JPH01173428A - Manufacture of coating type magnetic medium - Google Patents

Manufacture of coating type magnetic medium

Info

Publication number
JPH01173428A
JPH01173428A JP33282187A JP33282187A JPH01173428A JP H01173428 A JPH01173428 A JP H01173428A JP 33282187 A JP33282187 A JP 33282187A JP 33282187 A JP33282187 A JP 33282187A JP H01173428 A JPH01173428 A JP H01173428A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
glass transition
transition temperature
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33282187A
Other languages
Japanese (ja)
Inventor
Eikichi Yoshida
栄吉 吉田
Toshihisa Inabe
稲部 敏久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP33282187A priority Critical patent/JPH01173428A/en
Publication of JPH01173428A publication Critical patent/JPH01173428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve durability by making the glass transition temperature of a first magnetic layer after hardening processing higher than the glass transition temperature of a second magnetic layer before the hardening processing. CONSTITUTION:The glass transition temperature (Tg1) of the first magnetic layer after the hardening processing is made higher than the glass transition temperature (Tg2) of the second magnetic layer before the hardening processing, and calender processing temperature T is made within the range of Tg1>T> Tg2. Further, conductive titanium oxide fine powder whose oil absorption is more than 15ml/100g and whose powder resistance is less than 60OMEGAcm is added in the first magnetic layer by 3-30% to dielectric powder in the magnetic layer. Furthermore, a non-magnetic supporting body is made of polyethyleneterephthalate film, and polyurethane resin whose solubility parameter is within the range of 9.0-9.5 is made to be contained by more than 40% of total binder component as the binder component of the first magnetic layer. Thus, superior electro-magnetic conversion characteristic and the superior durability are obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、浸れた電磁変換特性を有し、耐久性に秀でた
塗布型磁性媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a coated magnetic medium that has submerged electromagnetic conversion characteristics and is excellent in durability.

〈従来の技術〉 近年、磁気記録媒体の高密度化の要求に伴い。<Conventional technology> In recent years, with the demand for higher density magnetic recording media.

非磁性支持体上に磁性粉末と結合剤からなる磁性塗料を
塗布してなるいわゆる塗布型磁性媒体においても磁性粉
末の微粒子化と共に磁性層の薄膜化1表面平滑化及び磁
性粉体積充填率の増大化が益々促進される傾向にある。
Even in so-called coated magnetic media in which a magnetic coating consisting of magnetic powder and a binder is coated on a non-magnetic support, it is possible to make the magnetic powder particles finer and to make the magnetic layer thinner.1.Smooth the surface and increase the volume filling rate of the magnetic powder. There is a tendency for this trend to be accelerated more and more.

特に1表面平滑化及び磁性粉体積充填率の増大化に関し
ては、磁性粉の分散度を高める事は勿論のこと。
In particular, regarding surface smoothing and increasing the magnetic powder volume filling rate, it goes without saying that the degree of dispersion of the magnetic powder can be increased.

従来よシ広く用いられてきたロール艶出し加工いわゆる
カレンダー処理においても処理圧力の増大化及びロール
面精度の向上が一層図ちれるようになってきた。
Even in roll polishing, so-called calendering, which has been widely used in the past, efforts have been made to increase the processing pressure and improve the roll surface precision.

一方、耐久性に関しては、磁性層の薄膜化。On the other hand, regarding durability, the magnetic layer has been made thinner.

表面平滑化及び磁性粉体積充填率の増大化が機械的強度
の低下及び摩擦係数の増大化を来す為に非常に厳しいも
のとなる。さらには、薄膜化に伴う弊害として遮光性、
導電性の劣化という問題も合せて生じる為にこれの諸問
題を解消する新しい媒体設計技術の開発が望まれている
Smoothing the surface and increasing the volume filling rate of magnetic powder are extremely difficult because they result in a decrease in mechanical strength and an increase in the coefficient of friction. Furthermore, there are some disadvantages associated with thinning the film, such as light-shielding properties,
Since the problem of deterioration of conductivity also arises, it is desired to develop a new medium design technique to solve these problems.

このような要求を満たす為に従来は、磁性層中に高級脂
肪酸或いはその誘導体、弗素系オイル。
In order to meet these requirements, higher fatty acids or their derivatives, or fluorine-based oils have conventionally been used in the magnetic layer.

シリコーン等の潤滑剤や、モース硬度7以上の非磁性無
機微粉末を単独或いは複合させた状態で含有させる試み
がなされていた。
Attempts have been made to include lubricants such as silicone and non-magnetic inorganic fine powders with a Mohs hardness of 7 or higher, either singly or in combination.

〈発明が解決しようとする問題点〉 しかしながら、薄膜化1表面平滑化及び磁性粉体積充填
率の増大化がなされた塗布型磁性媒体に要求される耐久
性を、電磁変換特性を犠牲にする事無く十分に確保する
迄には至っていなかった。−例を挙げれば、膜厚が1μ
mの塗布型磁性媒体に過度の潤滑剤を含有させ耐久性を
確保しようとすると、電磁変換特性の劣化を招くのは熱
論の事、フレキシブルディスク形態で高温高湿下にて長
時間使用し続けると滑剤のオーバーブリードが生じその
結果、ディスクの回転異常、或いはヘッド汚れによる再
生出力の低下、更には該ヘッド汚れに起因する磁性層の
部分的剥離が起こシ実用上問題があった。
<Problems to be Solved by the Invention> However, the durability required for coated magnetic media, which is achieved by thinning the film, smoothing the surface, and increasing the magnetic powder volume filling rate, cannot be achieved at the expense of electromagnetic conversion characteristics. However, it was not yet possible to secure sufficient capacity. -For example, the film thickness is 1μ
If an attempt is made to ensure durability by adding too much lubricant to a coated magnetic medium, it is inevitable that the electromagnetic conversion characteristics will deteriorate, and the flexible disk format will continue to be used for long periods of time under high temperature and high humidity conditions. This causes overbleeding of the lubricant, resulting in abnormal rotation of the disk, reduction in reproduction output due to head contamination, and furthermore, partial peeling of the magnetic layer due to the head contamination, which poses practical problems.

本発明は塗布型磁性媒体の製造方法に係わり。The present invention relates to a method of manufacturing a coated magnetic medium.

その目的とするところは、かかる従来の欠点を解消し優
れた電磁変換特性を有し耐久性に秀でた磁気記録媒体を
提供することにある。
The purpose is to eliminate such conventional drawbacks and provide a magnetic recording medium that has excellent electromagnetic conversion characteristics and excellent durability.

く問題点を解決するだめの手段〉 本発明によれば。A last resort to solving problems According to the invention.

■非磁性支持体上に第一の磁性層を形成し、カレンダー
処理をしないで硬化処理を行りた後。
(2) After forming a first magnetic layer on a non-magnetic support and performing a hardening treatment without calendering.

第二の磁性層を塗布してカレンダー処理ヲ行イ。Apply the second magnetic layer and perform calendering.

さらに硬化処理をする事により、塗布型磁性媒体を製造
する方法であって。
A method of manufacturing a coated magnetic medium by further performing a curing treatment.

■該第一の磁性層の硬化処理後のガラス転移温度(Tg
1)が、該第二の磁性層の硬化処理前のガラス転移温度
(Tg2)よシも高く、且カレンダー処理温度TがTg
、>T>Tg2の範囲にあシ。
■Glass transition temperature (Tg) after curing treatment of the first magnetic layer
1) is higher than the glass transition temperature (Tg2) of the second magnetic layer before the hardening process, and the calendering temperature T is higher than Tg2.
,>T>Tg2.

■さらに、該第一の磁性層に、吸油量が15mt/10
0g以上で粉体抵抗が60Ωcm(100KP/cm2
圧粉体による値)以下の導電性酸化チタン微粉末を磁性
層中の強磁性粉末に対して3〜30%添加し。
■Furthermore, the first magnetic layer has an oil absorption of 15 mt/10
Powder resistance is 60Ωcm (100KP/cm2
The following conductive titanium oxide fine powder was added in an amount of 3 to 30% based on the ferromagnetic powder in the magnetic layer.

■さらには、該非磁性支持体がポリエチレンテレフタレ
ートフィルムであると共に、第一の磁性層の結合剤成分
として、溶解性パラメータが9.0〜9.5の範囲にあ
るポリウレタン樹脂を全結合剤成分の40%以上含有さ
せる事を特徴とする塗布型磁性媒体の製造方法 が得られる。
(2) Furthermore, the non-magnetic support is a polyethylene terephthalate film, and a polyurethane resin having a solubility parameter in the range of 9.0 to 9.5 is used as the binder component of the first magnetic layer. A method for manufacturing a coated magnetic medium characterized by containing 40% or more is obtained.

本発明に於いて行われるカレンダー処理とは。What is the calendaring process performed in the present invention?

加熱された鏡面金属ロールとそれをバックアップする表
面平滑な弾性ロール間に磁性層を塗布したウェブを加圧
しながら流す処理であるが。
It is a process in which a web coated with a magnetic layer is flowed under pressure between a heated mirror-finished metal roll and a smooth-surfaced elastic roll that backs it up.

該弾性ロールの代わりに鏡面金属ロールを使用しても良
い。該カレンダー処理時のニップ圧(線圧)は、鏡面金
属ロールをバックアップする弾性ロールの材質にもよる
が、100〜350KP/crnが適当である。
A mirror-finished metal roll may be used instead of the elastic roll. The nip pressure (linear pressure) during the calendering process is suitably 100 to 350 KP/crn, although it depends on the material of the elastic roll backing up the mirror-finished metal roll.

鏡面金属ロールの表面温度すなわち、カレンダー処理温
度は、第1の磁性層の硬化処理後のガラス転移温度よシ
も低く、且第2の磁性層のガラス転移温度よシも高い事
が必要である。
The surface temperature of the mirror-finished metal roll, that is, the calendering temperature, needs to be lower than the glass transition temperature of the first magnetic layer after hardening treatment, and higher than the glass transition temperature of the second magnetic layer. .

この条件が満たされない場合には9本発明の効果を十分
に発揮することが出来ないので注意を要する。
If this condition is not met, the effects of the present invention cannot be fully exhibited, so care must be taken.

本発明に於いて第1の磁性層に用いる導電性酸化チタン
微粉末は、吸油量が15ml/100g以上で粉体抵抗
が60Ω偲(100KV/、Lz圧粉体による値)以下
のもので、平均粒径が第1の磁性層の厚さと同等もしく
はそれ以下のものであれば良く。
In the present invention, the conductive titanium oxide fine powder used for the first magnetic layer has an oil absorption of 15 ml/100 g or more and a powder resistance of 60 Ω or less (100 KV/, value based on Lz compact), It is sufficient if the average grain size is equal to or smaller than the thickness of the first magnetic layer.

酸化チタン微粉末の表面に酸化錫系℃導電層を被着した
白色導電性酸化チタンや、チタンブラツクと呼ばれる黒
色導電性酸化チタン微粉末等が挙げられる。導電性酸化
チタンの添加量は。
Examples include white conductive titanium oxide, which has a tin oxide-based conductive layer coated on the surface of titanium oxide fine powder, and black conductive titanium oxide fine powder called titanium black. What is the amount of conductive titanium oxide added?

第1の磁性層中の強磁性粉末に対して3〜30重量%が
適当である。
A suitable amount is 3 to 30% by weight based on the ferromagnetic powder in the first magnetic layer.

これよシも少ない場合には遮光性、導電性及び潤滑剤の
保持能力が不十分となシ、これよりも多いと電磁変換特
性の劣化を来すので好ましくない。
If the amount is less than this, the light-shielding property, conductivity, and lubricant retention ability will be insufficient, and if the amount is more than this, the electromagnetic conversion characteristics will deteriorate, which is not preferable.

該第1の磁性層の結合剤として使用するポリウレタン樹
脂は、溶解性パラメータが9.0〜9.5の範囲にある
ものであれば良く、その使用量は第1の磁性層中の全結
合剤成分の40重量%以上が好ましい。
The polyurethane resin used as a binder for the first magnetic layer may have a solubility parameter in the range of 9.0 to 9.5, and the amount used should be determined based on the total bonding in the first magnetic layer. It is preferably 40% by weight or more of the agent components.

該第1の磁性層の硬化方法としては、使用する結合剤の
系によっても異なるが熱処理、電子線照射処理等が挙げ
られる。
Methods for curing the first magnetic layer include heat treatment, electron beam irradiation treatment, etc., although it varies depending on the binder system used.

該第1の磁性層の硬化具合は、系の硬化反応に寄与する
反応基の残存濃度が初期反応基濃度の50係以下となる
ことが好ましい。
Regarding the degree of hardening of the first magnetic layer, it is preferable that the residual concentration of reactive groups contributing to the curing reaction of the system is 50 times or less of the initial reactive group concentration.

特に、第1の磁性層と第2の磁性層の結合剤成分を同一
のものとするような場合には、第1の磁性層の硬化を十
分に行わないと両磁性層間のガラス転移温度の差が狭ま
ってしまい、従ってカレンダー処理温度の範囲を広く取
れなくなるので好ましくない。
In particular, when the binder components of the first and second magnetic layers are the same, the glass transition temperature between the two magnetic layers must be sufficiently cured. This is not preferable because the difference narrows, and therefore a wide range of calendering temperatures cannot be achieved.

なお、第1の磁性層の結合剤成分のガラス転移温度が第
2の磁性層の結合剤成分のガラス転移温度よりも十分に
高い場合には、硬化促進度を必ずしも50チ以下とする
必要性は無いが、この場合には第2の磁性層を塗布する
際に第1の磁性層が溶解して第2の磁性層と混じシ合わ
ないように注意する必要がある。
Note that if the glass transition temperature of the binder component of the first magnetic layer is sufficiently higher than the glass transition temperature of the binder component of the second magnetic layer, the degree of curing acceleration does not necessarily need to be 50 degrees or less. However, in this case, care must be taken to prevent the first magnetic layer from melting and mixing with the second magnetic layer when coating the second magnetic layer.

く作 用〉 本発明における作用機構について9発明者らは次の様に
考えている。すなわち。
Effect> The nine inventors consider the mechanism of action of the present invention as follows. Namely.

■非磁性支持体であるポリエチレンテレフタレートフィ
ルムと第1の磁性層間の溶解性パラメータの偏差の少な
いことが接着性の向上に寄与する。
(2) A small deviation in solubility parameters between the polyethylene terephthalate film, which is a non-magnetic support, and the first magnetic layer contributes to improved adhesion.

以下金白 ■第1の磁性層がカレンダー処理されていない為に第1
の磁性層中に占める空孔の体積占有率が比較的高く、潤
滑剤ローディング性に優れている。
The following is gold and white■ Because the first magnetic layer is not calendered, the first
The volume occupancy of pores in the magnetic layer is relatively high, and the lubricant loading property is excellent.

■第1の磁性層中の導電性酸化チタンが導電性。■The conductive titanium oxide in the first magnetic layer is conductive.

遮光性はもとよシ潤滑剤ローディング性を一段と向上さ
せる。
In addition to light blocking properties, it further improves lubricant loading properties.

これらの作用によシ優れた耐久性が得られる。These effects provide excellent durability.

さら、に。moreover.

■第2の磁性層が選択的にカレンダー処理される為に第
2の磁性層中の強磁性粉末の体積占有率が向上しその結
果、電磁変換特性が向上する。
(2) Since the second magnetic layer is selectively calendered, the volume occupancy of the ferromagnetic powder in the second magnetic layer is improved, and as a result, the electromagnetic conversion characteristics are improved.

すなわち、磁性層を2層構造とすることにより電磁変換
特性を低下させる事無く耐久性を向上させる事が出来る
That is, by forming the magnetic layer into a two-layer structure, durability can be improved without deteriorating electromagnetic conversion characteristics.

〈実施例〉 次に本発明の実施例について説明する。<Example> Next, examples of the present invention will be described.

実施例1 C・−γ酸化鉄(H・=7000e)     ・冒N
イ蛋部塩化ビニルー酢酸ビニル−ビニルアルコール共重
合体(塩化ビニル成分90%、酢酸ビニル成分4%、ビ
ニルアルコール成分6%、Tg74℃)・・・・・・・
・・20重量部 ポリウレタン樹脂(引っ張シ破断強度660 K9/c
IrL2溶解性パラメータ9.2.  Tg17℃、N
V35%)・・・・・・・・・ω重量部 白色導電性酸化チタン(万態産業社製300W)・・・
・・・・・・15重量部 i−アミルステアレート   ・・・・・・・・・3重
量部ヘキサデシルステアレート  ・・・・・・・・・
7重量部メチルエチルケトン    ・・・・・・・・
・90重量部シクロヘキサノン      ・・・・・
・・・・45重量部トルエン          ・・
・・・・・・・90 m t 部上記組成をボールミル
にて72時間混線後、さらにインシアネート化合物(日
本ポリウレタン社製C−3041)12重量部を加えて
2時間混練し第1の磁性層用の磁性塗料を得た。
Example 1 C・-γ iron oxide (H・=7000e) ・N
Vinyl chloride-vinyl acetate-vinyl alcohol copolymer (vinyl chloride component 90%, vinyl acetate component 4%, vinyl alcohol component 6%, Tg 74°C)...
・・20 parts by weight polyurethane resin (tensile breaking strength 660 K9/c
IrL2 solubility parameters 9.2. Tg17℃, N
V35%) ω Part by weight White conductive titanium oxide (300W manufactured by Bancho Sangyo Co., Ltd.)
・・・・・・15 parts by weight i-amyl stearate ・・・・・・3 parts by weight hexadecyl stearate ・・・・・・・・・
7 parts by weight methyl ethyl ketone...
・90 parts by weight cyclohexanone...
...45 parts by weight toluene...
...90 m t parts The above composition was mixed in a ball mill for 72 hours, and then 12 parts by weight of an incyanate compound (C-3041 manufactured by Nippon Polyurethane Co., Ltd.) was added and kneaded for 2 hours to form the first magnetic layer. A magnetic paint for use was obtained.

これを厚さ75μmのポリエチレンテレコタレートフィ
ルム上に乾燥後の厚さが0.6μmとなるように塗布し
、さらに45℃の恒温下にて72時間キ工アリングを行
い第1の磁性層を得た。
This was coated on a polyethylene terecotalate film with a thickness of 75 μm so that the thickness after drying was 0.6 μm, and keying was performed for 72 hours at a constant temperature of 45°C to form the first magnetic layer. Obtained.

得られた第1の磁性層上に下記組成から成る第2の磁性
層用の磁性塗料を乾燥後の厚さが0.4μmとなるよう
に塗布し、ニップ圧300KP/、2金属ロ一ル表面温
度50℃の条件にてカレンダー処理を行い、これを45
℃の恒温下で72時間キユアリングした後直径3.5イ
ンチの円盤状に打ち抜き試料とした。
On the obtained first magnetic layer, a magnetic paint for a second magnetic layer having the following composition was applied so that the thickness after drying was 0.4 μm, and a nip pressure of 300 KP/, two metal rolls were applied. Calendar treatment was performed at a surface temperature of 50°C, and this was heated to 45°C.
After curing for 72 hours at a constant temperature of .degree. C., a disk-shaped sample having a diameter of 3.5 inches was punched out.

Co−7”酸化鉄(He = 7000e)  ・・・
−100重量部塩化ビニル−酢酸ヒニルービニルアルコ
ール共重合体(塩化ビニル成分90%、酢酸ビニル成分
4%、ビニルアルコール成分6%。
Co-7” iron oxide (He = 7000e)...
-100 parts by weight vinyl chloride-hinyl acetate-vinyl alcohol copolymer (vinyl chloride component 90%, vinyl acetate component 4%, vinyl alcohol component 6%).

7g74°C)         ・・・・・・ 8重
量部ポリウレタン樹脂(引っ張り破断強度470 Ky
/、、2溶解性パラメータ9.9.  Tg4℃、NV
35%)・・・・・・ 48重量部 α−ht2o、        ・・・・・・ 7重量
部ミーアミルステアレート    ・・・・・・ 1重
量部ヘキサデシルステアレート   ・・曲 2重量部
メチルエチルケトン    ・・曲9o重量部シクロヘ
キサノン      ・・・・・・45重量部トルエン
         ・・・・・・9offii部インシ
アネート化合物(日本ポリウレタン社製C−3041)
       ・・曲 8重量部比較例1 実施例1に於ける第2の磁性層塗布後のカレンダー処理
を行わない以外は実施例1と同様な方法にて試料を得た
7g74°C) 8 parts by weight polyurethane resin (tensile strength at break 470 Ky
/,,2 Solubility parameters 9.9. Tg4℃, NV
35%) 48 parts by weight α-ht2o, 7 parts by weight Meamyl stearate 1 part by weight Hexadecyl stearate 2 parts by weight Methyl ethyl ketone・Track 9o parts by weight Cyclohexanone 45 parts by weight Toluene 9 offii parts Incyanate compound (C-3041 manufactured by Nippon Polyurethane Co., Ltd.)
...Song 8 parts by weight Comparative Example 1 A sample was obtained in the same manner as in Example 1 except that the calender treatment after coating the second magnetic layer in Example 1 was not performed.

比較例2 実施例1に於ける第1の磁性層の厚さを1μmとし、第
2の磁性層を設けない以外は実施例1と同様な方法にて
試料を得た。・ 比較例3 実施例1に於ける第1の磁性層を設けないで。
Comparative Example 2 A sample was obtained in the same manner as in Example 1 except that the first magnetic layer in Example 1 had a thickness of 1 μm and the second magnetic layer was not provided. - Comparative Example 3 The first magnetic layer in Example 1 was not provided.

第2の磁性層の厚さを1μmとした以外は実施例1と同
様な方法で試料を得た。
A sample was obtained in the same manner as in Example 1 except that the thickness of the second magnetic layer was 1 μm.

比較例4 実施例1に於ける第1の磁性層中の白色導電性酸化チタ
ンを除いた以外は実施例1と同様な方法にて試料を得た
Comparative Example 4 A sample was obtained in the same manner as in Example 1 except that the white conductive titanium oxide in the first magnetic layer in Example 1 was removed.

比較例5 実施例1に於ける第1の磁性層中のポリウレタン樹脂(
溶解性パラメータ9.2)を溶解性パラメータ10.5
のポリウレタン樹脂に代えた以外は実施例1と同様な方
法にて試料を得た。
Comparative Example 5 Polyurethane resin (
solubility parameter 9.2) to solubility parameter 10.5
A sample was obtained in the same manner as in Example 1 except that the polyurethane resin was used instead.

比較例6 実施例1に於けるカレンダー処理温度を23’Cとした
以外は実施例1と同様な方法にて試料を得た。
Comparative Example 6 A sample was obtained in the same manner as in Example 1 except that the calender treatment temperature in Example 1 was changed to 23'C.

これらの試料に関し、以下に述べる方法にて耐久性及び
周波数特性の試験を行った。
These samples were tested for durability and frequency characteristics using the methods described below.

■耐久性試験 試料に周波数500kHzの信号を飽和記録した後、ラ
イナーを貼付けた3、5インチフレキシブルディスクジ
ャケット中に組み込み、これを3.5インチフレキシブ
ルディスクドライブ(135TPL300rpm)に実
装し、60℃−80%RH雰囲気下にて耐久性試験を行
った。
■Durability test After recording a signal with a frequency of 500kHz in saturation, it was assembled into a 3.5-inch flexible disk jacket with a liner pasted on it, mounted in a 3.5-inch flexible disk drive (135TPL 300rpm), and heated at 60℃- A durability test was conducted in an 80% RH atmosphere.

0周波数特性試験 市販3.5インチフレキシブルディスクドライブ(13
5TPI、 300rpm)に光学ギャップ長0.65
μmのMn−Znフェライトヘッドを組み込み。
0 Frequency characteristics test Commercially available 3.5 inch flexible disk drive (13
5 TPI, 300 rpm) with an optical gap length of 0.65
Incorporates a μm Mn-Zn ferrite head.

書き込み電流15 m A (1,2AT)にて種々の
周波数信号を記録し、再生信号振幅が孤立波出力の1と
なる記録密度(半値反転密度D50)を求めた。
Various frequency signals were recorded at a write current of 15 mA (1,2 AT), and the recording density (half-value inversion density D50) at which the reproduced signal amplitude became 1 of the solitary wave output was determined.

表1にこれらの結果を示したが、この表よシ明らかな様
に、上記実施例によれば、良好な電磁変換特性を有し耐
久性に秀でた塗布型磁性媒体が得られる。
These results are shown in Table 1, and as is clear from this table, according to the above examples, a coated magnetic medium having good electromagnetic conversion characteristics and excellent durability can be obtained.

以下依日 表1 耐久性: 1500X10バス以上 ・・・・・・ ○
1500 X 10ハス以下 ・・・・・・ ×半値反
転密度:30KFRPI以上・・・・・・ 030KF
RPI以下・・・・・・ X 以下余日 〈発明の効果〉 以上説明したように1本発明によれば、良好な電磁変換
特性を有し耐久性に秀でた塗布型磁性媒体が得られる。
Table 1 below: Durability: 1500x10 bath or more ・・・・・・○
1,500
RPI or less... .

なお本発明による効果は、 Co−γ酸化鉄に限定され
るものではなく、γ−酸化鉄、 Ba−フェライト及び
メタル等の磁性材料についても同様の効果が得られ9強
磁性粉末の種類に関しては本実施例に制限されない。さ
らに本発明による効果は、フレキシブルディスクに限定
されるものではなく、オーディオテープ、ビデオテープ
等の磁気記録媒体についても同様の効果が得られ、磁気
記録媒体の形態に関しても本実施例に制限されない。
Note that the effects of the present invention are not limited to Co-γ iron oxide, and similar effects can be obtained with magnetic materials such as γ-iron oxide, Ba-ferrite, and metal.9 Regarding the types of ferromagnetic powder, It is not limited to this embodiment. Further, the effects of the present invention are not limited to flexible disks, and similar effects can be obtained with magnetic recording media such as audio tapes and video tapes, and the form of the magnetic recording medium is not limited to this embodiment.

Claims (1)

【特許請求の範囲】 1)非磁性支持体上に第一の磁性層を形成し、カレンダ
ー処理をしないで硬化処理を行った後、第二の磁性層を
塗布してカレンダー処理を行い、さらに硬化処理をする
事により、塗布型磁性媒体を製造する方法であって、 該第一の磁性層の硬化処理後のガラス転移温度(Tg_
1)が、該第二の磁性層の硬化処理前のガラス転移温度
(Tg_2)よりも高く、且カレンダー処理温度TがT
g_1>T>Tg_2の範囲にあり、さらに、該第一の
磁性層に、吸油量が15ml/100g以上で粉体抵抗
が60Ωcm(100Kg/cm^2圧粉体による値)
以下の導電性酸化チタン微粉末を磁性層中の強磁性粉末
に対して3〜30%添加し、 さらには、該非磁性支持体がポリエチレンテレフタレー
トフィルムであると共に、第一の磁性層の結合剤成分と
して、溶解性パラメータが9.0〜9.5の範囲にある
ポリウレタン樹脂を全結合剤成分の40%以上含有させ
る事を特徴とする塗布型磁性媒体の製造方法。
[Claims] 1) After forming a first magnetic layer on a non-magnetic support and performing a curing treatment without calendering, a second magnetic layer is applied and calendered, and further A method of manufacturing a coated magnetic medium by performing a hardening treatment, the method comprising: increasing the glass transition temperature (Tg_
1) is higher than the glass transition temperature (Tg_2) of the second magnetic layer before the hardening process, and the calendering temperature T is T
g_1>T>Tg_2, and furthermore, the first magnetic layer has an oil absorption of 15 ml/100 g or more and a powder resistance of 60 Ωcm (value based on 100 Kg/cm^2 compacted powder).
The following conductive titanium oxide fine powder is added in an amount of 3 to 30% based on the ferromagnetic powder in the magnetic layer, and further, the non-magnetic support is a polyethylene terephthalate film, and the binder component of the first magnetic layer is A method for producing a coated magnetic medium, characterized in that 40% or more of the total binder component contains a polyurethane resin having a solubility parameter in the range of 9.0 to 9.5.
JP33282187A 1987-12-28 1987-12-28 Manufacture of coating type magnetic medium Pending JPH01173428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33282187A JPH01173428A (en) 1987-12-28 1987-12-28 Manufacture of coating type magnetic medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33282187A JPH01173428A (en) 1987-12-28 1987-12-28 Manufacture of coating type magnetic medium

Publications (1)

Publication Number Publication Date
JPH01173428A true JPH01173428A (en) 1989-07-10

Family

ID=18259177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33282187A Pending JPH01173428A (en) 1987-12-28 1987-12-28 Manufacture of coating type magnetic medium

Country Status (1)

Country Link
JP (1) JPH01173428A (en)

Similar Documents

Publication Publication Date Title
JPH0572650B2 (en)
JPH0479046B2 (en)
JPS59142742A (en) Magnetic recording medium
JPH0610873B2 (en) Magnetic disk
JPH0479045B2 (en)
JPH0650563B2 (en) Magnetic recording medium
JPS60160022A (en) Magnetic recording medium
JPH01173428A (en) Manufacture of coating type magnetic medium
JPH0935245A (en) Magnetic recording medium
JPH01173431A (en) Manufacture of coating type magnetic medium
JP3852198B2 (en) Magnetic recording medium
JPH01173429A (en) Manufacture of coating type magnetic medium
JPH10149531A (en) Magnetic recording medium and its production
JPH0481248B2 (en)
JP3360317B2 (en) Non-magnetic support with masking layer for magnetic recording medium, and magnetic recording medium
JPH01173430A (en) Manufacture of coating type magnetic medium
JPH03157809A (en) Magnetic disk and its production
JPH03120613A (en) Magnetic disk and its production
JPS621115A (en) Magnetic recording medium
JP2000348328A (en) Magnetic recording medium
JPH03141018A (en) Magnetic recording medium
JP2838884B2 (en) Magnetic recording media
JP2568753B2 (en) Magnetic recording media
JPH10149534A (en) Magnetic recording medium and its production
JPH0476815A (en) Magnetic recording medium and prouction thereof