JPH01173595A - Heating material for high frequency induction electromagnetic cooker excellent in heating efficiency - Google Patents

Heating material for high frequency induction electromagnetic cooker excellent in heating efficiency

Info

Publication number
JPH01173595A
JPH01173595A JP32974587A JP32974587A JPH01173595A JP H01173595 A JPH01173595 A JP H01173595A JP 32974587 A JP32974587 A JP 32974587A JP 32974587 A JP32974587 A JP 32974587A JP H01173595 A JPH01173595 A JP H01173595A
Authority
JP
Japan
Prior art keywords
annealed
high frequency
heating efficiency
heating
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32974587A
Other languages
Japanese (ja)
Inventor
Kazumi Morita
森田 和巳
Yoshiaki Iida
飯田 嘉明
Yoshinari Muro
室 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32974587A priority Critical patent/JPH01173595A/en
Publication of JPH01173595A publication Critical patent/JPH01173595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cookers (AREA)

Abstract

PURPOSE:To improve heating efficiency by using a material which has a secondary crystal structure of Fe base in which total content of Pi, P, Al, Sn, Mn, V and Cr is less than 0.2wt.% and the average crystal granule diameter is more than 3mm. CONSTITUTION:Eddy current flowing in a magnetic substance material depends greatly on a crystal granule diameter and electric resistivity. A material which has a secondary recrystal structure of Fe base in which the total content of Si, P, Al, Sn, Mn, V, Cr is less than 0.2wt.% and the average crystal granule diameter is more than 3mm is cast into a slab and is annealed at need after usual hot rolling and then is formed into the final plate thickness through the usual cold rolling and annealed for decarbonization at need and next is annealed for recrystalization. Hereby, a material excellent in heating efficiency can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高周波誘導加熱装置を備えた電磁調理器用の発
熱効率の優れた磁性体発熱材料に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a magnetic heat generating material with excellent heat generation efficiency for use in an electromagnetic cooker equipped with a high frequency induction heating device.

〈従来の技術〉 電磁調理器は一般にトッププレート上に置かれた磁性体
製の発熱材料を調理容器底部に有し、これに電磁誘導作
用による渦電流を流すことにより、調理容器を発熱させ
ている。調理器の電磁誘導作用は、商用周波数の交流を
整流してからインバータを通じて高周波に変換し、これ
を所定のコイルに流し高周波磁界をつ(ることによって
発生させるのが普通である。
<Prior art> An electromagnetic cooker generally has a heat-generating material made of a magnetic material placed on a top plate at the bottom of the cooking container, and causes the cooking container to generate heat by passing an eddy current through it due to electromagnetic induction. There is. The electromagnetic induction effect of a cooking appliance is normally generated by rectifying a commercial frequency alternating current, converting it to a high frequency through an inverter, and flowing it through a predetermined coil to generate a high frequency magnetic field.

電磁調理は安全性が高いことおよび清潔である他に、直
接発熱なので熱効率がよく、経済的であり一層の需要増
が見込まれている。
In addition to being highly safe and clean, electromagnetic cooking is also economical because it generates heat directly, and is expected to further increase in demand.

ところで熱効率をよくするには磁性体発熱材料の発熱量
を多くすればよく、そのためには、定格容量の範囲内で
電流誘導により発生する渦電流が磁性体発熱材料に多く
流されるようにすればよい。
By the way, in order to improve thermal efficiency, it is only necessary to increase the heat generation amount of the magnetic heat generating material, and in order to do this, it is necessary to allow more eddy current generated by current induction to flow through the magnetic heat generating material within the range of the rated capacity. good.

しかし磁性体発熱材料としては、従来普通の鉄およびス
テンレスが用いられている程度であり、熱効率上問題が
あった。
However, conventionally, ordinary iron and stainless steel have been used as magnetic heat generating materials, and this has caused problems in terms of thermal efficiency.

〈発明が解決しようとする問題点〉 本発明は渦電流発熱効率の優れた高周波誘導加熱電磁調
理器用発熱材料を提供するものである。
<Problems to be Solved by the Invention> The present invention provides a heat generating material for a high frequency induction heating electromagnetic cooker that has excellent eddy current heat generation efficiency.

く問題解決のための手段〉 本発明は、Si+  P、 /V、 Sn、 Mn、 
 V、 Crの合計含有量が0.2wt%以下で、平均
結晶粒径が3ffIIIl以上であるFeベースの2次
再結晶組織を有することを特徴宇12発1率0優0t′
高周波111M1ill理器用発熱材料である。
Means for solving problems〉 The present invention provides Si+P, /V, Sn, Mn,
It is characterized by having an Fe-based secondary recrystallized structure with a total content of V and Cr of 0.2wt% or less and an average crystal grain size of 3ffIIIl or more.
High frequency 111M1ill is a heat generating material for medical equipment.

く作 用〉 電ift調理器の渦電流による発熱効果をよ(するには
、磁性体材料に渦電流が多く流れるようにすればよいこ
とは前述の通りである。そこで発明者らは、かかる観点
から渦電流による発熱量が多くなる磁性体材料について
研究を重ねたところ、磁性体材料に流れる渦電流は結晶
粒径及び電気比抵抗に大きく依存していることを突き止
めた。
As mentioned above, in order to improve the heating effect caused by the eddy current of an electric ift cooker, it is sufficient to allow a large amount of eddy current to flow through the magnetic material. After conducting research on magnetic materials that generate a large amount of heat due to eddy currents, we discovered that the eddy currents flowing through magnetic materials are largely dependent on the crystal grain size and electrical resistivity.

以下に、この発明を実験結果に基づいて具体的に説明す
る。
The present invention will be specifically explained below based on experimental results.

第1図に、C: 0.03%、 Si : 0.04%
、p:o、ot%、 Mn : 0.05%、s:o、
o2%その他事可避不純物とFeからなる溶鋼を連続鋳
造によってスラブとした後、通常の熱間圧延で2.3a
m厚の熱延鋼帯とし次いで1000℃30秒の焼鈍を施
し、引続き1回の冷間圧延で0.35an厚に仕上げた
冷延板に820°C2分の脱炭と1次再結晶を兼ねた連
続焼鈍を施した後の材料と、この連続焼鈍に引続き、8
80°C30時間の焼鈍を行い、MnSの微細析出物利
用により2次再結晶組織を得た材料の20kHzの高周
波における鉄損を示す。
In Figure 1, C: 0.03%, Si: 0.04%
, p: o, ot%, Mn: 0.05%, s: o,
Molten steel consisting of o2% and other unavoidable impurities and Fe is made into a slab by continuous casting, and is then rolled to 2.3a by normal hot rolling.
The hot-rolled steel strip was made into a hot-rolled steel strip with a thickness of m, then annealed at 1000°C for 30 seconds, and then decarburized and primary recrystallized at 820°C for 2 minutes to a cold-rolled plate finished to a thickness of 0.35an by one cold rolling. The material after being subjected to continuous annealing that also serves as
This figure shows the iron loss at a high frequency of 20 kHz for a material that was annealed at 80°C for 30 hours and obtained a secondary recrystallized structure by using fine MnS precipitates.

この図から明らかなように、いずれの磁化力(H)にお
いても、2次再結晶組織からなるもののほうが1次再結
晶組織を有する従来材より鉄損値が高い。この鉄損値が
高いほど発熱効率が優れた材料といえる。
As is clear from this figure, at any magnetizing force (H), the core loss value of the material with the secondary recrystallized structure is higher than that of the conventional material with the primary recrystallized structure. It can be said that the higher the iron loss value, the better the heat generation efficiency of the material.

なお、この2次再結晶組織を有する材料の平均結晶粒径
は7 rm ’?! 1次再結晶MwRを有する材料は
0.05anである。これらから、2次再結晶により、
結晶粒を粗大化させたほうが鉄損値が高くなり、発熱材
料に適していることが判る。結晶粒を粗大化すると鉄損
値が高くなるのは磁区幅が大きくなることに伴う磁化の
際の磁壁の移動速度が大きくなることにより渦電流が増
すためである。またこの渦電流は周波数の2乗に比例し
て増大するので、電M1i11理器のように、20kH
z近辺の高周波で使われる場合には結晶粒径の粗大化は
発熱効率をあげる手段としては効果的である。好適な2
次再結晶粒径は平均粒径3IIll1以上であるので、
本発明では2次再結晶の平均粒径を3mm1以上に限定
する。
The average crystal grain size of this material having a secondary recrystallized structure is 7 rm'? ! The material with primary recrystallization MwR is 0.05 an. From these, by secondary recrystallization,
It can be seen that the coarser the crystal grains, the higher the iron loss value, making it suitable as a heat-generating material. The core loss value increases as the crystal grains become coarser because the movement speed of domain walls during magnetization increases as the magnetic domain width increases, which increases eddy currents. Also, since this eddy current increases in proportion to the square of the frequency, it
When used at high frequencies near z, coarsening the crystal grain size is effective as a means of increasing heat generation efficiency. suitable 2
Since the secondary recrystallized grain size is an average grain size of 3IIll1 or more,
In the present invention, the average grain size of secondary recrystallization is limited to 3 mm1 or more.

つぎに、成分組成を限定した理由を述べる。磁性体材料
に流れる渦電流は電気比抵抗が小さいほどよ−(流れ、
その結果、発熱量が多くなることから、電気比抵抗増大
効果の大きいSl、  P、 kl、 Sn。
Next, the reason for limiting the component composition will be described. The smaller the electrical resistivity of the eddy current flowing through the magnetic material, the better (current,
As a result, Sl, P, kl, and Sn have a large effect of increasing electrical resistivity because their calorific value increases.

Mn、  V、 Crの元素は極力少ないほど好ましい
、従って、これら7の元素は合計量で0.2wt%以下
に限定される。
It is preferable that the elements Mn, V, and Cr be as small as possible. Therefore, the total amount of these seven elements is limited to 0.2 wt% or less.

また2次再結晶を起こし易(するために、インヒビター
機能を有する/V、Bの窒化物、Ti、 Nb。
In addition, nitrides of /V, B, Ti, and Nb have inhibitor functions to easily cause secondary recrystallization.

V、Crの炭窒化物、MnS、 MnSeおよびSb、
 Pbn Sn+Bi、 As、 Teなどの一種以上
を0.1〜0.01wt%程度含有させる2七ができる
V, Cr carbonitride, MnS, MnSe and Sb,
27 containing about 0.1 to 0.01 wt% of one or more of PbnSn+Bi, As, Te, etc. can be produced.

なおこの発明の発熱材料はFeベースの磁性材料である
が、鉄族元素で強磁性のNi+ Coを含有してもよい
Although the heat generating material of the present invention is an Fe-based magnetic material, it may also contain Ni+Co, which is an iron group element and is ferromagnetic.

本発明材料の一般的な製造法としては、所定の組成に溶
鋼成分を調整後、スラブに鋳造し、通常の熱延後、必要
に応じて焼鈍したのち、通常の冷延にて最終板厚とし、
必要に応じて脱炭焼鈍を行い、次に1次再結晶焼鈍を好
ましくは550℃以上で15秒以上施したのち、好まし
くは800℃以上A3変態点以下で10分以上の2次再
結晶焼鈍を施すものである。
The general manufacturing method for the material of the present invention is to adjust the molten steel composition to a predetermined composition, then cast it into a slab, perform normal hot rolling, annealing if necessary, and then perform normal cold rolling to achieve the final plate thickness. year,
Decarburization annealing is performed if necessary, followed by primary recrystallization annealing preferably at 550°C or higher for 15 seconds or more, followed by secondary recrystallization annealing preferably at 800°C or higher and below the A3 transformation point for 10 minutes or more. It is intended to provide

通常2次再結晶を有する材料は特定の方位の集合組織を
呈し易いが、製品とした場合、発熱面で局部的に温度む
らが生Iじるので、均一に発熱させるには、磁化容易軸
がランダムであることが望ましい。
Normally, materials with secondary recrystallization tend to exhibit a texture with a specific orientation, but when used as a product, local temperature unevenness occurs on the heating surface, so in order to generate heat uniformly, it is necessary to is preferably random.

〈実施例〉 第1表に示す組成の鯛を通常の熱間圧延で2.3閣厚の
熱延鋼帯とし、次いで1100°Cで30秒の焼鈍をし
た後、1回の冷間圧延で0.35an厚に仕上げ、引続
き820°Cで2分の脱炭と1次再結晶を兼ねた連続焼
鈍を施し、次いで表に示す温度と時間で焼鈍を施し2次
再結晶の粒径を調整した。  20kHzにおける鉄損
を併せて示す。
<Example> A sea bream having the composition shown in Table 1 was made into a hot rolled steel strip with a thickness of 2.3 mm by normal hot rolling, then annealed at 1100°C for 30 seconds, and then cold rolled once. The material was finished to a thickness of 0.35 an, then subjected to continuous annealing at 820°C for 2 minutes, which also served as decarburization and primary recrystallization, and then annealed at the temperature and time shown in the table to reduce the grain size of secondary recrystallization. It was adjusted. The iron loss at 20kHz is also shown.

本発明の材料は比較材に比べて高周波における鉄損値が
高く、過電流による発熱効率が優れていることがわかる
It can be seen that the material of the present invention has a higher core loss value at high frequencies than the comparative materials, and has excellent heat generation efficiency due to overcurrent.

〈発明の効果〉 以上述べたように、この発明により電1ffil!理器
用の発熱効率の優れた磁性体発熱材料を手に入れること
ができる。
<Effects of the Invention> As stated above, this invention allows electricity to be increased by 1ffil! It is possible to obtain magnetic heat generating materials with excellent heat generation efficiency for medical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、1次再結晶組織からなる材料と2次再結晶組
織を有する材料の20kHzにおける鉄損を示したもの
である。 第1図
FIG. 1 shows the iron loss at 20 kHz of a material having a primary recrystallized structure and a material having a secondary recrystallized structure. Figure 1

Claims (1)

【特許請求の範囲】[Claims] Si、P、Al、Sn、Mn、V、Crの合計含有量が
0.2wt%以下で、平均結晶粒径が3mm以上である
Feベースの2次再結晶組織を有することを特徴とする
発熱効率の優れた高周波誘導加熱電磁調理器用発熱材料
A heat generating device characterized by having an Fe-based secondary recrystallized structure with a total content of Si, P, Al, Sn, Mn, V, and Cr of 0.2 wt% or less and an average crystal grain size of 3 mm or more. High-efficiency heat-generating material for high-frequency induction heating electromagnetic cookers.
JP32974587A 1987-12-28 1987-12-28 Heating material for high frequency induction electromagnetic cooker excellent in heating efficiency Pending JPH01173595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32974587A JPH01173595A (en) 1987-12-28 1987-12-28 Heating material for high frequency induction electromagnetic cooker excellent in heating efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32974587A JPH01173595A (en) 1987-12-28 1987-12-28 Heating material for high frequency induction electromagnetic cooker excellent in heating efficiency

Publications (1)

Publication Number Publication Date
JPH01173595A true JPH01173595A (en) 1989-07-10

Family

ID=18224809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32974587A Pending JPH01173595A (en) 1987-12-28 1987-12-28 Heating material for high frequency induction electromagnetic cooker excellent in heating efficiency

Country Status (1)

Country Link
JP (1) JPH01173595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101670A (en) * 2006-10-18 2008-05-01 Ckd Corp Connecting unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101670A (en) * 2006-10-18 2008-05-01 Ckd Corp Connecting unit

Similar Documents

Publication Publication Date Title
CA1103567A (en) Method of producing non-oriented silicon steel sheets having an excellent electromagnetic property
US3287183A (en) Process for producing single-oriented silicon steel sheets having a high magnetic induction
CN105008555B (en) The manufacture method of grain-oriented magnetic steel sheet
JPH0469223B2 (en)
PL118067B1 (en) Method of manufacture of non-orientated,iron electrotechnical sheetskojj stali
JP2016509625A (en) Oriented electrical steel sheet with excellent iron loss and method for producing the same
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JPS6323262B2 (en)
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JPH01173595A (en) Heating material for high frequency induction electromagnetic cooker excellent in heating efficiency
EP0253904B1 (en) Method for the production of oriented silicon steel sheet having excellent magnetic property
EP0486707B1 (en) A Process for Producing an Ultrahigh Silicon, Grain-Oriented Electrical Steel Sheet and Steel Sheet obtainable with said Process
Kohler Production and Properties of Grain‐Oriented Commercially Pure Iron
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JPH0757888B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
KR20150074930A (en) Non-oriented electrical steel steet and manufacturing method for the same
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JPS6256922B2 (en)
Littmann Properties of grain oriented 3% silicon steel for transformers with minimum cost of ownership
KR100268853B1 (en) The manufacturing method of non oriented electric steel sheet with excellent magnetic properties
JPH11323438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS6256924B2 (en)
KR940009346A (en) Method of manufacturing non-oriented electrical steel sheet with excellent magnetic properties