JPS621115A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS621115A
JPS621115A JP60140078A JP14007885A JPS621115A JP S621115 A JPS621115 A JP S621115A JP 60140078 A JP60140078 A JP 60140078A JP 14007885 A JP14007885 A JP 14007885A JP S621115 A JPS621115 A JP S621115A
Authority
JP
Japan
Prior art keywords
magnetic
conductive
powder
layer
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60140078A
Other languages
Japanese (ja)
Inventor
Masaaki Yasui
安井 正昭
Tsuyoshi Nishiguchi
西口 強志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60140078A priority Critical patent/JPS621115A/en
Publication of JPS621115A publication Critical patent/JPS621115A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To considerably decrease surface electric resistance, to prevent the output decrease which may arise from the pulverization of ferromagnetic metallic powder having <=0.45mum average major axis diameter and to conversely improve the output by forming a conductive layer on a non-magnetic substrate and forming a magnetic layer contg. said ferromagnetic metallic powder as the magnetic powder on the conductive layer. CONSTITUTION:The conductive layer is formed on the non-magnetic substrate and the magnetic layer contg. the ferromagnetic metallic powder having <=0.45mum average major axis diameter as the magnetic powder is formed on the conductive layer. The conductive coated film formed by coating a conductive paint contg. conductive material particles and binder on the non-magnetic substrate and drying the coating is usually adequate but said layer may be the conductive metallic film deposited by a means such as vacuum deposition on the substrate surface. The ferromagnetic metallic powder having <=0.45mum, more preferably <=0.35mum average major axis diameter is used for the magnetic powder to be incorporated into the magnetic layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録素子として強磁性金属磁性粉を用い
た磁気テープ、磁気ディスクなどの磁気記録媒体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks that use ferromagnetic metal magnetic powder as a magnetic recording element.

[従来の技術] 磁性粉とそのバインダとを主体とする磁気記録媒体の磁
性層は、一般的に表面電気抵抗が比較的高いために帯電
しやすく、付着した塵埃によってドロップアウトの増大
や摺動時のノイズの発生を招く欠点があり、さらに上記
塵埃がテープ走行のガイド部などに転着して磁気記録媒
体として致命的なテープしわを発生させる場合がある。
[Prior Art] The magnetic layer of a magnetic recording medium, which is mainly composed of magnetic powder and its binder, generally has a relatively high surface electrical resistance, so it is easily charged, and the attached dust can increase dropouts and cause sliding. In addition, the above-mentioned dust may adhere to the tape running guide portion and cause wrinkles in the tape, which are fatal to magnetic recording media.

そこで、この対策として磁性層中にカーボンブラックな
どの導電性粉末を含有させて表面電気抵抗を低減させる
ことが従来より行われている(文献不詳)。
Therefore, as a countermeasure to this problem, it has been conventionally carried out to reduce the surface electrical resistance by incorporating a conductive powder such as carbon black into the magnetic layer (unspecified literature).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この発明者らの検討によれば、上述のよ
うに磁性層中に導電性粉末を含有させる手段は、磁性粉
が強磁性酸化鉄や強磁性二酸化クロムなどの酸化物系磁
性粉を用いる場合には有効であるが、磁性粉として超微
粒子の強磁性金属粉を用いた場合には磁性層の表面電気
抵抗を充分に低下できないことが判明した。
However, according to the studies of the inventors, the means for containing conductive powder in the magnetic layer as described above uses oxide-based magnetic powder such as ferromagnetic iron oxide or ferromagnetic chromium dioxide. However, it has been found that when ultrafine ferromagnetic metal powder is used as the magnetic powder, the surface electrical resistance of the magnetic layer cannot be sufficiently lowered.

すなわち、近年では磁性粉として酸化物系磁性粉に比較
して保磁力などの磁気特性面で優れるFe 、Co 、
Niやこれらの合金などからなる強磁性金属磁性粉の使
用が漸増しており、さらにこれら強磁性金属磁性粉とし
ても短波長高密度記録特性を向上させる目的で超微粒子
化される傾向にある。ところが、この発明者らの知見に
よると、強磁性金属磁性粉の粒径が比較的に大きい場合
では、これを含む磁性層中に導電性物質を含有させるこ
とにより、表面電気抵抗を充分に低下させてドロップア
ウトの低減やテープしわの防止を図ることが可能である
が、上記粒径が小さい、とくに平均長軸径が0.45/
”以下の超微粒子である場合は上記手段では表面電気抵
抗を低下させることができず、結果として前述した塵埃
の付着によるドロップアウトの増大、ノイズの発生、テ
ープしわの発生などの問題を生じる。
In other words, in recent years, magnetic powders such as Fe, Co, and
The use of ferromagnetic metal magnetic powders made of Ni, alloys thereof, etc. is gradually increasing, and there is also a tendency for these ferromagnetic metal magnetic powders to be made into ultrafine particles for the purpose of improving short-wavelength high-density recording characteristics. However, according to the findings of the inventors, when the particle size of the ferromagnetic metal magnetic powder is relatively large, the surface electrical resistance can be sufficiently reduced by incorporating a conductive substance into the magnetic layer containing the ferromagnetic metal powder. However, it is possible to reduce dropouts and prevent tape wrinkles by reducing the particle size, but if the particle size is small, especially if the average major axis diameter is 0.45/
If the ultrafine particles are as follows, the surface electrical resistance cannot be lowered by the above-mentioned means, and as a result, problems such as increased dropout due to the adhesion of dust, generation of noise, and generation of tape wrinkles occur.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、かかる状況に鑑みて超微粒子の強磁性
金属磁性粉を含む磁性層の表面電気抵抗を低下させる手
段について鋭意検討を重ねた結果、上記磁性層と非磁性
支持体との間に導電層を形成すれば上記表面電気抵抗が
太き(低下し、しかも磁性粉の微粒子化に伴う出力低下
がなく逆に出力が向上することを知り、この発明をなす
に至った。
In view of this situation, the inventors have conducted extensive studies on means to reduce the surface electrical resistance of the magnetic layer containing ultrafine ferromagnetic metal magnetic powder, and have found that the relationship between the magnetic layer and the non-magnetic support The inventors discovered that if a conductive layer is formed on the surface of the magnet, the surface electrical resistance increases (decreases), and the output does not decrease due to the finer particles of the magnetic powder, but on the contrary, the output increases.This led to the creation of this invention.

すなわち、この発明は、非磁性支持体上に導電層が形成
され、この導電層上に磁性粉として平均長軸径が0.4
5 /”以下の強磁性金属磁性粉を含む磁性層が形成さ
れてなる磁気記録媒体に係る。
That is, in this invention, a conductive layer is formed on a non-magnetic support, and magnetic powder having an average major axis diameter of 0.4 is deposited on this conductive layer.
The present invention relates to a magnetic recording medium in which a magnetic layer containing ferromagnetic metal magnetic powder of 5/'' or less is formed.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明の磁気記録媒体において磁性層と非磁性支持体
との間に介在する導電層は、上記磁性層中に含まれる磁
性粉が超微粒子の強磁性金属磁性粉であるにもかかわら
ず、上述の如く導電性物質の磁性層中への配合によって
は低下させることが困難であった表面電気抵抗を大きく
低下させ、かつ磁性粉の微粒子化に伴う出力低下を防止
して逆に出力を向上させる機能をもつものである。
In the magnetic recording medium of the present invention, the conductive layer interposed between the magnetic layer and the non-magnetic support is as described above, although the magnetic powder contained in the magnetic layer is ultrafine ferromagnetic metal magnetic powder. By incorporating a conductive substance into the magnetic layer, the surface electrical resistance, which has been difficult to lower, can be significantly lowered, and the output can be improved by preventing the decrease in output caused by the finer particles of magnetic powder. It has a function.

なお、この導電層の存在によって上記のように出力が却
って向上する理由については明確ではないが、つぎのよ
うに推測される。すなわち、一般に磁性粉が微粒子にな
るほど骨材的な作用が失われて磁性層の強度が低下し、
記録再生時に磁気ヘッドとの接触安定性が悪くなって出
力低下をきたす傾向があるが、導電層の存在によって磁
気記録媒体全体の強度が増大して上記微粒子化に伴う強
度低下が補完され、その効果が非常に大きいために出力
が却って向上するものと推測される。
Although it is not clear why the presence of this conductive layer actually improves the output as described above, it is presumed as follows. In other words, in general, the finer the magnetic powder becomes, the more it loses its aggregate-like action and the strength of the magnetic layer decreases.
During recording and reproducing, the contact stability with the magnetic head deteriorates, which tends to cause a decrease in output. However, the presence of the conductive layer increases the strength of the entire magnetic recording medium, compensating for the decrease in strength due to the finer grain size. Since the effect is so large, it is presumed that the output will actually improve.

このような導電層としては、通常は導電性物質粒子とバ
インダとを含む導電性塗料を非磁性支持体上に塗布乾燥
して形成される導電性塗膜が好適であるが、真空蒸着な
どの手段で支持体表面に被着した導電性金属膜であって
も差し支えない。また導電層の厚みは、前者の導電性塗
膜では0.2〜1.5p程度、後者の導電性金属膜では
0.1〜0.5p程度がよく、厚すぎるとテープの柔軟
性の低下やカールの発生という問題があり、逆に薄すぎ
ると表面電気抵抗の低下機能ならびにテープ全体の強度
向上効果が不充分となる。
As such a conductive layer, a conductive coating film formed by coating and drying a conductive paint containing conductive substance particles and a binder on a non-magnetic support is usually suitable, but it is preferable to use a conductive coating film formed by coating and drying a conductive paint containing conductive material particles and a binder, but It may also be a conductive metal film deposited on the surface of the support by means of other means. In addition, the thickness of the conductive layer is preferably about 0.2 to 1.5 p for the former conductive coating film, and about 0.1 to 0.5 p for the latter conductive metal film; if it is too thick, the flexibility of the tape will decrease. On the other hand, if the tape is too thin, its ability to lower the surface electrical resistance and the effect of improving the overall strength of the tape will be insufficient.

導電性塗膜からなる導電層を形成するのに使用する導電
性物質粒子としては、カーボンブラック、グラファイト
などが挙げられ、これらの大きさは平均粒子径0,02
〜o、ioμ程度のものが好適である。またこのような
導電性物質の使用量は導電層全体の30〜70重量%程
度を占める範囲が好ましく、少なすぎると導電性の既述
機能が充分に発揮されず、逆に多すぎると導電層の表面
平滑性が悪くなってこの上に形成される磁性層との密着
性ならびに磁性層の表面平滑性が損なわれると共に、バ
インダ比率の相対的低下にて導電性物質粒子の結着力が
不充分となって導電層自体の強度低下および粉落ちを招
く。
Examples of conductive material particles used to form a conductive layer consisting of a conductive coating include carbon black, graphite, etc., and the average particle size of these particles is 0.02
A value of approximately ˜o, ioμ is suitable. In addition, the amount of such conductive substance used is preferably in the range of about 30 to 70% by weight of the entire conductive layer; if it is too small, the aforementioned conductive function will not be fully exhibited, and if it is too large, the conductive layer will deteriorate. The surface smoothness of the magnetic layer deteriorates, and the adhesion with the magnetic layer formed thereon as well as the surface smoothness of the magnetic layer are impaired, and the binding force of the conductive material particles is insufficient due to a relative decrease in the binder ratio. This causes a decrease in the strength of the conductive layer itself and causes powder to fall off.

上記導電層に使用するバインダとしては、塩化ビニル−
酢酸ビニル共重合体、水酸基またはカルボキシル基を含
有する塩化ビニル−酢酸ビニル系共重合体の如き塩化ビ
ニル系樹脂、ブチラール系樹脂、繊維素系樹脂、ウレタ
ン樹脂、アクリル系樹脂などの熱可塑性樹脂が挙げられ
るが、これら熱可塑性樹脂と共に熱硬化型ないしは電子
線などの放射線硬化型樹脂を併用してもよい。この放射
線硬化型樹脂はこれ単独でも使用可能であり、このよう
な放射線硬化型樹脂を用いると導電層の強度が増大する
利点がある。またこれらバインダにはポリイソシアネー
ト化合物などの架橋剤を含めてもよい。
The binder used for the conductive layer is vinyl chloride.
Vinyl chloride resins such as vinyl acetate copolymers, vinyl chloride-vinyl acetate copolymers containing hydroxyl or carboxyl groups, butyral resins, cellulose resins, urethane resins, acrylic resins, and other thermoplastic resins However, thermosetting resins or radiation curable resins such as electron beams may be used together with these thermoplastic resins. This radiation-curable resin can be used alone, and the use of such a radiation-curable resin has the advantage of increasing the strength of the conductive layer. These binders may also contain crosslinking agents such as polyisocyanate compounds.

また導電層形成に用いる導電性塗料中には、必要に応じ
て、硫酸バリウム、弁柄、炭酸カルシウム、酸化亜鉛、
α−AI!203、酸化クロムの如き塗膜強度を向上さ
せる非磁性無機質微粉末、導電性物質粒子の分散性を向
上させる脂肪酸やレシチンの如き公知分散剤などの種々
の添加剤を配合してもよい。
In addition, the conductive paint used for forming the conductive layer may contain barium sulfate, Bengara, calcium carbonate, zinc oxide,
α-AI! Various additives may be blended, such as non-magnetic inorganic fine powder such as chromium oxide, which improves the strength of the coating film, and known dispersants such as fatty acids and lecithin, which improve the dispersibility of conductive material particles.

この発明において磁性層中に含ませる磁性粉としては、
既述の如く平均長軸径0.45/a以下、とくに好適に
は0.35μ以下の強磁性金属磁性粉を使用する。すな
わち、このような超微粒子の強磁性金属磁性粉は、その
使用により既述の如(磁気記録媒体の短波長特性を高め
て高記録密度化を図ることができるが、従来の如く磁性
層中へ導電性物質を添加する手段では磁性層の表面電気
抵抗を低下させることが困難になるものである。
In this invention, the magnetic powder contained in the magnetic layer is as follows:
As mentioned above, ferromagnetic metal magnetic powder having an average major axis diameter of 0.45/a or less, particularly preferably 0.35 μ or less, is used. In other words, the use of such ultrafine ferromagnetic metal magnetic powder can improve the short wavelength characteristics of magnetic recording media and achieve high recording density, as described above, but it is It is difficult to reduce the surface electrical resistance of the magnetic layer by adding a conductive substance to the magnetic layer.

上記強磁性金属磁性粉としては、従来より磁気記録媒体
の記録素子として知られるものをいずれも使用でき、た
とえばFe、Co、Ni、これら金属の合金あるいはこ
れら金属と他の金属ないし少量の非金属元素を含む合金
などの粉末が挙げられる。
As the ferromagnetic metal magnetic powder, any of those conventionally known as recording elements of magnetic recording media can be used, such as Fe, Co, Ni, alloys of these metals, these metals and other metals, or a small amount of non-metal. Examples include powders such as alloys containing elements.

また上記磁性粉を結着するバインダとしては、塩化ビニ
ル−酢酸ビニル系共重合体、ブチラール系樹脂、繊維素
系樹脂、ウレタン系樹脂、アクリル系樹脂、架橋剤とし
てのポリイソシアネート化合物など、従来より磁性粉の
バインダとして知られるものをいずれ・も使用可能であ
る。なお、この磁性層と前記導電層のバイーンダの少な
くとも一部を同一ないし類似する成分とすることにより
、両層の親和性が良好となり、両層界面の密着性、密着
強度が大きくなって磁気記録媒体全体の強度が向上し、
出力がより高くなる利点がある。
In addition, conventional binders for binding the magnetic powder include vinyl chloride-vinyl acetate copolymers, butyral resins, cellulose resins, urethane resins, acrylic resins, and polyisocyanate compounds as crosslinking agents. Any known magnetic powder binder can be used. By making at least a part of the binder of this magnetic layer and the conductive layer the same or similar components, the affinity of both layers is improved, and the adhesion and adhesion strength of the interface of both layers is increased, which improves magnetic recording. The strength of the entire medium is improved,
It has the advantage of higher output.

この発明において磁性層を形成するには、常法に準じれ
ばよく、上記磁性粉およびバインダを含む磁性塗料を調
製し、この磁性塗料を支持体に予め設けた前記導電層上
に塗布乾燥すればよい。
In the present invention, the magnetic layer can be formed according to a conventional method, by preparing a magnetic paint containing the above-mentioned magnetic powder and a binder, and coating and drying the magnetic paint on the conductive layer previously provided on the support. Bye.

なお、上記磁性塗料中には、分散剤、研摩剤、潤滑剤な
どの各種添加剤を必要に応じて適宜添加することができ
る。
In addition, various additives such as a dispersant, an abrasive, a lubricant, etc. can be appropriately added to the above-mentioned magnetic coating material as necessary.

〔発明の効果〕〔Effect of the invention〕

この発明に係る磁気記録媒体−は、平均長袖径0.45
μ以下の強磁性金属磁性粉を含む磁性層と非磁性支持体
との間に導電層が介在しているため、磁性層中に導電性
物質を含有させるという従来手段では低下困難であった
表面電気抵抗が大きく低下し、その結果として塵埃の付
着によるドロップアウトの増加、摺動時のノイズ発生、
テープしわの発生などが防止され、しかも上記磁性粉の
微粒子化に伴う出力低下を補完するばかりか却って出力
が向上するという優れた特徴を備える。
The magnetic recording medium according to the present invention has an average long sleeve diameter of 0.45.
Since a conductive layer is interposed between the magnetic layer containing ferromagnetic metal magnetic powder of μ or less and the non-magnetic support, the surface is difficult to reduce by conventional means of containing a conductive substance in the magnetic layer. Electrical resistance decreases significantly, resulting in increased dropouts due to dust adhesion, noise generation during sliding,
It has excellent features such as preventing the occurrence of tape wrinkles, and not only compensating for the decrease in output due to the atomization of the magnetic powder, but also improving the output.

[実施例] 以下、この発明を実施例に基づいて具体的に説明する。[Example] Hereinafter, this invention will be specifically explained based on examples.

なお、以下において部とあるのはいずれも重量部を意味
する。
In addition, all parts below mean parts by weight.

実施例1 α−AI!203(研磨剤)         6部ス
テアリン酸(潤滑剤)       25部ステアリン
酸n−ブチル(潤滑剤)      1部水酸基含有塩
化ビニル−酢酸ビニル共重合体 9.2部(漬水化学社
製の商品名工スレツクA)シクロへキサノン     
    96部ト  ル  エ  ン        
            96部上記組成物をサンドミ
ルにて4時間混合分散したのち、三官能性ポリイソシア
ネート化合物(日本ポリウレタン社製の商品名コロネー
トL)3.1部を加えてさらに0.5時間混合して磁性
塗料を調製した。
Example 1 α-AI! 203 (abrasive) 6 parts stearic acid (lubricant) 25 parts n-butyl stearate (lubricant) 1 part hydroxyl group-containing vinyl chloride-vinyl acetate copolymer 9.2 parts (Meiko Slets, a product manufactured by Tsukisui Kagaku Co., Ltd.) A) Cyclohexanone
Part 96
After mixing and dispersing 96 parts of the above composition in a sand mill for 4 hours, 3.1 parts of a trifunctional polyisocyanate compound (trade name: Coronate L, manufactured by Nippon Polyurethane Co., Ltd.) was added and mixed for an additional 0.5 hours to obtain a magnetic paint. was prepared.

一方、下記組成物をサンドミルにて6時間混合分散した
On the other hand, the following composition was mixed and dispersed in a sand mill for 6 hours.

シクロへキサノン         400部ト   
ル   エ   ン              40
0部続いて、上記の混合物に電子線硬化型樹脂(日本化
学社製の商品名DPHA)、50部を加えてさらに0.
5時間混合して導電性塗料を調製した。
Cyclohexanone 400 parts
Le en 40
0 part Subsequently, 50 parts of an electron beam curable resin (trade name DPHA, manufactured by Nihon Kagaku Co., Ltd.) was added to the above mixture, and further 0.
A conductive paint was prepared by mixing for 5 hours.

この導電性塗料を厚さ13μのポリエステルフィルムか
らなる支持体上に乾燥後の厚みが約1.0μとなるよう
に塗布乾燥したのち、形成された導電層の表面を鏡面化
処理し、続いて6Mradの電子線を照射して硬化させ
た。つぎにこの導電層上に前記磁性塗料を乾燥後の厚さ
が約2.8 pxとなるように塗布乾燥して磁性層を形
成したのち、その表面を鏡面化処理し、%インチ幅に裁
断してビデオテープを作製した。
This conductive paint was applied onto a support made of a polyester film with a thickness of 13 μm so that the thickness after drying was approximately 1.0 μm. After drying, the surface of the formed conductive layer was mirror-finished, and then It was cured by irradiation with an electron beam of 6 Mrad. Next, the magnetic paint was applied onto this conductive layer to a dry thickness of about 2.8 px and dried to form a magnetic layer.The surface was mirror-finished and cut into % inch width. A videotape was made.

実施例2 磁性粉として平均長軸径0.35/”、平均軸比1:9
の強磁性Fe−Ni合金粉末100部を使用した以外は
、実施例1と同様にしてビデオテープを作製した。
Example 2 As magnetic powder, average long axis diameter 0.35/'', average axial ratio 1:9
A videotape was produced in the same manner as in Example 1, except that 100 parts of ferromagnetic Fe--Ni alloy powder was used.

実施例3 磁性粉として平均長軸径0.4μ、平均軸比1:8の強
磁性Fe−Ni合金粉末100部を使用した以外は、実
施例1と同様にしてビデオテープを作製した。
Example 3 A videotape was produced in the same manner as in Example 1, except that 100 parts of ferromagnetic Fe--Ni alloy powder with an average major axis diameter of 0.4 μm and an average axial ratio of 1:8 was used as the magnetic powder.

実施例4 実施例1における導電性塗料に用いた電子線硬化型樹脂
に代えて水酸基含有ウレタン樹脂(前出のものと同じ)
35部と三官能性ポリイソシアネート化合物(前出のも
のと同じ)15部を使用した以外は、実施例1と同様に
してビデオテープを作製した。
Example 4 Hydroxyl group-containing urethane resin (same as above) was used in place of the electron beam curing resin used in the conductive paint in Example 1.
A videotape was prepared in the same manner as in Example 1, except that 35 parts of the trifunctional polyisocyanate compound (same as above) were used.

比較例1 導電層を形成せず、支持体上に直接に磁性層を形成した
以外は、実施例1と同様にしてビデオテープを作製した
Comparative Example 1 A videotape was produced in the same manner as in Example 1, except that a magnetic layer was formed directly on the support without forming a conductive layer.

比較例2 磁性塗料中に導電性物質としてカーボンブラック(前出
のものと同じ)10部を追加した以外は、比較例1と同
様にしてビデオテープを作製した。
Comparative Example 2 A videotape was produced in the same manner as Comparative Example 1, except that 10 parts of carbon black (same as above) was added as a conductive substance to the magnetic paint.

比較例3 磁性粉として平均粒子径0.6μ、平均軸比1ニアの強
磁性Fe−Ni合金粉末100部を使用した以外は、比
較例2と同様′にしてビデオテープを作製した。
Comparative Example 3 A videotape was produced in the same manner as Comparative Example 2 except that 100 parts of ferromagnetic Fe--Ni alloy powder having an average particle size of 0.6 μm and an average axial ratio of 1 nia was used as the magnetic powder.

以上の実施例および比較例にて得られた磁気テープにつ
いて、磁性層の表面電気抵抗、テープ強度、ドロップア
ウト、各種ビデオ特性、RF出力低下、テープ走行性を
下記方法にて測定した。その結果を後記表に示す。
Regarding the magnetic tapes obtained in the above Examples and Comparative Examples, the surface electrical resistance of the magnetic layer, tape strength, dropout, various video characteristics, RF output reduction, and tape running properties were measured by the following methods. The results are shown in the table below.

〈表面電気抵抗〉 半径的1cInの八日をなす2本の棒状金属電極をビデ
オテープ幅と同じ間隔をあけて置き、この上にビデオテ
ープを長さ方向が直角になるように接して置き、このテ
ープの両端にそれぞれ5oNyJの荷重をかけて両電極
に500Vの電圧を加え、磁性層の表面電気抵抗を測定
した。
<Surface electrical resistance> Two rod-shaped metal electrodes with a radius of 1 cIn are placed at the same distance as the width of the video tape, and the video tape is placed on top of these electrodes so that their lengths are perpendicular to each other. A load of 5 oNyJ was applied to each end of this tape, a voltage of 500 V was applied to both electrodes, and the surface electrical resistance of the magnetic layer was measured.

くテープ強度〉 ビデオテープの長手方向の弾性率として、室温において
引張伸度1%時の引張強度の値を測定。
Tape strength> As the elastic modulus of the videotape in the longitudinal direction, the tensile strength value at room temperature with a tensile elongation of 1% was measured.

採用した。Adopted.

〈ドロップアウト〉 VH5方式のVTRを高Hc用に改造したものに装填し
て記録再生したときの1分あたり5μ秒以上のもののド
ロップアウトの個数を調べた。
<Dropouts> When a VH5 type VTR modified for high Hc was loaded and recorded and reproduced, the number of dropouts of 5 μsec or more per minute was investigated.

くビデオ特性〉 %RF出カニ高Hc用に改造したV HS方式のVTR
を用い、ビデオテープに50%ホワイトのビデオ信号を
記録再生し、そのFM変調再生信号のレベルをオシロス
コープを用いて測定し、基準テープ(比較例1)との相
対値で示した。
Video characteristics> VHS system VTR modified for %RF output high Hc
A 50% white video signal was recorded and reproduced on a videotape using a 50% white video signal, and the level of the FM modulated reproduced signal was measured using an oscilloscope and expressed as a relative value with respect to the reference tape (Comparative Example 1).

5クロマ出カニ高Hc用に改造したVH5方式のVTR
を用い、ビデオテープに一色クロマ信号を記録再生し、
その低域変換色信号の再生信号レベルをオシロスコープ
を用いて測定し、基準テープ(比較例1)との相対値で
示した。
VH5 type VTR modified for 5 chroma output crab high Hc
Record and play back the one-color chroma signal on videotape using
The reproduced signal level of the low frequency converted color signal was measured using an oscilloscope, and is expressed as a relative value with respect to the reference tape (Comparative Example 1).

うビデオS/N比:高Hc用に改造したVH5方式のV
TRを用い、ビデオテープに50%ホワイトのビデオ信
号を記録再生し、°カラービデオノイズ測定器によりそ
の再生信号のノイズを測定してS/N比を算出し、基準
テープ(比較例1)との相対値で示した。
Video S/N ratio: VH5 system V modified for high Hc
A 50% white video signal was recorded and played back on a videotape using a TR, and the noise of the playback signal was measured using a color video noise measuring device to calculate the S/N ratio, and compared with the reference tape (Comparative Example 1). expressed as a relative value.

うカラーS/N比:高He用に改造したVH5方式のV
TRを用い、ビデオテープに一色クロマ信号を記録再生
し、カラービデオノイズ測定器によりその再生信号のA
Mノイズ分を測定してS/N比を算出し、基準テープ(
比較例1)との相対値で示した。
Color S/N ratio: VH5 system V modified for high He
A one-color chroma signal is recorded and played back on a videotape using a TR, and the A of the playback signal is measured using a color video noise measuring device.
The S/N ratio was calculated by measuring M noise, and the reference tape (
It is shown as a relative value with Comparative Example 1).

(RF出力低下〉 テープ走行20時間後のRF小出力初期値からの低下度
合(dB)にて示した。
(RF Output Decrease) It is shown in the degree of decrease (dB) from the initial value of low RF output after 20 hours of tape running.

くテープ走行性〉 スティックスリップの有無にて示した。なお、スティッ
クスリップとは、ビデオカセットデツキで走行させたと
きに、テープの貼り付きにより一定速度で走行しない現
象である。
Tape running properties> Indicated by the presence or absence of stick-slip. Note that stick-slip is a phenomenon in which when running on a video cassette deck, the tape does not stick to the tape and the tape does not run at a constant speed.

上表の結果から明らかなように、磁性層に含む磁性粉と
して平均長軸径が0.45μより大きい強磁性金属磁性
粉である場合、比較例3の如(磁性層中に導電性物質粉
末を含有させる手段によって表面電気抵抗を充分に低下
させることができ、S/N比は低下するもののドロップ
アウトの低減およびテープ走行性の改善を図ることが可
能である。
As is clear from the results in the table above, when the magnetic powder contained in the magnetic layer is a ferromagnetic metal magnetic powder with an average major axis diameter of more than 0.45μ, as in Comparative Example 3 (conductive material powder in the magnetic layer) The surface electrical resistance can be sufficiently lowered by means of containing , and although the S/N ratio is lowered, it is possible to reduce dropouts and improve tape runnability.

ところが、磁性粉が平均長軸径0.45 /==1以下
の超微粒子になると、比較例1と比較例2との対比で示
されるように、上記手段では表面電気抵抗を低下できず
、ドロップアウトの低減やテープ走行性の面でほとんど
効果がなく、S/N比も低下することが判る。
However, when the magnetic powder becomes ultrafine particles with an average major axis diameter of 0.45/==1 or less, as shown in the comparison between Comparative Example 1 and Comparative Example 2, the above means cannot reduce the surface electrical resistance. It can be seen that this method has almost no effect in terms of dropout reduction or tape runnability, and that the S/N ratio also decreases.

これに対して、磁性層と支持体との間に導電層を介在さ
せたこの発明に係る実施例1〜4のビデオテープでは、
磁性粉が平均長軸径0.45μ以下の超微粒子であるに
もかかわらず、表面電気抵抗が大きく低下し、ドロップ
アウトの低減およびテープ走行性の改善効果が得られ、
かつS/N比も向上し、またテープ強度も導電層を設け
ていないもの(比較例1,2)より太き(向上すること
が判る。しかも、従来の如く磁性層中に導電性物質粉末
を添加した場合(比較例2,3)では非磁性粉の存在に
よる出力の低下が避けられず、かつ長時間走行後の出力
低下が大きく耐久性に劣るが、この発明によれば出力が
却って向上すると共に長時間走行後の出力低下もほとん
どなく耐久性に優れることが判る。
On the other hand, in the video tapes of Examples 1 to 4 according to the present invention in which a conductive layer was interposed between the magnetic layer and the support,
Although the magnetic powder is ultrafine particles with an average major axis diameter of 0.45μ or less, the surface electrical resistance is greatly reduced, reducing dropouts and improving tape runnability.
In addition, the S/N ratio is improved, and the tape strength is thicker (improved) than those without a conductive layer (Comparative Examples 1 and 2).In addition, unlike conventional magnetic layers, conductive material powder is not provided in the magnetic layer. (Comparative Examples 2 and 3), a decrease in output due to the presence of non-magnetic powder is unavoidable, and the output decreases after running for a long time, resulting in inferior durability.However, according to the present invention, the output is It can be seen that the performance is improved, and there is almost no decrease in output after running for a long time, indicating excellent durability.

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性支持体上に導電層が形成され、この導電層
上に磁性粉として平均長軸径が0.45μm以下の強磁
性金属磁性粉を含む磁性層が形成されてなる磁気記録媒
体。
(1) A magnetic recording medium in which a conductive layer is formed on a nonmagnetic support, and a magnetic layer containing ferromagnetic metal magnetic powder with an average major axis diameter of 0.45 μm or less as magnetic powder is formed on this conductive layer. .
JP60140078A 1985-06-26 1985-06-26 Magnetic recording medium Pending JPS621115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140078A JPS621115A (en) 1985-06-26 1985-06-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140078A JPS621115A (en) 1985-06-26 1985-06-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS621115A true JPS621115A (en) 1987-01-07

Family

ID=15260448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140078A Pending JPS621115A (en) 1985-06-26 1985-06-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS621115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120613A (en) * 1989-10-04 1991-05-22 Konica Corp Magnetic disk and its production
US5756148A (en) * 1991-01-21 1998-05-26 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5827600A (en) * 1991-01-21 1998-10-27 Fuji Photo Film Co., Ltd. Magnetic recording medium

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120613A (en) * 1989-10-04 1991-05-22 Konica Corp Magnetic disk and its production
US5851622A (en) * 1991-01-21 1998-12-22 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5763046A (en) * 1991-01-21 1998-06-09 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5795646A (en) * 1991-01-21 1998-08-18 Fuji Photo Film Co. Ltd. Magnetic recording medium
US5811172A (en) * 1991-01-21 1998-09-22 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5811166A (en) * 1991-01-21 1998-09-22 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5827600A (en) * 1991-01-21 1998-10-27 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5756148A (en) * 1991-01-21 1998-05-26 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5985408A (en) * 1991-01-21 1999-11-16 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6015602A (en) * 1991-01-21 2000-01-18 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6020022A (en) * 1991-01-21 2000-02-01 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6025082A (en) * 1991-01-21 2000-02-15 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5780141A (en) * 1991-04-25 1998-07-14 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5792543A (en) * 1991-04-25 1998-08-11 Fuji Photo Film Co., Ltd. Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2563711B2 (en) Magnetic tape
JPS59142742A (en) Magnetic recording medium
JPH02771B2 (en)
US7115331B2 (en) Magnetic recording medium having narrow pulse width characteristics
US4618536A (en) Magnetic recording medium
JPS621115A (en) Magnetic recording medium
US20040191570A1 (en) Magnetic recording media having increased high density broadband signal-to-noise ratio
JPH0610865B2 (en) Magnetic recording medium
JP2826835B2 (en) Magnetic recording media
US5082728A (en) Magnetic disc
JPS60173720A (en) Magnetic recording medium
JP2734998B2 (en) Magnetic recording media
JPH0770044B2 (en) Magnetic recording medium
JP2626245B2 (en) Magnetic recording media
KR900005802B1 (en) Magnetic record carrier
JP2605464B2 (en) Magnetic recording media
US20040253482A1 (en) Dual-layer magnetic medium with nonhalogenated binder system
JP2888488B2 (en) Magnetic recording media
US20040191573A1 (en) Magnetic recording media exhibiting decreased tape dropout performance
KR930002158B1 (en) Method of making magnetic recording medium
JP3017261B2 (en) Magnetic disk
JPH05314452A (en) Leader tape for magnetic tape and trailer tape
JPH0479057B2 (en)
US20070020488A1 (en) Magnetic recording medium having a single, thin, high-coercivity magnetic recording layer
JPS62154230A (en) Magnetic recording medium