JPH01172491A - Hydrogenation of solid charge substance containing carbon - Google Patents

Hydrogenation of solid charge substance containing carbon

Info

Publication number
JPH01172491A
JPH01172491A JP29636788A JP29636788A JPH01172491A JP H01172491 A JPH01172491 A JP H01172491A JP 29636788 A JP29636788 A JP 29636788A JP 29636788 A JP29636788 A JP 29636788A JP H01172491 A JPH01172491 A JP H01172491A
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
stream
hydrogenation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29636788A
Other languages
Japanese (ja)
Inventor
Eckard Dr Wolowski
エツカルト・ヴオロヴスキー
Frank Mirtsch
フランク・ミルツチユ
Wolfdieter Klein
ヴオルフデイーテル・クライン
Claus Strecker
クラウス・シユトレツケル
Alfons Feuchthofen
アルフオンス・フオイヒトホーフエン
Ulrich Bonisch
ウルリヒ・ベニシユ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAG AG
Original Assignee
Ruhrkohle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle AG filed Critical Ruhrkohle AG
Publication of JPH01172491A publication Critical patent/JPH01172491A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE: To prevent a prepared raw material from drying in a heat exchanger by mixing a gas heated in a hydrogen gas heater with a prepared raw material flow heated in an intermediate heat exchanger.
CONSTITUTION: A prepared raw material flow (3) passed through the heat exchanger (18-20), and a hydrogen gas (5) which, after passing the heat exchanger (21-23), was heated to 300-650°C in the hydrogen gas heater (24), are led to a high-temperature product flow (9) by counter flow. The flow (9) is discharged in a flowing-out direction after heat exchanging. The hydrogen gas and prepare raw material (3) are, after heat exchanging with a gas (5) in the heat exchanger (23), sent to the gaseous hydrogenation reactor (27). The reaction gas flow (10) is passed through the heat exchanger (19) and (22) to heat-exchange with a flow (3) and a gas (5), and is introduced into the intermediate separator (20) to separate a high boiling fraction (11). A remaining flow (12) is passed through the heat exchanger (18) and (21) for heat-exchanging with flow (3) and (5), and successively led into the low-temperature separator (29) through the cooling water heat-exchanger (31) to remove waste water (14) and low boiling fraction (13). The exit gas is recycled through the compressor (30) as a recycled hydrogen gas flow (15).
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、場合によっては触媒の存在のもとに、温度及
び圧力を高めて気相水素添加段階を後に接続し、−入物
質及び水素添加ガスの部分流から形成された調合原料流
と水素添加ガスの第2の部分流との分離加熱のもとで高
温分離段階を後に接続し、高温分離器頭部生成物が間接
゛熱交換によりその熱エネルギーをこれらの装入物質流
へ放出して、液相水素添加する条件で、水素を含有する
気体を水素添加ガスとして、石炭又は褐炭のような、炭
素を含有する固体装入物質に水素添加する方法に関する
。この場合、約400ないし500°Cの液相反応器温
度及び約370ないし450℃の気相反応器温度は典型
的であり、プロセス圧力を150ないし1200 ba
rに選ぶことができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides for a subsequent gas-phase hydrogenation stage at elevated temperature and pressure, optionally in the presence of a catalyst, in order to A hot separation stage is connected downstream under separate heating of the feedstock stream formed from the substream of the additive gas and the second substream of the hydrogenation gas, with the hot separator head product undergoing indirect heat exchange. carbon-containing solid charge materials, such as coal or lignite, with a hydrogen-containing gas as the hydrogenation gas, under conditions of liquid-phase hydrogenation by releasing its thermal energy into these charge streams. Relating to a method of hydrogenating. In this case, liquid phase reactor temperatures of about 400 to 500°C and gas phase reactor temperatures of about 370 to 450°C are typical, with process pressures of 150 to 1200 ba
You can choose r.

〔従来の技術〕[Conventional technology]

高温分離器頭部生成物全部が、後に接続された気相水素
添加段階を介して処理され、続いて、これらの油が、溶
媒成分が中間分離器液相生成物として直接石炭ペースト
製造のために再循環しくいわゆる直接溶媒環流)かつ純
油生成物が中間分離器頭部生成物(ドイツ連邦共和国特
許出願公開第3524449号明細書及びドイツ連邦共
和国特許出願公開筒3022.158号明細書参照)と
して生ずるようにして、中間分離器における部分的凝縮
により分けられる方法は公知である。
All of the high temperature separator head products are subsequently processed through a connected gas phase hydrogenation stage, and subsequently these oils are processed as intermediate separator liquid phase products where the solvent components are directly used for coal paste production. The pure oil product is recycled to the intermediate separator head product (see DE 35 24 449 and DE 3022.158). Processes are known in which the separation occurs by partial condensation in an intermediate separator.

さらに、重油が装入生成物として予熱器へ供給されかつ
高温分離器頭部生成物が貫流するガス熱交換器で加熱さ
れたり必要な全水素添加ガス量の部分流が液相反応器へ
の流入前に、重油、添加剤及び水素添加ガスの予熱され
た混合物に添加される方法は公知である(ドイツ連邦共
和国特許出願公開第3523709号明細書参照)。水
素添加ガス加熱を別に行なうこの方法は、石炭水素添加
用に既に提案されている(ドイツ連邦共和国特許出願公
開第3505553号明細書参照)。
Furthermore, the heavy oil is fed as charge product to the preheater and heated in a gas heat exchanger through which the hot separator head product flows, or a partial stream of the total required hydrogenation gas quantity is fed to the liquid phase reactor. Methods are known (see German Patent Application No. 3,523,709) in which heavy oil, additives and hydrogenation gas are added to a preheated mixture before inflow. This method, with separate heating of the hydrogenation gas, has already been proposed for coal hydrogenation (see DE 35 05 553 A1).

液相及び気相水素添加する水素添加方法を技術的に実現
する場合は、3つの特徴が1iliJされなければなら
ない。第1に、プロセスにとって重要なパラメータ(特
に液相及び気相反応器の規定された入口温度並びに中間
分票器における規定された温度)が調節可能でなければ
ならない。これらの温度調節は調合原料熱交換器の汚損
による変わりやすい熱伝達能力により困難にされる。第
2に、気相水素添加段階を統合した運転法における熱交
換器内の調合原料及び水素添加ガスの同、侍加熱の際の
特別な条件が考慮されなければならない。なぜならば溶
媒品質の変化のために、水V:添加ガスによる油ストリ
ッピングにより熱交換器の乾燥の危険が増大することは
周知であるからである。第3に、熱自給自足のプロセス
を達成するために、あるいは又必要な付加的加熱装置を
小さくするために、液相及び気相水素添加からの発熱反
応熱が熱回収のために最適なやり方で利用されなければ
ならない。できるだけ調合原料加熱炉を省かなければな
らない。なぜならば調合原料加熱炉は各液相水素添加段
階の危険な構成部材の1つであるからである。
In order to technically realize the hydrogenation method of liquid phase and gas phase hydrogenation, three characteristics must be taken into account. Firstly, the parameters important for the process (in particular the defined inlet temperatures of the liquid-phase and gas-phase reactors and the defined temperatures in the intermediate dividers) must be adjustable. These temperature controls are made difficult by variable heat transfer capabilities due to fouling of the feedstock heat exchanger. Secondly, the special conditions during heating of the blended raw material and hydrogenation gas in the heat exchanger in the operation method integrating the gas phase hydrogenation stage must be taken into account. This is because it is well known that due to changes in solvent quality, oil stripping with water V:added gas increases the risk of drying out the heat exchanger. Third, the exothermic reaction heat from liquid- and gas-phase hydrogenation is an optimal way for heat recovery to achieve a heat-self-sufficient process or to also reduce the required additional heating equipment. must be used in The mixing raw material heating furnace must be omitted as much as possible. This is because the feed furnace is one of the hazardous components of each liquid phase hydrogenation stage.

公知の方法(例えば上述のドイツ連邦共和国特許出頭公
開第3524449号明細書及びドイツ連邦共和国特許
出頭公開第3022158号明細IF)では、塾回取と
増大する汚損による調合原料熱交換器の熱伝達能力の変
化とを考慮せずに、外部冷却によって、気相反応器及び
中間分離器における規、定されたプロセス温度が調節さ
れる。
In known methods (for example, the above-mentioned German Patent Application No. 3524449 and German Patent Application No. 3022158 IF), the heat transfer capacity of the raw material heat exchanger due to cram recycling and increased fouling is reduced. By means of external cooling, a defined process temperature in the gas phase reactor and intermediate separator is regulated without taking into account changes in the temperature.

公知の方法(ドイツ連邦共和国特許出頭公開第3523
709号明細書及びドイツ連邦共和国特許小雪公開第3
505553号明細書参照)では、熱交換器における調
合原料乾燥の危険の増大は調合原料加熱通路における水
素添加ガス量の減少により(水素添加ガス量の大部分は
別々のガス塾交換器で加熱される)減少される。上述の
規定された両温度の調節は、従来考慮されていなかった
。両方の方法には、液体/固体−気体混合物を加熱する
ための熱交換器が気相反応器の後に(すなわち比較的低
い温度レベルで)配置され、従って液体/固体−気体混
合物の最大加熱が保証されないという欠点がある。従っ
て液体/固体−気体混合物を加熱するための炉、いわゆ
る調合原1aa5、は以前の水素添加方法と比べて容量
を減少されているが、しかしこの炉は省かれていない。
Known method (Federal Republic of Germany Patent Appearance Publication No. 3523
Specification No. 709 and Federal Republic of Germany Patent Koyuki Publication No. 3
505553), the risk of drying of the blended raw material in the heat exchanger increases due to the decrease in the amount of hydrogenation gas in the blended raw material heating passage (most of the hydrogenated gas is heated in a separate gas exchanger). ) will be decreased. The above-mentioned regulation of both defined temperatures has not been considered heretofore. In both methods, a heat exchanger for heating the liquid/solid-gas mixture is placed after the gas phase reactor (i.e. at a relatively low temperature level), so that the maximum heating of the liquid/solid-gas mixture is The drawback is that it is not guaranteed. The furnace for heating the liquid/solid-gas mixture, the so-called formulation 1aa5, is therefore reduced in capacity compared to previous hydrogenation processes, but this furnace is not dispensed with.

公知の方法(ドイツ連邦共和国特許出願公開第2651
253号朗aW参照)も上述の条件を満たしていない。
Known method (Federal Republic of Germany Patent Application No. 2651
No. 253 RoaW) also does not satisfy the above conditions.

なぜならばこの方法は液相水素添加だけに関しておりか
つ調合原料炉は省けないからである。
This is because this method involves only liquid-phase hydrogenation and the feedstock furnace cannot be omitted.

管内での気体、蒸気、液体及び固体の多相流により特徴
付けられている方法条件は、加熱炉の設計及び圧力損失
と熱伝達の計算の際にかなりの不確実性をもたらす。
Process conditions characterized by multiphase flow of gases, vapors, liquids and solids within the tubes introduce considerable uncertainties in the design of furnaces and in the calculation of pressure drops and heat transfer.

炉管の内面への堆積順向及び管内の生成物のコークス化
反応から、運転技術上の欠点が生ずる。それに付随する
のは、水素添加装置全体の稼動時間の制限及び管の破裂
に至らせるいわゆるホットスポットの発生のような安全
技術上の間頭である。
Drawbacks in operating technology result from the tendency of deposition on the inner surface of the furnace tubes and from the coking reaction of the products inside the tubes. Attached to this are safety precautions, such as limiting the operating time of the entire hydrogenation plant and the occurrence of so-called hot spots, which can lead to pipe rupture.

〔発明が解決しようとする諜嘔〕[The problem that invention attempts to solve]

本発明の諜曙は、第1に、気相反応器及び中間分an内
のプロセスにとって重要な温度を調合原料熱交換器の不
安定な熱交換能力にも拘らず調節することができ、第2
に、調合原料熱交換器内の調合原料の乾燥が回避され、
第3に、液相及び気相水素添加の反応熱が熱自給自足又
は熱技術上のプロセスの最適化のために利用されるよう
に、方法の経過を形成することである。
The advantages of the present invention are, firstly, that the temperatures critical to the process in the gas phase reactor and intermediate section can be regulated despite the unstable heat exchange capacity of the feedstock heat exchanger; 2
In addition, drying of the blended raw material in the blended raw material heat exchanger is avoided,
Thirdly, the course of the process is designed in such a way that the heat of reaction of the liquid- and gas-phase hydrogenation is utilized for thermal self-sufficiency or for optimization of the thermotechnical process.

帽1を解決するための手段J この課電は本発明によれば、調合原料加熱炉が省かれか
つ水素添加ガス加熱器が通常バイパスで使用されかつ特
別の運転状頓にのみ、間接熱交換のために用いられる熱
交換器の運転開始又は汚損された状頓の際に使用され、
水素添加ガス加熱器で300ないし650℃、なるべく
450ないし550℃への気体の加熱が行なわれ、続い
て行なわれる、間接熱交換により加熱された調合原料流
との統合によって液相反も器の必要な入口温度が得られ
ることによって解決される。
According to the invention, this electrification can be achieved by eliminating the raw material heating furnace, by using the hydrogenated gas heater normally in bypass, and only in special operating conditions by indirect heat exchange. It is used when starting up a heat exchanger used for
Heating of the gas to 300 to 650 °C, preferably 450 to 550 °C, is carried out in a hydrogenation gas heater, and subsequent integration with the heated blended feed stream by indirect heat exchange also eliminates the need for a liquid phase heater. This problem can be solved by obtaining a suitable inlet temperature.

規定された温度調節は、気相反応器及び中間分嘔釉にお
いて、バイパス運転するガス熱交換器により行なわれ、
これらのガス熱交換器において高温分離器頭部生成物と
別々に加熱される水素添加ガスとの間接熱交換が行なわ
れかつバイパスは水素添加ガス側にある。別々のガス加
熱により、同時に調合原料乾燥の危険が除去される。気
相反応器シこおける規定された温度調節は、さらに本発
明によれば、高温分離器と気相反応器との間に配置され
た調合原料熱交換器にある高塩分′Is器頭部生成物側
のバイパスを介してかつ気相反応器へ至る高塩分S器頭
部生成物の通路における真空ガス油の異なる供給装置に
より行なわれる。
The defined temperature regulation is carried out in the gas phase reactor and in the intermediate glaze by means of a gas heat exchanger in bypass operation,
In these gas heat exchangers an indirect heat exchange between the hot separator head product and the separately heated hydrogenation gas takes place and a bypass is on the hydrogenation gas side. Separate gas heating simultaneously eliminates the risk of drying out the raw materials. According to the invention, the defined temperature regulation in the gas-phase reactor is further provided by a high-salt vessel head located in a feedstock heat exchanger arranged between the high-temperature separator and the gas-phase reactor. This is done by means of a different supply of vacuum gas oil in the passage of the high-salt S reactor head product via a bypass on the product side and to the gas-phase reactor.

本発明によれば最適な01合原料加熱は、液相及び気相
水素添加からの反応熱を利用して高温分離器頭部生成物
がその熱を間接熱交換により比較的高い温度レベルで調
合原料−水素添加ガス混合物へ伝速しかつ比較的低い温
度レベルで、別々に加熱されるべき水素添加ガスへ伝達
することによって達成される。これによって、調合原料
加熱炉は省かれかつ良好な熱絶縁の際に場合によっては
通常運転における水素添加ガス加熱炉も省かれる。その
場合、水素添加ガス炉は大抵、通常運転の際バイパスに
よって迂回されかつ運転開始のためにのみ必要とされる
According to the present invention, optimal 01 feedstock heating utilizes the heat of reaction from liquid and gas phase hydrogenation to allow the high temperature separator head product to transfer its heat to a relatively high temperature level by indirect heat exchange. This is achieved by transmitting to the feedstock-hydrogenation gas mixture and, at a relatively low temperature level, to the hydrogenation gas to be heated separately. As a result, a feedstock heating furnace is dispensed with and, with good thermal insulation, a hydrogenation gas heating furnace is also dispensed with in normal operation. In that case, the hydrogenation gas furnace is usually bypassed during normal operation and is required only for commissioning.

〔実施例〕〔Example〕

本発明を図面により以下に説明する。 The invention will be explained below with reference to the drawings.

提案された方法の別のやり方では(第1図参照)、熱交
換器18.19.20を通る調合原料流3及び別々に加
熱されるべき水素添加ガス流5は水素添加ガス炉24へ
の流入前に3つの熱交換器21.22.23を通って逆
流で高温分離器頭部生成物流9へ導かれる。
In an alternative version of the proposed method (see FIG. 1), the feed stream 3 passing through the heat exchanger 18, 19, 20 and the hydrogenation gas stream 5 to be heated separately are fed to the hydrogenation gas furnace 24. Before entering, it is conducted in countercurrent through three heat exchangers 21, 22, 23 to the hot separator head product stream 9.

全水素添加ガス量を両方の部分流に分ける際に、調合原
料流のために新鮮な水素が供給剤として設けられかつ水
素添加ガスの第2の部分流のために循環水素添加ガスが
設けられるようにしてやることもできる。
When dividing the total hydrogenation gas quantity into both substreams, fresh hydrogen is provided as a feed agent for the feedstock stream and recycled hydrogenation gas is provided for the second substream of hydrogenation gas. You can also do it like this.

この場合、流れ9は流出方向に相次いで熱交換器20内
の調合原料流3及び熱交換器23内の水素添加ガス5の
部分流と熱交換関係に入りかつ固定層接触で気相水素添
加用の反応器27を通過する。気相反応器27の入口温
度は調合原料熱交換器18.19及び20の汚損状態に
応じて熱交換器20及び23のバイパス個所及び代案と
しての熱交換器20及び23の前の真空ガス油供給装置
32を介してかつ気相反応器27の前への真空ガス油供
給及び急冷ガス供給により調節される。反応器27で精
製された生成物流は流れ10として、流れ3又は流れ5
と熱交換しながら熱交換器19及び熱交換器22を通過
しかつ高温油沼分11を分離する中間分離器28を通過
する。中間分離器28における温度調節は、熱交換器2
2におけるバイパス調節によって行なわれる。中間分離
器28から取り出された残流12は熱交換器18及び2
1において、装入生成物の加熱のために利用できる残り
の熱を流れ3及び流れ5へ放出しかつ水冷却器31を介
して低温分離器29へ供給され、この低温分離器におい
て廃水14と廃ガスの分離及び圧縮機30を介するプロ
セスへの流れ15としての循環水素添加ガス成分の環流
が行なわれる。
In this case, the stream 9 successively enters into heat exchange relationship in the direction of exit with the blended feed stream 3 in the heat exchanger 20 and with the partial stream of the hydrogenation gas 5 in the heat exchanger 23 and undergoes gas phase hydrogenation in fixed bed contact. It passes through a reactor 27. The inlet temperature of the gas phase reactor 27 is determined depending on the contamination state of the feedstock heat exchangers 18, 19 and 20, the bypass point of the heat exchangers 20 and 23 and the vacuum gas oil before the heat exchangers 20 and 23 as an alternative. Control is provided by a vacuum gas oil supply and a quench gas supply via a supply device 32 and before the gas phase reactor 27. The purified product stream in reactor 27 is stream 10, stream 3 or stream 5.
The oil passes through the heat exchanger 19 and the heat exchanger 22 while exchanging heat with the oil, and passes through the intermediate separator 28 which separates the high temperature oil swamp fraction 11. Temperature control in the intermediate separator 28 is performed by the heat exchanger 2
This is done by bypass adjustment at 2. The residual stream 12 taken out from the intermediate separator 28 is transferred to the heat exchangers 18 and 2.
1, the remaining heat available for heating the charge product is released into stream 3 and stream 5 and is fed via a water cooler 31 to a cryogenic separator 29, in which it is separated from the wastewater 14. Separation of the waste gas and reflux of the recycled hydrogenated gas component as stream 15 to the process via compressor 30 takes place.

低温分#1器29と接続して、通常のやり方で循環水素
添加ガス成分の処理のためのガス洗浄器を設けることが
できる。この種の処理によって、ガス洗浄器内で洗浄液
によって溶けやすいC1ないしC4成分の除去により、
水素添加ガス系における十分な水素分圧が保証される。
In connection with the cold fraction #1 vessel 29, a gas scrubber can be provided for the treatment of the recycled hydrogenation gas component in the usual manner. This type of treatment removes C1 to C4 components that are easily dissolved by the cleaning liquid in the gas scrubber.
Sufficient hydrogen partial pressure in the hydrogenation gas system is ensured.

用いられるべき全水素添加ガス量からの別々の部分流は
、必要な全水素添加ガス量の20ないし95%、なるべ
く40ないし80%になることができる。
The separate sub-streams from the total amount of hydrogenation gas to be used can amount to 20 to 95%, preferably 40 to 80%, of the total amount of hydrogenation gas required.

別の実施例ではく第2図参照)、中間分離器28におけ
る規定された温度は、バイパス調節されるガス熱交換器
22を介さずに、調合原料熱交換器19のバイパス運転
法によって調節される。これによって、第1図と比べて
調合原料熱交換器19の比較的大きい交換面が必要とさ
れるが、しかしガス熱交換器22は省かれる。
In an alternative embodiment (see FIG. 2), the specified temperature in the intermediate separator 28 is regulated by a bypass operating method of the raw material heat exchanger 19, without the bypass regulated gas heat exchanger 22. Ru. This requires a relatively large exchange surface of the feedstock heat exchanger 19 compared to FIG. 1, but the gas heat exchanger 22 is omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による方法を示す回路宮、第2図は別の
実施例の回路〆である。
FIG. 1 is a circuit diagram showing a method according to the invention, and FIG. 2 is a circuit diagram of another embodiment.

Claims (1)

【特許請求の範囲】 1 場合によつては触媒の存在のもとに、温度及び圧力
を高めて気相水素添加段階を後に接続し、装入物質及び
水素添加ガスの部分流から形成された調合原料流と水素
添加ガスの第2の部分流との分離加熱のもとで高温分離
段階を後に接続し、高温分離器頭部生成物が間接熱交換
によりその熱エネルギーをこれらの装入物質流へ放出し
て、液相水素添加する条件で、水素を含有する気体を水
素添加ガスとして、石炭又は褐炭のような、炭素を含有
する固体装入物質に水素添加する方法において、調合原
料加熱炉が省かれかつ水素添加ガス加熱器が通常バイパ
スで使用されかつ特別の運転状態にのみ、間接熱交換の
ために用いられる熱交換器の運転開始又は汚損された状
態の際に使用され、水素添加ガス加熱器で300ないし
650℃、なるべく450ないし550℃への気体の加
熱が行なわれ、続いて行なわれる、間接熱交換により加
熱された調合原料流との統合によつて液相反応器の必要
な入口温度が得られることを特徴とする、炭素を含有す
る固体装入物質に水素添加する方法。 2 熱交換器(18)、(19)、(20)を通る調合
原料流(3)及び別々に加熱されるべき水素添加ガス(
5)の第2の部分流が水素添加ガス炉(24)への流入
前に熱交換器(21)、(22)、(23)を通つて逆
流で高温分離器頭部生成物流(9)へ導かれ、流れ(9
)が流出方向に相次いで熱交換器(20)内の調合原料
流(3)及び熱交換器(23)内の水素添加ガス流(5
)と共に熱交換され、固定層接触で気相水素添加用の反
応器(27)を通過し、流れ(10)として流れ(3)
又は流れ(5)との熱交換のために熱交換器(19)及
び熱交換器(22)と高温油留分(11)の分離のため
の中間分離器(28)とを通過し、それにより、流れ(
12)として流れ(3)又は流れ(5)との熱交換のた
めに熱交換器(18)及び熱交換器(21)と、冷却水
熱交換器(31)と低温分離器(29)とへ供給され、
その際廃水及び廃ガスの分離、低温油留分(13)の採
取及び循環水素添加ガス成分(15)の還流が行なわれ
ることを特徴とする、請求項1に記載の方法。 3 循環水素添加ガス流の一部が急冷ガス流(16)と
して温度調節のために液相反応器(25)、気相反応器
(27)及び高温分離器(26)へ供給されることを特
徴とする、請求項1又は2に記載の方法。 4 必要な気相入口温度の調節のために熱交換器(20
)の周りの気体/蒸気側のバイパス又は熱交換器(23
)の周りの気体側のバイパスも使用されることを特徴と
する、請求項1ないし3のうち1つに記載の方法。 5 高温分離器頭部生成物流への流れ(32)としての
真空ガス油の供給が、熱交換器(20)又は熱交換器(
23)の前であるいは又気相反応器(27)のすぐ前で
行なわれることを特徴とする、請求項1ないし4のうち
1つに記載の方法。 6 気相生成物が、中間分離器(28)の規定された温
度への、気体側のバイパス調節されるガス熱交換器(2
2)における冷却により、溶媒還流のための液相成分(
11)と純生成物のための頭部成分(12)とに分けら
れることを特徴とする、請求項1ないし5のうち1つに
記載の方法。 7 気相生成物が、中間分離器(28)の規定された温
度への、バイパス調節される調合原料熱交換器(19)
における冷却により、溶媒還流のための液相成分(11
)と純生成物のための頭部成分(12)とに分けられる
ことを特徴とする、請求項1ないし6のうち1つに記載
の方法。 8 別々に加熱される部分流(5)が、用いられる全水
素添加ガス量の20ないし95%、なるべく40ないし
80%になることを特徴とする、請求項1ないし7のう
ち1つに記載の方法。
Claims: 1. A hydrogenation process formed from the feed material and a partial stream of the hydrogenation gas, optionally in the presence of a catalyst, and followed by a gas phase hydrogenation stage at elevated temperature and pressure. A hot separation stage is connected afterwards under separate heating of the blended feed stream and a second partial stream of the hydrogenated gas, so that the hot separator head product transfers its thermal energy to these charges by indirect heat exchange. In a method of hydrogenating a carbon-containing solid charge material, such as coal or lignite, with a hydrogen-containing gas as a hydrogenation gas under conditions of liquid-phase hydrogenation by discharging into a stream, heating the blended raw material. If the furnace is omitted and the hydrogenation gas heater is normally used in bypass and only in special operating conditions, during start-up of heat exchangers used for indirect heat exchange or in fouled conditions, the hydrogen Heating of the gas to 300 to 650° C., preferably 450 to 550° C., takes place in an additive gas heater, followed by integration with the heated feedstock stream by indirect heat exchange into the liquid phase reactor. A method for hydrogenating carbon-containing solid charge materials, characterized in that the required inlet temperature is obtained. 2 through heat exchangers (18), (19), (20) and the hydrogenation gas (3) to be heated separately.
A second substream of 5) passes through the heat exchangers (21), (22), (23) in reverse flow to the hot separator head product stream (9) before entering the hydrogenation gas furnace (24). guided by the flow (9
) successively in the outflow direction are the blended feed stream (3) in the heat exchanger (20) and the hydrogenated gas stream (5) in the heat exchanger (23).
), passed through the reactor (27) for gas phase hydrogenation in fixed bed contact, and as stream (10), stream (3)
or through a heat exchanger (19) and a heat exchanger (22) for heat exchange with stream (5) and an intermediate separator (28) for separation of the hot oil fraction (11); By, the flow (
12) for heat exchange with stream (3) or stream (5), a heat exchanger (18) and a heat exchanger (21), a cooling water heat exchanger (31) and a cryogenic separator (29); supplied to
2. Process according to claim 1, characterized in that separation of waste water and waste gas, collection of a cold oil fraction (13) and reflux of the recycled hydrogenated gas component (15) take place. 3. A portion of the circulating hydrogenation gas stream is fed as a quench gas stream (16) to the liquid phase reactor (25), the gas phase reactor (27) and the high temperature separator (26) for temperature regulation. 3. A method according to claim 1 or 2, characterized in that: 4 A heat exchanger (20
) around the gas/steam side bypass or heat exchanger (23
4. Method according to claim 1, characterized in that a bypass on the gas side around ) is also used. 5 The supply of vacuum gas oil as stream (32) to the hot separator head product stream is supplied to the heat exchanger (20) or to the heat exchanger (
5. The process according to claim 1, characterized in that it is carried out before the gas phase reactor (23) or also immediately before the gas phase reactor (27). 6. The gas phase product is bypass-regulated on the gas side to the defined temperature of the intermediate separator (28).
By cooling in 2), the liquid phase component (
6. Process according to claim 1, characterized in that the head component (12) for the pure product is divided into: 11) and a head component (12) for the pure product. 7. A feedstock heat exchanger (19) in which the gas phase product is bypass-regulated to the defined temperature of the intermediate separator (28).
The liquid phase components (11
) and a head component (12) for the pure product. 8. According to one of claims 1 to 7, characterized in that the separately heated substreams (5) represent 20 to 95%, preferably 40 to 80%, of the total amount of hydrogenation gas used. the method of.
JP29636788A 1987-12-04 1988-11-25 Hydrogenation of solid charge substance containing carbon Pending JPH01172491A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3741104.7 1987-12-04
DE19873741104 DE3741104A1 (en) 1987-12-04 1987-12-04 METHOD FOR HYDROGENATING SOLID CARBON-CONTAINING SUBSTANCES

Publications (1)

Publication Number Publication Date
JPH01172491A true JPH01172491A (en) 1989-07-07

Family

ID=6341870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29636788A Pending JPH01172491A (en) 1987-12-04 1988-11-25 Hydrogenation of solid charge substance containing carbon

Country Status (4)

Country Link
EP (1) EP0318694A3 (en)
JP (1) JPH01172491A (en)
DE (1) DE3741104A1 (en)
PL (1) PL158461B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032316A1 (en) * 2000-07-04 2002-01-17 Studiengesellschaft Kohle Mbh Hydrogenation / hydrogenolysis of hard coal with borane catalysts
CN111849543A (en) * 2020-07-08 2020-10-30 张家港保税区慧鑫化工科技有限公司 Liquid phase hydrogenation feeding preheating system and process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655486A (en) * 1979-09-06 1981-05-16 Saarbergwerke Ag Method and apparatus for hydrogenating coal
US4473460A (en) * 1981-02-12 1984-09-25 Basf Aktiengesellschaft Continuous preparation of hydrocarbon oils from coal by hydrogenation under pressure in two stages
JPS6172097A (en) * 1984-09-13 1986-04-14 ルールコーレ・アクチエンゲゼルシヤフト Process setting and heat recovery method of liquid phase hydrogenation combined with gaseous phase hydrogenation
JPS61228090A (en) * 1985-02-18 1986-10-11 フエバ−・エ−ル・エントウイツクルングス−ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Pretreatment of product used in hydrogenation of coal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655486A (en) * 1979-09-06 1981-05-16 Saarbergwerke Ag Method and apparatus for hydrogenating coal
US4473460A (en) * 1981-02-12 1984-09-25 Basf Aktiengesellschaft Continuous preparation of hydrocarbon oils from coal by hydrogenation under pressure in two stages
JPS6172097A (en) * 1984-09-13 1986-04-14 ルールコーレ・アクチエンゲゼルシヤフト Process setting and heat recovery method of liquid phase hydrogenation combined with gaseous phase hydrogenation
JPS61228090A (en) * 1985-02-18 1986-10-11 フエバ−・エ−ル・エントウイツクルングス−ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Pretreatment of product used in hydrogenation of coal

Also Published As

Publication number Publication date
EP0318694A2 (en) 1989-06-07
EP0318694A3 (en) 1990-03-21
PL276161A1 (en) 1989-07-24
PL158461B1 (en) 1992-09-30
DE3741104A1 (en) 1989-06-15

Similar Documents

Publication Publication Date Title
WO1990002783A1 (en) Method of and apparatus for decomposing low quality materials
US2076033A (en) Phthalic anhydride recovery
US4473460A (en) Continuous preparation of hydrocarbon oils from coal by hydrogenation under pressure in two stages
GB2151150A (en) Process for recovering heat of a tar-containing high temperature gas
JPH01172491A (en) Hydrogenation of solid charge substance containing carbon
JPS6148077B2 (en)
US2065643A (en) Method and apparatus for treating clays
SU722490A3 (en) Method of coal hydrogenation
US5238540A (en) Method of obtaining a pure aromatic hydrocarbon from a sump product of an extractive distillation of a hydrocarbon mixture
US2538738A (en) Process and apparatus for carrying out exothermic reactions
CN115340095A (en) Cold hydrogenation heat energy recovery system and method
US4636300A (en) Integrated gas-phase hydrogenation process using heat recovered from sump-phase hydrogenation for temperature regulation
AU620056B2 (en) Method for the hydrogenation of fluid carbon-containing applied substances
US3247279A (en) Heat control in catalytic oxidation process
SU1255055A3 (en) Method of hydrofining heavy petroleum fractions
JPS5830355B2 (en) Multi-stage hydrocarbon conversion process
US2483494A (en) Catalytic converter
US3767719A (en) Hydrogenation of benzene to form cyclohexane
KR100731223B1 (en) Method and Device for Cooling a Hot Reactor Gas, For Example in the Production of Phthalic Anhydride
JPS6270485A (en) Pretreatment of starting substance for hydrogenating heavy oil
DE3532480A1 (en) Process for process setting and heat recovery in the sump (bottom) phase hydrogenation of coal with integral gas phase hydrogenation
SU1445562A3 (en) Method of catalytic cracking in fluidized bed
JP2840771B2 (en) Heat exchanger for heating contact reforming feedstock operated at low pressure
SU1581734A1 (en) Method and apparatus for treating petroleum-containing initial material
JP4221517B2 (en) Treatment of raw phthalic anhydride