JPH01173679A - Mounting of mirror inside laser resonator - Google Patents

Mounting of mirror inside laser resonator

Info

Publication number
JPH01173679A
JPH01173679A JP62329923A JP32992387A JPH01173679A JP H01173679 A JPH01173679 A JP H01173679A JP 62329923 A JP62329923 A JP 62329923A JP 32992387 A JP32992387 A JP 32992387A JP H01173679 A JPH01173679 A JP H01173679A
Authority
JP
Japan
Prior art keywords
laser
output
mirror
resonator
rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62329923A
Other languages
Japanese (ja)
Inventor
Tatsuya Kitao
北尾 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Device Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Device Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP62329923A priority Critical patent/JPH01173679A/en
Publication of JPH01173679A publication Critical patent/JPH01173679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0815Configuration of resonator having 3 reflectors, e.g. V-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To adjust an output of a laser beam without changing the length of a laser resonator by a method wherein, in addition to an output mirror and a reflecting mirror which have been arranged in a straight line, a total reflection mirror is arranged in a specific position such as between laser rods or the like. CONSTITUTION:An output-side mirror 1 and a reflection-side mirror 2 are arranged in a straight line to be away from each other; laser rods 3, 4 are installed in this straight line between the two mirrors. When an output of a laser beam is to be reduced, the laser rod 3 adjacent to the output-side mirror 1 is selected from two or more laser rods 3, 4, and a total reflection mirror 5 is installed at its end. Inversely, when a Q-switch 6 used to increase the output is to be installed, a position which is deviated from the laser rods 3, 4 arranged in series is selected; the total reflection mirror 5 and a reflecting mirror 7 are formed in such a way that the switch 6 is sandwiched. By this setup, while the length of a resonator is kept constant, the output of the laser beam can be adjusted; it is possible to smoothly comply with a material of a workpiece and to a processing level.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はレーザ発振装置に設置するレーザ共振器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a laser resonator installed in a laser oscillation device.

(従来の技術) 光励起固体レーザは、各種の材料が開発実用化されてお
り、YAGレーザもその一種であり、そのレーザ出力を
増し、その指向性をよくするために、レーザ材料は細長
い棒状(以後ロッドと呼ぶ)にして、両端には反射防止
膜をつけるのが一般的である。
(Prior art) Various materials have been developed and put into practical use for optically pumped solid-state lasers, and YAG lasers are one of them. In order to increase the laser output and improve the directivity, the laser material is made of elongated rod-shaped ( (hereinafter referred to as a rod), with an anti-reflection coating applied to both ends.

レーザ共振器に設置する出力及び反射ミラーはレーザロ
ッドの延長軸上に設置し、このレーザロッドを駆動する
ランプは同じく直線状のものを使用し、このランプから
の光がレーザロッドに集光されるようにするために、楕
円筒集光器を用い、この焦点軸上にランプとレーザロッ
ドを配置する。
The output and reflection mirrors installed in the laser resonator are installed on the extension axis of the laser rod, and the lamp that drives this laser rod is also linear, and the light from this lamp is focused on the laser rod. In order to achieve this, an elliptical condenser is used, and the lamp and laser rod are placed on this focal axis.

従ってランプからの光は直接もしくは楕円筒集光器内面
で反射され、効率よくレーザロッドに集められる。
Therefore, the light from the lamp is reflected directly or on the inner surface of the elliptical condenser, and is efficiently focused on the laser rod.

このランプ、レーザロッド及び楕円筒集光器は必要に応
じて強制空冷あるいは水冷される。
The lamp, laser rod, and elliptical condenser are forcedly air-cooled or water-cooled as necessary.

レーザ共振器にはQスイッチと呼ばれる高速シャッタを
設置して、発振が開始しない状態のまま励起を行うと反
転分布密度が高くなり、ここでQスイッチを急に開くと
発振は急速に立上がり、20ns程度の極めて短い時間
内にレーザ光が放出され、そのビークパワーは約50M
l1lと大きな値になる。従って被加工物の加工深さを
大きくすることも可能になる。
A high-speed shutter called a Q-switch is installed in the laser resonator, and if the excitation is performed without oscillation starting, the population inversion density will increase, and if the Q-switch is suddenly opened, the oscillation will rise rapidly and last for 20 ns. Laser light is emitted within an extremely short period of time, and its peak power is approximately 50M.
It becomes a large value of l1l. Therefore, it is also possible to increase the machining depth of the workpiece.

ところでレーザ装置を利用して各種材料即ち被加工物を
加工するに当たっては、その被加工物の種類や加工の程
度に応じてレーザ装置に付属するレーザ共振器の構造を
変更する必要が生じる。
By the way, when processing various materials, ie, workpieces, using a laser device, it is necessary to change the structure of the laser resonator attached to the laser device depending on the type of the workpiece and the degree of processing.

ここで第2図aにはパルス発振レーザ共振器の、第2図
すにはQスイッチ発振レーザ共振器の構造の概略を断面
図により示した。
Here, FIG. 2A shows a schematic cross-sectional view of the structure of a pulse oscillation laser resonator, and FIG. 2A shows a schematic structure of a Q-switch oscillation laser resonator.

即ちパルス発振レーザ共振器では出力側ミラー10と反
射側ミラー11を互いに平行に配置し、その間には2本
のレーザロッド12.13を一直線上に離して配置し、
Qスイッチ発振レーザ共振器にあっては反射側ミラー1
1とレーザロッド13間にQスイッチ14を設置する構
造が一般的に採用されている。
That is, in the pulse oscillation laser resonator, the output side mirror 10 and the reflection side mirror 11 are arranged parallel to each other, and two laser rods 12 and 13 are arranged spaced apart in a straight line between them.
In the case of a Q-switched oscillation laser resonator, the reflecting side mirror 1
A structure in which a Q switch 14 is installed between the laser rod 1 and the laser rod 13 is generally adopted.

(発明が解決しようとする問題点) ところで被加工物の材質や種類に応じてレーザ共振器の
出力を調整する必要が生じて、パルス発振レーザ共振器
からQスイッチ発振レーザ共振器への変更、あるいはレ
ーザロッド数を2個から単一への変更が必要になる。
(Problems to be Solved by the Invention) However, it became necessary to adjust the output of the laser resonator depending on the material and type of the workpiece, so it was necessary to change from a pulse oscillation laser resonator to a Q-switch oscillation laser resonator. Alternatively, it is necessary to change the number of laser rods from two to one.

即ちパルス発振を行うパルス発振レーザ共振器からQス
イッチ発振レーザ共振器に変更する場合には、第2図す
に示すように反射側ミラー11とレーザロッド13間に
Qスイッチ14を取付けていた。
That is, when changing from a pulse oscillation laser resonator that performs pulse oscillation to a Q switch oscillation laser resonator, a Q switch 14 is installed between the reflection side mirror 11 and the laser rod 13 as shown in FIG.

更にレーザロッド数の変更やこのQスイッチの取付けに
は当然共振器長の変更が附随して発生して、極端な場合
にはレーザ発振装置全体の寸法変更が必要になって好ま
しくない。
Furthermore, changing the number of laser rods or installing this Q switch naturally involves changing the resonator length, and in extreme cases, it becomes necessary to change the dimensions of the entire laser oscillation device, which is undesirable.

本発明は上記難点を除去する新規なレーザ共振器内のミ
ラー取付は方法を提供し、特にレーザ共振器長を変えず
にレーザ共振の変更をを可能とするものである。〔発明
の構成〕 (問題点を解決するための手段) この目的を達成するのに本発明では直列に配置する複数
のレーザロッド間もしくは反射ミラーとこれに隣接して
配置するレーザロッド間に全反射ミラーを設置して、被
加工物に対応した異なるレーザ光出力を一定の共振器長
内で共振可能とする手段を採用する。
The present invention provides a novel method for mounting mirrors within a laser resonator which obviates the above-mentioned drawbacks and in particular allows modification of the laser resonance without changing the laser resonator length. [Structure of the Invention] (Means for Solving the Problems) In order to achieve this object, the present invention provides a total distance between a plurality of laser rods arranged in series or between a reflecting mirror and a laser rod arranged adjacent thereto. A reflection mirror is installed to enable resonance of different laser light outputs corresponding to the workpiece within a certain resonator length.

(作 用) このように本発明では、レーザ光出力を低くするのには
複数のレーザロッドの中出力側ミラーと隣接するレーザ
ロッドを選びその端に全反射ミラーを設置する方法を採
り、逆に出力の増大を図るQスイッチを設置するには直
列に配置するレーザロッドからずれた位置を選び更にこ
のスイッチを挟んで全反射ミラーと反射ミラーを形成す
る。
(Function) In this way, in order to lower the laser light output, the present invention adopts a method of selecting a laser rod adjacent to the medium output side mirror of a plurality of laser rods and installing a total reflection mirror at its end. To install a Q-switch to increase the output, select a position offset from the laser rods arranged in series, and further form a total reflection mirror and a reflection mirror with this switch in between.

従って共振器長は一定に保持したままレーザ光出力の調
整が可能となるので、被加工物の材質や加工程度への対
応が円滑にでき、更にはレーザ共振器を設置するレーザ
装置の寸法増加をも防止する利点がある。
Therefore, it is possible to adjust the laser light output while keeping the resonator length constant, so it is possible to smoothly adapt to the material of the workpiece and the degree of processing, and furthermore, the size of the laser equipment in which the laser resonator is installed is increased. It also has the advantage of preventing

(実施例) 第1図a、b、cにより本発明の詳細な説明するが、従
来の技術と重複する記載が都合によりでてくる場合があ
るが、新しい番号を付けて詳述する。
(Example) The present invention will be described in detail with reference to FIGS. 1a, b, and c. Although descriptions that overlap with those of the prior art may appear due to convenience, new numbers will be assigned and the details will be explained.

第1図a、bはQスイッチを利用するレーザ共振器であ
り、第1図Cはパルス発振レーザ共振器の概略を示す図
である。
1A and 1B are laser resonators using a Q switch, and FIG. 1C is a diagram schematically showing a pulse oscillation laser resonator.

出力側ミラー1と反射側ミラー2は一直線上に離れて配
置し、この間にレーザロッド3,4をこの直線上に設置
する。第1図aではレーザロッド4と反射側ミラー2の
中間に全反射ミラー5.Qスイッチ6更に反射ミラー7
をこの順に設置し、第1図すに示す例ではこの全反射ミ
ラー5.Qスイッチ6及び反射ミラー7をレーザロッド
3とレーザロッド4の間に設置する。
The output side mirror 1 and the reflection side mirror 2 are placed apart on a straight line, and the laser rods 3 and 4 are installed between them on this straight line. In FIG. 1a, a total reflection mirror 5. Q switch 6 and reflection mirror 7
are installed in this order, and in the example shown in FIG. 1, these total reflection mirrors 5. A Q switch 6 and a reflecting mirror 7 are installed between the laser rod 3 and the laser rod 4.

この両側はレーザ共振器の長さを増さずに設置すること
ができる。
Both sides can be installed without increasing the length of the laser resonator.

第1図Cは前述のようにパルス発振レーザ共振器を示し
ており、レーザロッド3とレーザロッド4の中間に反射
ミラー8を形成し、更に一直線上に出力側ミラー1と反
射側ミラー2を離れて配置するのは第1図a、bと同様
である。このようなパルス発振レーザ共振器ではレーザ
ロッド3と出力側ミラー1によってパルス発振レーザ共
振器が形成され、その動作時にはレーザロッド4は全く
機能しない。
FIG. 1C shows a pulse oscillation laser resonator as described above, in which a reflection mirror 8 is formed between the laser rod 3 and the laser rod 4, and an output side mirror 1 and a reflection side mirror 2 are arranged in a straight line. The separate arrangement is the same as in FIGS. 1a and 1b. In such a pulsed laser resonator, the laser rod 3 and the output side mirror 1 form the pulsed laser resonator, and the laser rod 4 does not function at all during its operation.

一方レーザロッド4と反射側ミラー2により他のパルス
発振レーザ共振器が得られ、この両パルス発振レーザ共
振器は電気的な切替え操作により交互に動作させる事が
可能になる。このように本発明ではレーザ共振器の長さ
を変更せずにレーザ光の出力が調整できる最大の特徴を
持っている。
On the other hand, another pulse oscillation laser resonator is obtained by the laser rod 4 and the reflection side mirror 2, and both of these pulse oscillation laser resonators can be operated alternately by electrical switching operation. As described above, the present invention has the greatest feature that the output of the laser beam can be adjusted without changing the length of the laser resonator.

また波長1.06Amのレーザ光も適用される。A laser beam with a wavelength of 1.06 Am is also applicable.

なお前述の第1図a、bではレーザロッド駆動用ランプ
ならびにこれらを収容する楕円筒集光器についての記述
を省略しているが、従来の技術欄に示した通りの構造で
あることを付記する。
Note that although the description of the laser rod driving lamp and the elliptical condenser housing them is omitted in the above-mentioned Figures 1a and 1b, it is noted that the structure is as shown in the conventional technology column. do.

〔発明の効果〕〔Effect of the invention〕

このように本発明ではレーザ共振器の長さを変えずにレ
ーザ光出力が調整できるので、被加工物の材料やその加
工度に対応したレーザ光出力が簡単に得られる。この結
果を得るのには一直線状に設置した出力ミラーと反射ミ
ラーの他に全反射ミラーをレーザロッド間等の特定の位
置に配置することによって達成したものである。
As described above, in the present invention, the laser light output can be adjusted without changing the length of the laser resonator, so that the laser light output corresponding to the material of the workpiece and the degree of processing thereof can be easily obtained. This result was achieved by arranging a total reflection mirror at a specific position, such as between the laser rods, in addition to the output mirror and reflection mirror installed in a straight line.

従ってレーザ発振装置の寸法等を変えずに、しかもその
取付は精度も変えずに設置が可能になって、装置の稼働
率も上昇することができる。
Therefore, the laser oscillation device can be installed without changing its dimensions, etc., and without changing its mounting accuracy, and the operating rate of the device can also be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、b、cは本発明実施例を説明するのに用意し
たレーザ共振器の概略を示す断面図、第2図a、bは従
来のレーザ共振器の概略を示す断面図である。 代理人 弁理士  井 上 −男
FIGS. 1 a, b, and c are cross-sectional views schematically showing a laser resonator prepared for explaining an embodiment of the present invention, and FIGS. 2 a, b are cross-sectional views schematically showing a conventional laser resonator. . Agent Patent Attorney Inoue - Male

Claims (1)

【特許請求の範囲】[Claims] 一直線上に配置する出力、反射ミラー間に複数のレーザ
ロッドを直列に設置する共振器において、このレーザロ
ッド間もしくは反射ミラーと隣接するレーザロッド間に
全反射ミラーを形成して被加工物に対応した異なるレー
ザ光出力を一定の共振器長内で共振可能とすることを特
徴とするレーザ共振器内のミラー取付け方法。
In a resonator where multiple laser rods are installed in series between the output and reflection mirrors arranged in a straight line, a total reflection mirror is formed between the laser rods or between the reflection mirror and the adjacent laser rod to accommodate the workpiece. A method for attaching a mirror in a laser resonator, characterized in that different laser light outputs can be resonated within a certain resonator length.
JP62329923A 1987-12-28 1987-12-28 Mounting of mirror inside laser resonator Pending JPH01173679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329923A JPH01173679A (en) 1987-12-28 1987-12-28 Mounting of mirror inside laser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329923A JPH01173679A (en) 1987-12-28 1987-12-28 Mounting of mirror inside laser resonator

Publications (1)

Publication Number Publication Date
JPH01173679A true JPH01173679A (en) 1989-07-10

Family

ID=18226779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329923A Pending JPH01173679A (en) 1987-12-28 1987-12-28 Mounting of mirror inside laser resonator

Country Status (1)

Country Link
JP (1) JPH01173679A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1424H (en) * 1993-01-07 1995-04-04 Hutchinson Technology Incorporated Transducer gimbal structure
WO2011132535A1 (en) * 2010-04-23 2011-10-27 株式会社ブイ・テクノロジー Optical glass rod, manufacturing method of optical glass rod, and laser generation device
US8509272B2 (en) 2009-06-10 2013-08-13 Lee Laser, Inc. Laser beam combining and power scaling device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1424H (en) * 1993-01-07 1995-04-04 Hutchinson Technology Incorporated Transducer gimbal structure
US8509272B2 (en) 2009-06-10 2013-08-13 Lee Laser, Inc. Laser beam combining and power scaling device
US8693511B2 (en) 2009-06-10 2014-04-08 Lee Laser, Inc. Laser device and method
US9106054B2 (en) 2009-06-10 2015-08-11 Lee Laser, Inc. Laser device and method
US9647417B2 (en) 2009-06-10 2017-05-09 Lee Laser, Inc. Laser device and method
WO2011132535A1 (en) * 2010-04-23 2011-10-27 株式会社ブイ・テクノロジー Optical glass rod, manufacturing method of optical glass rod, and laser generation device
JP2011233591A (en) * 2010-04-23 2011-11-17 V Technology Co Ltd Optical glass rod, method of manufacturing optical glass rod, and laser generating device

Similar Documents

Publication Publication Date Title
EP1764886B1 (en) Passively Q-switched microlaser with controllable peak power density
US4916712A (en) Optically pumped slab laser
JP2003524872A (en) Repetitive-pulse solid-state laser with a cavity with many different gain media
WO2020166420A1 (en) Laser processing machine, processing method, and laser light source
US20120250706A1 (en) Transverse laser mode switching
EP0580867B1 (en) Laser
KR100884512B1 (en) HIGH-POWER Er:YAG LASER
CA2103630A1 (en) Self Aligning Intracavity Raman Laser
JPH01173679A (en) Mounting of mirror inside laser resonator
US5034953A (en) Laser device capable of making a temperature distribution uniform in a slab-shaped laser medium
JP2021118271A (en) Laser oscillator and laser processing method
US3707687A (en) Dye laser tunable by longitudinal dispersion in the dye cell
JP2885175B2 (en) Solid-state laser device
JP3967754B2 (en) Side pumping laser
JPH07131102A (en) Q-switch laser oscillator
KR20200052615A (en) Pulse Laser Generator for Medical Treatment
JPH1168213A (en) Q switch co2 laser device
RU2016089C1 (en) Laser device with low mode irradiation for heat treatment of materials
Takenaka et al. Output Characteristics Of Industrial YAG Lasers Over 1 kWatt Power In CW And Quasi CW Mode
JP3845687B2 (en) Raman laser oscillator
JPH0563269A (en) Pulse semiconductor laser-pumped solid-state laser device
RU2027268C1 (en) Pulsed laser
JPH05167147A (en) Solid-state laser equipment
JPH0330380A (en) Solid laser oscillator
JPH05160475A (en) Laser