the liquid is discharged under pressure into a hydrophobic solvent 2 held in a hydrophobic solvent 2 and then cut by mechanical or electrical means at the tip of the nozzle. Although the above-mentioned in-liquid dispersion method is simple,
If the product has a wide particle size distribution and the desired particle size, the yield rate is poor and it is unsuitable for manufacturing small preparations such as granules, and in such cases, the submerged drop method is exclusively used. However, in the conventional submerged dropping method, a third
As shown in the figure, an electric pulse 10 is generated from a discharge generator 9 installed below the double cylindrical tube nozzle 5, and an electric means for cutting with the pulse 10 is provided. As shown in FIG.
There is a mechanical means to flow and cut the hydrophobic solvent 2 by moving it up and down, but all of these require a special cutting device and its auxiliary equipment to be installed at the nozzle tip. The reality is that there are obstacles to increasing the number of nozzles in the production industry, and there is a natural limit to mass production. The present invention was conceived in order to improve the production industrial defects of the conventional submerged dropping method, and instead of installing various cutting devices on the nozzle tip of the conventional method, the nozzle tip itself was made hydrophobic. The purpose is to cut gelatin solution into appropriate sizes by moving it in a solvent. When producing true spherical gelatin particles or gelatin microcapsules by the method of the present invention, the particle size is determined in relation to the amplitude and frequency of the nozzle, the shape and diameter of the nozzle, the discharge pressure of the gelatin solution from the nozzle, etc. However, if the shape and diameter of the nozzle are constant, fine adjustment of the product particle size can be easily performed by manipulating the amplitude and frequency of the nozzle and the pressure at which the gelatin solution is discharged from the nozzle. In the method of the present invention, the movement locus of the nozzle in the hydrophobic solution includes a pendulum-type left and right reciprocating movement by hanging from one fulcrum (see Figure 6), and a horizontal movement by reciprocating back and forth or left and right between two fulcrums (see Figure 8). )
Alternatively, any movement such as curved movement may be used, but in practice, either of the former two movements is simple and convenient, and it is sufficient to use conventional drive means for these movements. , does not require anything special. In addition, even in the method of the present invention, it is necessary to maintain the temperature of the hydrophobic solvent that receives the gelatin solution pressure-discharged from the nozzle at a temperature higher than the gelatin temperature. A W/O type emulsion is formed in between, and the gelatin particles become spherical. If the temperature of the hydrophobic solvent is the same as or lower than the gelation temperature of gelatin, the gelatin solution will gel at the nozzle tip, which may clog the nozzle or cause the nozzle tip to not cut properly and cause threads to be drawn. An evil phenomenon occurs. Next, a description will be given of an apparatus used for producing the true spherical gelatin particles or gelatin microcapsules described in detail above. As shown in FIG. 5 and FIG.
a drug container 22 for containing capsule coating material 23 in liquid form at a predetermined temperature; a coating agent container 24 for containing capsule coating material 23 in liquid form; a nozzle 25 consisting of a concentric double tube; A liquid feeding pipe 26 for supplying the drug or gelatin solution 21 in liquid form from the container 22 into the inner pipe 25A of the double-tube nozzle 25;
A liquid feeding pipe 28 for supplying the coating agent 23 in liquid form into the outer pipe 25B of No. A hydrophobic solvent tank (dropping tank) 31 for immersing the hydrophobic solvent in the hydrophobic solvent tank, and a heat-retaining means for maintaining the hydrophobic solvent 30 in the hydrophobic solvent tank at a predetermined temperature, that is, the temperature near the nozzle is higher than the gelatin temperature of gelatin. The apparatus of the present invention has a hot water tank 32 for maintaining the temperature, and a cooling tank 33 near the bottom of the solvent tank for maintaining the hydrophobic solvent 30 inside at about 5° C. or lower. The double-tube nozzle 25 is configured to be movable, and the double-tube nozzle 25 is connected to the hydrophobic solvent 3
A nozzle drive mechanism 34 is provided for repeatedly moving the tip at a predetermined period while keeping the tip immersed in zero. As shown in the figure, it is advantageous for the hot water tank 32 to have a system in which hot water is forcibly circulated therein by a pump 35. Further, the swing of the nozzle is a so-called pendulum amplitude vibration with a one-point fulcrum as illustrated in FIGS. 5 and 6, or a horizontal amplitude vibration with a two-point fulcrum as illustrated in FIGS. 7 and 8. It is mechanically advantageous to use vibration. In addition to the illustrated crank system, a cam mechanism may be used as the nozzle swing drive source. In addition, 27 and 29 in FIGS. 5 to 8 indicate pumps for delivering the gelatin solution 21 and the coating agent 23, respectively. The apparatus of the present invention has the above-described configuration, and when the gelatin solution 21 and the coating agent 23 are discharged from the double-tube nozzle 25 into the hydrophobic solvent 30, the nozzle is activated at a predetermined period (pitch). The gelatin solution (and coating agent)
are cut to form true spherical gelatin grains or gelatin microcapsules 36 of substantially uniform size. The embodiments of the present invention will be described below with reference to Examples, and the effects of the present invention will also be shown.
Keep the temperature at ~45℃, cool the lower part to below 5℃, and attach the nozzle so that the tip is immersed in the salad oil. Dissolve 50g of gelatin in 100ml of warm water at 40-50℃.
This was degassed and injected into the nozzle, and the nozzle tip was vibrated left and right in a pendulum manner with an amplitude of 15 to 20 mm, producing granules in the salad oil layer. The particle size distribution was as follows.

【表】 実施例 2 (含チトクロムCゼラチン顆粒) 滴下槽中に流動パラフイン1000mlを入れ、上部
を40〜45℃に保温し、下部を5℃以下に冷却す
る。ノズルをその先が流動パラフイン層に漬かる
程度に取り付ける。 ノズル上部よりゼラチン20gを40〜45℃の温水
40mlに溶かしチトクロムC1.5gを加えて脱気した
液を注入し、ノズル先を水平振幅振動式で15〜20
mmの往復運動をさせると流動パラフイン層中に含
チトクロムCゼラチン顆粒群が生じた。 その粒度分布は下記の通りであつた。
[Table] Example 2 (Cytochrome C-containing gelatin granules) Place 1000 ml of liquid paraffin in a dropping tank, keep the upper part warm at 40 to 45°C, and cool the lower part to 5°C or less. Attach the nozzle so that its tip is submerged in the liquid paraffin layer. Add 20g of gelatin to 40-45℃ warm water from the top of the nozzle.
Add 1.5 g of dissolved cytochrome C to 40 ml, inject the degassed solution, and shake the nozzle tip with horizontal amplitude vibration for 15 to 20 minutes.
Upon reciprocating motion of 1 mm, cytochrome C-containing gelatin granules were formed in the liquid paraffin layer. The particle size distribution was as follows.

【表】 実施例 3 (ゼラチンマイクロカプセル) 滴下槽中に流動パラフイン約1000mlを入れ、上
部を40〜45℃に保温し、下部を10℃以下に冷却す
る。ノズル中に小径のノズルを入れた二重ノズル
の先を流動パラフイン層に漬け、小径ノズル中に
主剤としての植物油を注入する。 ゼラチン30gを40〜45℃の温水100ml中に溶か
し、脱気したものを外側のノズル中に注入し、ノ
ズル先を振り子振幅振動方式により振幅20〜30mm
で左右往復運動させ、小径(主剤)ノズルに弱く
圧力を加えると粒度0.5〜1.0mmの含植物油ゼラチ
ンマイクロカプセルができた。 本発明の方式による液中水平方向振動式真球ゼ
ラチン粒等の製造方法は従来のノズル上下方向振
動方式のものに比べて、後者がノズルの上下振動
一往復につき真球体一個を生成するのに対し前者
では左右の振幅振動一往復につき真球体二個を生
産、即ち2倍の生産効率を有し、また、後者では
脈流の発生、脈流から粒子の自然分離、さらに分
離した粒子の真球化とノズル先から真球化までの
工程が長くなることを余儀なくされるために疎水
性溶媒層中の加温部分を大きく(長く)とる必要
があるのに対して、前者ではノズルの先で既にジ
エツトの切断がなされているため粒子の真球化の
ためだけにしか加温部分を必要とせず、装置的に
非常にコンパクトにすることが可能になるという
利点もある。
[Table] Example 3 (Gelatin Microcapsules) Approximately 1000 ml of liquid paraffin is placed in a dropping tank, the upper part is kept warm at 40-45°C, and the lower part is cooled to below 10°C. The tip of a double nozzle containing a small-diameter nozzle is immersed in a layer of liquid paraffin, and vegetable oil as the main ingredient is injected into the small-diameter nozzle. Dissolve 30g of gelatin in 100ml of warm water at 40-45℃, deaerate it, inject it into the outer nozzle, and vibrate the nozzle tip with a pendulum amplitude vibration method of 20-30mm.
By making a left-right reciprocating motion and applying weak pressure to a small diameter (main ingredient) nozzle, vegetable oil-containing gelatin microcapsules with a particle size of 0.5 to 1.0 mm were created. The method of manufacturing true spherical gelatin particles using the horizontal vibration method in liquid according to the method of the present invention is superior to the conventional nozzle vertical vibration method, since the latter produces one true sphere for each round trip of the vertical vibration of the nozzle. On the other hand, in the former case, two perfect spheres are produced per round trip of the left and right amplitude vibration, which is twice the production efficiency, and in the latter case, pulsating flow occurs, particles are naturally separated from the pulsating flow, and the particles are separated In contrast, in the former case, the process from the nozzle tip to the nozzle tip is forced to take a long time, so it is necessary to make the heated part of the hydrophobic solvent layer large (long). Since the jet has already been cut, a heating section is only needed to make the particles into true spheres, which has the advantage that the device can be made very compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液中分散法によるゼラチン粒の製造原
理を模型的に示した図、第2図は液中滴下法によ
るゼラチン粒の製造原理を同じく模型的に示した
図、第3図および第4図は液中滴下方式によるゼ
ラチン粒の切断方式を示すものであつて、第3図
は機械式を、第4図は電気式を示したものであ
り、第5図は本発明装置の概要を示す図、第6図
は第5図の要部拡大図、第7図は本発明の他の実
施態様を示す側面図、第8図は第7図の要部拡大
図である。 21……ゼラチン溶液、22……薬剤用容器、
23……カプセル皮膜材料、24……皮膜剤容
器、25……二重筒管ノズル、26……送液管、
28……送液管、30……疎水性溶媒、31……
疎水性溶媒槽、34……ノズル揺動機構。
Figure 1 is a diagram schematically showing the principle of manufacturing gelatin granules by the in-liquid dispersion method, Figure 2 is a diagram also schematically illustrating the principle of manufacturing gelatin granules by the in-liquid dropping method, Figure 3 and Figure 4 shows the method of cutting gelatin particles using the submerged drip method, Figure 3 shows the mechanical method, Figure 4 shows the electric method, and Figure 5 shows an outline of the apparatus of the present invention. 6 is an enlarged view of the main part of FIG. 5, FIG. 7 is a side view showing another embodiment of the present invention, and FIG. 8 is an enlarged view of the main part of FIG. 7. 21... Gelatin solution, 22... Pharmaceutical container,
23...Capsule coating material, 24...Coating agent container, 25...Double tube nozzle, 26...Liquid feeding pipe,
28...Liquid feeding pipe, 30...Hydrophobic solvent, 31...
Hydrophobic solvent tank, 34...nozzle rocking mechanism.

Claims (1)

【特許請求の範囲】 1 ゼラチンのゲル化温度以上に保つた疎水性溶
媒中に、該溶媒の表層に漬かる程度に設置したノ
ズル筒を通して所用の薬品を分散または溶解させ
たゼラチン水溶液を圧吐出させる液中滴下法にお
いて、該ノズルの口を一定の水平方向の振幅をも
つて往復運動させることを特徴とする真球ゼラチ
ン粒またはゼラチンマイクロカプセル等の製造方
法。 2 ノズルの口の一定の水平方向の振幅をもつて
する往復運動が振子振幅振動である特許請求の範
囲第1項記載の真球ゼラチン粒またはゼラチンマ
イクロカプセル等の製造方法。 3 カプセル化すべき薬剤または該薬剤が溶解も
しくは分散されたゼラチン水溶液を液状で、かつ
所定温度で収容するための薬剤用容器と、カプセ
ル皮膜用材料を液状で収容するための皮膜剤容器
と、同心二重筒管からなるノズルと、前記薬剤用
容器から前記二重筒管ノズルの内管内に薬剤また
はゼラチン水溶液を液状で供給するための送液管
と、前記皮膜剤容器から前記二重筒管ノズルの外
管内に皮膜剤を液状で供給するための送液管と、
前記二重筒管ノズルの下方にあつて、該ノズルの
先下端を疎水性溶媒に浸漬させるための疎水性溶
媒槽と、該疎水性溶媒槽内の溶媒を所定の温度に
維持するための保温手段とを備えてなる真球ゼラ
チン粒またはゼラチンマイクロカプセル等の製造
装置において、前記二重筒管ノズルを揺動自在に
構成すると共に該二重筒管ノズルを少なくともそ
の先端を前記疎水性溶媒に漬けたままで所定周期
で水平方向に反復振動させるためのノズル駆動機
構を具備したことを特徴とする真球ゼラチン粒ま
たはゼラチンマイクロカプセル等の製造装置。
[Claims] 1. A gelatin aqueous solution in which a desired chemical is dispersed or dissolved is forced out into a hydrophobic solvent maintained at a temperature higher than the gelation temperature of gelatin through a nozzle tube installed to the extent that it is submerged in the surface layer of the solvent. 1. A method for producing true spherical gelatin particles or gelatin microcapsules, etc., in which the mouth of the nozzle is reciprocated with a constant horizontal amplitude in the submerged dropping method. 2. The method for producing true spherical gelatin particles or gelatin microcapsules, etc. according to claim 1, wherein the reciprocating motion of the nozzle opening with a constant horizontal amplitude is a pendulum amplitude vibration. 3. A drug container for accommodating the drug to be encapsulated or an aqueous gelatin solution in which the drug is dissolved or dispersed in liquid form at a predetermined temperature, and a coating agent container for accommodating capsule coating material in liquid form, concentrically. a nozzle made of a double cylindrical tube; a liquid feeding tube for supplying a drug or an aqueous gelatin solution in liquid form from the drug container into the inner tube of the double cylindrical nozzle; and a liquid feeding tube from the coating agent container to the double cylindrical tube. a liquid supply pipe for supplying a coating agent in liquid form into the outer tube of the nozzle;
A hydrophobic solvent tank located below the double cylindrical nozzle for immersing the lower end of the nozzle in a hydrophobic solvent, and a heat insulator for maintaining the solvent in the hydrophobic solvent tank at a predetermined temperature. In the apparatus for producing true spherical gelatin particles or gelatin microcapsules, the double-tube nozzle is configured to be swingable, and at least the tip of the double-tube nozzle is in contact with the hydrophobic solvent. An apparatus for producing true spherical gelatin grains or gelatin microcapsules, characterized by comprising a nozzle drive mechanism for repeatedly vibrating in the horizontal direction at a predetermined period while soaked.
JP7378584A 1984-04-11 1984-04-11 Method and apparatus for producing spherical gelatine particle or microcapsule Granted JPS60215365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7378584A JPS60215365A (en) 1984-04-11 1984-04-11 Method and apparatus for producing spherical gelatine particle or microcapsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7378584A JPS60215365A (en) 1984-04-11 1984-04-11 Method and apparatus for producing spherical gelatine particle or microcapsule

Publications (2)

Publication Number Publication Date
JPS60215365A JPS60215365A (en) 1985-10-28
JPH0117376B2 true JPH0117376B2 (en) 1989-03-30

Family

ID=13528193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7378584A Granted JPS60215365A (en) 1984-04-11 1984-04-11 Method and apparatus for producing spherical gelatine particle or microcapsule

Country Status (1)

Country Link
JP (1) JPS60215365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168557A2 (en) 2008-09-25 2010-03-31 Nitto Denko Corporation Production method of gelatin particles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68913517T2 (en) * 1988-12-28 1994-06-09 Taisho Pharmaceutical Co Ltd METHOD FOR DISTRIBUTING THE PRESS PRESSING TABLETS.
MXPA03002835A (en) * 2000-11-30 2003-07-14 Warner Lambert Co Methods and apparatus for making seamless capsules.
EP2351779B1 (en) 2010-01-27 2019-04-24 Biosphere Medical, Inc. Microspheres and method of making the microspheres

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168557A2 (en) 2008-09-25 2010-03-31 Nitto Denko Corporation Production method of gelatin particles

Also Published As

Publication number Publication date
JPS60215365A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
US4481157A (en) Method and apparatus for production of microcapsules
US2510574A (en) Process of forming spherical pellets
US6719933B2 (en) Method for manufacturing seamless capsule
JPH06509502A (en) Method and apparatus for making spherical alginate pellets
US3773098A (en) Method of static mixing to produce metal foam
JPS62191033A (en) Method for forming uniform liquid droplet
CN109093128A (en) A kind of device and method preparing superfine low melting point globular metallic powder by drop atomization
JPH0117376B2 (en)
US2332671A (en) Fabrication of filled sealed capsules
US3933955A (en) Process for producing microspheres
KR20230106667A (en) Encapsulated oil core microcapsule
US3729278A (en) Apparatus for producing microspheres
US4127158A (en) Process for preparing hollow metallic bodies
JPS62176536A (en) Method and apparatus for preparing capsule
JP3375652B2 (en) Method and apparatus for producing spherical monodisperse particles
JPS609854B2 (en) Method for manufacturing multiphase droplets
JPS621288B2 (en)
JPH11244683A (en) Method and device for wet granulation
JPH0245495B2 (en) KINITSUKEIJONOKYUJOSHIRIKARYUSHINOSEIZOSOCHI
RU2654962C1 (en) Device for obtaining spherical particles from liquid viscous-flow materials
JP2817948B2 (en) Mixing device
JPS59112831A (en) Apparatus for preparing seamless granular material
JP2553363B2 (en) Manufacturing method of artificial roe
RU2179882C2 (en) Method of obtaining monodispersed drops
JP2015202423A (en) Fat globule production method