JPH01170843A - Method and apparatus for thermal analysis and microspectroscopy method - Google Patents

Method and apparatus for thermal analysis and microspectroscopy method

Info

Publication number
JPH01170843A
JPH01170843A JP32931687A JP32931687A JPH01170843A JP H01170843 A JPH01170843 A JP H01170843A JP 32931687 A JP32931687 A JP 32931687A JP 32931687 A JP32931687 A JP 32931687A JP H01170843 A JPH01170843 A JP H01170843A
Authority
JP
Japan
Prior art keywords
sample
thermal analysis
temperature
microscope
changes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32931687A
Other languages
Japanese (ja)
Other versions
JPH0623697B2 (en
Inventor
Yoshihisa Kariyazono
義久 仮屋園
Yoshihiro Miyajima
宮島 義洋
Hiroshi Kanai
洋 金井
Takashi Amano
天野 高
Masatsugu Kawasaki
雅嗣 川崎
Fumiko Kaneuchi
金内 芙美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Nippon Steel Corp
Original Assignee
Japan Spectroscopic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd, Nippon Steel Corp filed Critical Japan Spectroscopic Co Ltd
Priority to JP62329316A priority Critical patent/JPH0623697B2/en
Publication of JPH01170843A publication Critical patent/JPH01170843A/en
Publication of JPH0623697B2 publication Critical patent/JPH0623697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To capture a microscopic change associated to a macroscopic change of the physical properties of a sample by providing a thermal analysis apparatus which makes thermal analysis by changing the temp. of the sample placed on an optical microscope and a spectrophotometer on which the exit light of the microscope is projected. CONSTITUTION:An operator mounts the sample into a sample cell 12A, peeps the sample through an eyepiece lens 24 and changes over an objective lens 16 to an objective 17 after adjusting the vertical position of the objective lens 16. The initial temp. and temp. falling rate of the sample are set with a setter 32 and the initial opening area of an aperture 20 and the micro-opening area at the time of sample scanning are set with a setter 35; the wave number of the exit light of the IR spectrophotometer 26 is initially set according to the sample. Further, an optical path change-over mirror 22 is set as shown in the figure and a controller 34 is started. The macroscopic change of the sample is captured by changing the temp. of the sample placed on the stage 10 of the microscope and making thermal analysis with a photometer 26. The opening of the aperture 20 is set at the micro-opening area under microscopy and the spectral measurement of the micro-area of the sample is executed, by which the microscopic change of the sample is captured in association with the macroscopic change.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は熱分析と光学顕微鏡下でのスペクI〜ル測定と
を同時に行う熱分析・顕微分光方法及びその装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application] The present invention relates to a thermal analysis/microscopic spectroscopy method and apparatus for simultaneously performing thermal analysis and spectrum I to spectral measurement under an optical microscope.

[従来の技術] 熱分析法は、試料の温度を変化させて物性変化を検出し
分析を行う方法であり、熱の出入りを検出する示差熱分
析、示差走査熱量分析、重職変化を検出する熱重量分析
等がある。
[Prior art] Thermal analysis is a method of detecting and analyzing changes in physical properties by changing the temperature of a sample. There is weight analysis, etc.

赤外スペクトル分析法は、分子の振動や回転の状態変化
によって放出または吸収される赤外スペクトルを測定し
、分子構造等の分析を行う方法である。
Infrared spectroscopy is a method of measuring infrared spectra emitted or absorbed by changes in molecular vibration or rotation to analyze molecular structure and the like.

また、顕微鏡分析法は、顕微鏡下で試料の時間的、空間
的変化を視覚により観察して分析を行う方法である。
Furthermore, the microscopic analysis method is a method of visually observing temporal and spatial changes in a sample under a microscope to perform analysis.

[発明が解決しようとする問題点] しかし、従来では、同一試料について同時に上記各分析
を行っていなかったので、試料の相変化等の巨視的変化
に関連した(Is’学構造の変化等の微視的変化を捕ら
えることができなかった。
[Problems to be solved by the invention] However, in the past, the above-mentioned analyzes were not performed on the same sample at the same time. It was not possible to detect microscopic changes.

本発明者は、両度化を同時に捕らえることにより、ポリ
マー成形条件の決定、硬化材の決定、ポリマーのガラス
転移、結晶化、化学反応、熱安定性または相平衡と官能
基または分子構造式との関係を把握することができ、高
融点プラスチック等の新規高分子材料の開発に大きく寄
与することを知見した。
The present inventors have determined the polymer molding conditions, the curing agent, the glass transition of the polymer, the crystallization, the chemical reaction, the thermal stability, or the phase equilibrium, and the functional group or molecular structure by simultaneously capturing both degrees. We were able to understand the relationship between the two, and found that this would greatly contribute to the development of new polymer materials such as high-melting point plastics.

本発明の目的は、上記知見に基づき、試料の物性の巨視
的変化に関連して微視的変化を捕らえるコトカできる熱
分析・顕微分光方法およびその装置を提供することにあ
る。
Based on the above findings, an object of the present invention is to provide a thermal analysis/microscopic spectroscopy method and an apparatus therefor that can capture microscopic changes in relation to macroscopic changes in the physical properties of a sample.

1問題点を解決するための手段] この目的を達成するために、本発明に係る熱分析・顕微
分光方法では、顕微鏡のステージに置かれた試料の温度
を変化させて熱分析を行うことにより該試料の巨視変化
をとらえ、該顕微鏡下で該試料の微少領域のスペクトル
測定を行うことにより該巨視的変化と関連させて該試料
の微視的変化をとらえることを特徴としている。
Means for Solving Problem 1] In order to achieve this objective, the thermal analysis/microspectroscopy method according to the present invention performs thermal analysis by changing the temperature of the sample placed on the stage of the microscope. The method is characterized in that macroscopic changes in the sample are captured and microscopic changes in the sample are captured in relation to the macroscopic changes by performing spectrum measurements of microscopic regions of the sample under the microscope.

この熱分析は、例えば、示差熱分析、示差走査熱量分析
または前記顕微鏡の出射光の特定赤外波長の強度の変化
をとらえることによる熱分析等である。
This thermal analysis is, for example, differential thermal analysis, differential scanning calorimetry, or thermal analysis by capturing changes in the intensity of a specific infrared wavelength of the light emitted from the microscope.

熱分析と顕微鏡下でのスペクトル測定の組み合わせには
、次のものがある。
Combinations of thermal analysis and spectral measurements under a microscope include:

■試料温度を変化させる過程において、試料温度を略一
定(一定、緩やかに上昇または緩やかに下降)に保持し
、この状態で上記微小領域を移動させて複数の微小領域
?ごつきスペクトル測定を行う。
■In the process of changing the sample temperature, the sample temperature is kept approximately constant (constant, gradually increasing or gradually decreasing), and in this state, the above microregion is moved to create multiple microregions? Perform roughness spectrum measurement.

この試料温度は、たとえば熱分析により相変化が検出さ
れた付近において略一定に保持する。
The sample temperature is maintained approximately constant in the vicinity where a phase change is detected, for example, by thermal analysis.

■上記微小領域を固定し、試料を昇温または降温させな
がら前記熱分析と前記スペクトル測定とを同時に行う。
(2) The thermal analysis and the spectrum measurement are performed simultaneously while fixing the minute region and raising or lowering the temperature of the sample.

なお、最初に顕微鏡を用いずに熱分析と微小領域のスペ
クトル測定を行うことにより概略分析を行い、次に、顕
微鏡を用いて上記詳細分析を行ってもよい。
Note that a general analysis may be performed by first performing thermal analysis and spectrum measurement of a minute area without using a microscope, and then the detailed analysis described above may be performed using a microscope.

本発明に係る熱分析・顕微分光光度計は」二記方法を実
施するための装置であり、光学顕微鏡と、該光学顕微鏡
のステージに置かれる試料の温度を変化させて熱分析を
行う熱分析装置と、該光学顕微鏡の出射光か入射される
分光光度計と、を有することを特徴としている。
The thermal analysis/microscopic spectrophotometer according to the present invention is an apparatus for carrying out the method described in 2 above, and includes an optical microscope and a thermal analysis method that performs thermal analysis by changing the temperature of a sample placed on the stage of the optical microscope. The present invention is characterized in that it includes a device and a spectrophotometer into which the light emitted from the optical microscope is input.

この光学顕微鏡は、例えば、視野を絞るアパーチャが備
えられ、ステージに置かれた試料を走査する走査型光学
顕微鏡である。
This optical microscope is, for example, a scanning optical microscope that is equipped with an aperture that narrows down the field of view and that scans a sample placed on a stage.

[実施例] 以下、図面に基づいて本発明の一実施例を説明する。[Example] Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は熱分析・顕微分光光度計のブロック図である。FIG. 1 is a block diagram of a thermal analysis/microspectrophotometer.

図中、10はX−Yステージであり、ステージ面のX方
向及びこれに直交するY方向へ例えば5μm単位でステ
ップ駆動されるもの、12はホットステージであり、X
−Yステージ10上に載置され、試料セル12Aが着脱
可能に装着され、試料セル12Aを加熱するヒータ12
B及び試料セル12Aの周囲温度を検出する温度検出器
12Cが内設されたもの、14は集光鏡であり、後述す
る赤外光源からの光を試料セル12Aへ集光させて試料
を透過させるもの、16は対物レンズ、17はカセグレ
ン型対物鏡であり、赤外スペクトル測定時に対物レンズ
16と切り換えて用いられるもの、18は偏光子であり
、試料が複屈折性を示すときに用いられるもの、20は
アパーチャであり、その開口面積を例えば5×5〜0.
IXO,1mm’の範囲で可変なもの、22は光路切換
鏡であり、一端の軸の回りに回転させて光路を切り換え
るもの、24は接眼レンズ、26は赤外分光光度計であ
り、赤外スペクトルを測定してこれを記録するもの、2
8は案内光学系であり、光路切換鏡22からの反射光束
を赤外分光光度計26の入射スリットに集光させるもの
、30は温度指示調節器であり、温度検出器12cによ
り検出された温度を指示するとともに、この温度が設定
器32により設定された条件に従って昇温又は降温する
ようヒータ12Bへの供給電力を制御するもの、34は
コントローラであり、後に詳述する如く、赤外分光光度
計26の測定結果及び設定器35からの設定値に基づい
て、赤外分光光度計26及び温度指示調節器30を制御
し、ドライノく36.38を介してそれぞれX−Yステ
ージ10及びア7(−チャ20を制御するものである。
In the figure, 10 is an X-Y stage, which is driven in steps of, for example, 5 μm in the X direction of the stage surface and the Y direction perpendicular to this, and 12 is a hot stage,
- A heater 12 placed on the Y stage 10, to which the sample cell 12A is removably attached, and which heats the sample cell 12A.
B and a temperature detector 12C installed inside to detect the ambient temperature of the sample cell 12A, and 14 is a condensing mirror that focuses light from an infrared light source (described later) onto the sample cell 12A and transmits it through the sample. 16 is an objective lens, 17 is a Cassegrain type objective mirror, which is used in place of the objective lens 16 during infrared spectrum measurement, and 18 is a polarizer, which is used when the sample exhibits birefringence. 20 is an aperture whose opening area is, for example, 5 x 5 to 0.
IXO, variable within a range of 1 mm', 22 is an optical path switching mirror that switches the optical path by rotating around an axis at one end, 24 is an eyepiece, and 26 is an infrared spectrophotometer. Something that measures and records spectra, 2
8 is a guiding optical system that focuses the reflected light beam from the optical path switching mirror 22 on the entrance slit of the infrared spectrophotometer 26; 30 is a temperature indicating regulator that collects the temperature detected by the temperature detector 12c; 34 is a controller that controls the power supplied to the heater 12B so that the temperature is raised or lowered according to the conditions set by the setting device 32. The infrared spectrophotometer 26 and the temperature indicating controller 30 are controlled based on the measurement results of the total 26 and the set values from the setting device 35, and the X-Y stage 10 and the a (-Controls the camera 20.

なお、試料に赤外光を照射する上記赤外光源は、赤外分
光光度計26の光源が用いられている。
Note that the light source of the infrared spectrophotometer 26 is used as the infrared light source that irradiates the sample with infrared light.

次に、上記の如く構成された本実施例の動作を、実際の
測定結果を交えて説明する。
Next, the operation of this embodiment configured as described above will be explained with reference to actual measurement results.

第2図にはコントローラ34の処理手順が示されており
、第3〜6図には測定結果が示されている。
FIG. 2 shows the processing procedure of the controller 34, and FIGS. 3 to 6 show the measurement results.

最初に、試料セル12Aへ試料、例えば高分子成形材料
を収容してホットステージ12に装着し、接眼レンズ2
4、対物レンズを通して試料を覗き、試料位置、対物レ
ンズ16の上下方向位置を調節する。次に、対物レンズ
16を対物鏡17に切り換える。設定器32を操作して
試料の初期温度(融点以上)及び降温速度を設定する。
First, a sample, for example, a polymer molding material, is placed in the sample cell 12A and mounted on the hot stage 12.
4. Look at the sample through the objective lens and adjust the sample position and the vertical position of the objective lens 16. Next, the objective lens 16 is switched to the objective mirror 17. The setting device 32 is operated to set the initial temperature (above the melting point) and cooling rate of the sample.

また、設定器35を操作して、アパーチャ20の初期開
口面積及び試料走査時の微少開口面積を設定するととも
に、赤外分光光度計26を構成するモノクロメ−タの出
射光波数を試料の種類に応じて初期設定する。この波数
は、試料の既知主成分が結晶化する際に比較的大きな吸
収を示す波数である。さらに、光路切換鏡22を第1図
に示す状態にする。
In addition, by operating the setting device 35, the initial opening area of the aperture 20 and the minute opening area during sample scanning are set, and the output light wave number of the monochromator constituting the infrared spectrophotometer 26 is set according to the type of sample. Initialize accordingly. This wave number is a wave number at which a known main component of the sample exhibits relatively large absorption when crystallized. Furthermore, the optical path switching mirror 22 is brought into the state shown in FIG.

次に、コントローラ34を起動する。これにより、第2
図に示す処理が行われる。
Next, the controller 34 is activated. This allows the second
The process shown in the figure is performed.

すなわち、ステップ100において、X−YステージI
Oが初期位置にされ、アパーチャ20の開口が上記設定
された初期開口面積にされ、赤外分光光度計26のモノ
クロメータの波数が一ヒ記初期設定波数に固定される。
That is, in step 100, the X-Y stage I
O is set to the initial position, the opening of the aperture 20 is set to the initial opening area set above, and the wave number of the monochromator of the infrared spectrophotometer 26 is fixed to the initial set wave number.

なお、ポットステージI2の温度は、温度指示調節器3
0により、設定器32で設定された条件に基づいて調節
される。
Note that the temperature of the pot stage I2 is determined by the temperature indication controller 3.
0, the adjustment is made based on the conditions set by the setting device 32.

次にステップ102において、コントローラ34は赤外
分光光度計26からこの固定波数の光強度を読み取る。
Next, in step 102, controller 34 reads the light intensity of this fixed wavenumber from infrared spectrophotometer 26.

次にステップ104において、この光強度が極小値であ
るかどうかを判定し、極小値でないと判定した場合には
ステップ102へ戻る。
Next, in step 104, it is determined whether this light intensity is the minimum value, and if it is determined that it is not the minimum value, the process returns to step 102.

ここで、試料としてポリプロピレン樹脂を用し)、固定
波数を1450cm−’、試料の初期温度を200℃、
降温速度を5℃/minとしたときの試料温度に対する
光強度の測定結果が示されており、125℃で光強度が
極小値になった。この温度は、試料に含まれる微量成分
により変動するので、正確な値は試料毎に実験的にしか
求めることができない。
Here, polypropylene resin was used as the sample), the fixed wave number was 1450 cm-', the initial temperature of the sample was 200°C,
The measurement results of the light intensity with respect to the sample temperature when the cooling rate was 5°C/min are shown, and the light intensity reached a minimum value at 125°C. Since this temperature varies depending on trace components contained in the sample, an accurate value can only be determined experimentally for each sample.

ステップ104で肯定判定された場合には、ステップ1
06へ進み、温度指示調節器30へ温度固定指令を供給
する。これにより、温度指示調節器30は設定器32の
設定値にかかわらず、この時の検出温度になるよう試料
温度を固定する。この固定を安定に行うには、降温速度
を遅くする必要がある。
If an affirmative determination is made in step 104, step 1
The process proceeds to step 06, and a temperature fixing command is supplied to the temperature instruction regulator 30. As a result, the temperature indicating regulator 30 fixes the sample temperature to the detected temperature at this time, regardless of the setting value of the setting device 32. In order to stably perform this fixation, it is necessary to slow down the temperature drop rate.

次にステップ108において、アパーチャ20の開口を
設定器35により設定された微少開口面積にする。ずな
わら、試料の微少領域の赤外スペクトルをθり定して微
量成分の偏析分布を知得するために、この開し]面積を
小さくする。
Next, in step 108, the opening of the aperture 20 is made to have a minute opening area set by the setting device 35. Of course, this opening area is made small in order to determine the infrared spectrum of a minute region of the sample and determine the segregation distribution of the minute components.

次にステップ110において、試料を走査するために、
X−YステージIOをステップ駆動する。
Next, in step 110, to scan the sample,
Step drive the XY stage IO.

次にステップ112において、上記各ステップ駆動に対
応して、赤外分光光度計26に対し赤外スペクトルを測
定させ、そのデータを記憶させる。
Next, in step 112, the infrared spectrophotometer 26 is caused to measure an infrared spectrum corresponding to each of the above-mentioned step drives, and the data is stored.

次にステップ114において、X−Yステージ10の走
査範囲内を全て走査したかどうかを判定し、走査未了で
あればステップ110へ戻る。
Next, in step 114, it is determined whether the entire scanning range of the XY stage 10 has been scanned, and if the scanning has not been completed, the process returns to step 110.

ステップ114で走査終了と判定された場合には、次に
116においてステップ100と同一の処理を行う。こ
れにより、コントローラ34による全処理が終了する。
If it is determined in step 114 that scanning has ended, then in 116 the same processing as in step 100 is performed. This completes all processing by the controller 34.

次に、上記試料について光路切換鏡22を切り換え、接
眼レンズ24から試料を覗いたところ、第4図に示すよ
うな境界を有する球晶が観察された。これはポリプロピ
レン樹脂の結晶化開始温度時における球晶である。赤外
分光光度計26に記憶されているデータのうち、図中の
点Aの赤外吸収スペクトルデータから点Bの赤外吸収ス
ペクトルデータを差し引いた差スペクトルを求めたとこ
ろ、第6図に示すような結果が得られた。なお、走査時
のアパーチャ20の微少開口面積は、これに対応した試
料面の面積が20X20μm2になるようにした。図中
、1700cm−’付近に大きなピークPか存在するか
、これはポリプロピレン樹脂に加えた添加剤の赤外吸収
スペクトルであることがわかった。
Next, when the optical path switching mirror 22 was switched for the sample and the sample was looked into through the eyepiece 24, spherulites with boundaries as shown in FIG. 4 were observed. This is a spherulite at the crystallization initiation temperature of polypropylene resin. Among the data stored in the infrared spectrophotometer 26, the difference spectrum obtained by subtracting the infrared absorption spectrum data at point B from the infrared absorption spectrum data at point A in the figure is shown in FIG. The following results were obtained. The micro opening area of the aperture 20 during scanning was such that the corresponding area of the sample surface was 20×20 μm 2 . In the figure, it was found that there is a large peak P near 1700 cm-', which is the infrared absorption spectrum of the additive added to the polypropylene resin.

この添加剤は微量であり、溶融状態の赤外スペクトルか
らは確認できなかったが、ごのような結晶化の過程で添
加剤が偏析し、差スペクトルを得ることによりこれを確
認することができた。
The amount of this additive was so small that it could not be confirmed from the infrared spectrum of the molten state, but the additive segregates during the crystallization process, and this can be confirmed by obtaining the difference spectrum. Ta.

また、どの部分に偏析するかが分かり、その物性を推定
することができた。したがって、この採取スペクトルは
溶融ポリマーを冷却固化して成形する際の好ましい温度
条件の決定や好ましい硬化剤の選択を行うのに有効な情
報となる。
Furthermore, we were able to find out where the particles segregated and estimate their physical properties. Therefore, this collected spectrum provides effective information for determining the preferred temperature conditions for cooling and solidifying the molten polymer and for molding, and for selecting a preferred curing agent.

なお、本発明にはほかにも種々の変形例が含まれること
は勿論である。
It goes without saying that the present invention includes various other modifications.

例えば、第3図において、光強度が急変する部分及びそ
の前後で、試料の特定微小領域について一11= 赤外スペク)・ルを測定し、またはこの微小領域を走査
させて赤外スペクトルを測定することにより、相変化時
点およびその前後の化学構造の変化または偏析を捕らえ
るようにしてもよい。
For example, in Figure 3, at the part where the light intensity suddenly changes and before and after that, the infrared spectrum is measured for a specific minute area of the sample, or the infrared spectrum is measured by scanning this minute area. By doing so, changes or segregation in chemical structure at and before and after the phase change may be detected.

また、他の光路切換鏡とモニターテレビを付設して試料
をモニターできるようにしてもよい。
Further, another optical path switching mirror and a monitor television may be attached so that the sample can be monitored.

さらに、−に記実施例では試料を降温させる場合を説明
したが、昇温させるばあいであってもよい。
Furthermore, in the embodiment described in -, the case where the temperature of the sample is lowered has been explained, but the case where the sample is heated may also be used.

[発明の効果] 以上説明した如く、本発明に係る熱分析・顕微分光方法
では、顕微鏡のステージに置かれた試料の温度を変化さ
せて熱分析を行うことにより該試料の相変化等の巨視的
変化をとらえ、該顕微鏡下でスペクトル測定を行うこと
により該巨視的変化と関連させて該試料の化学構造の変
化や空間的分布の微視的変化をとらえるので、ポリマー
成形条件の決定、硬化材の決定、さらには、ポリマーの
ガラス転移、結晶化、化学反応、熱安定性または相平衡
と官能基または分子構造式との関係を把握することがで
きるという優れた効果を奏し、高融点プラスチック等の
新規高分子材料の開発に大きく寄与する。
[Effects of the Invention] As explained above, in the thermal analysis/microscopic spectroscopy method according to the present invention, thermal analysis is performed by changing the temperature of a sample placed on the stage of a microscope, thereby determining macroscopic changes such as phase changes in the sample. By measuring the spectra under the microscope, we can detect changes in the chemical structure and microscopic changes in the spatial distribution of the sample in relation to the macroscopic changes, making it easy to determine polymer molding conditions and cure. It has the excellent effect of determining the material of high melting point plastics, and also understanding the relationship between glass transition, crystallization, chemical reactions, thermal stability, or phase equilibrium of polymers, and functional groups or molecular structural formulas. This will greatly contribute to the development of new polymer materials such as

また、本発明に係る熱分析・顕微分光光度計は、」1記
方法を実施する装置であり、上記効果を奏する。
Further, the thermal analysis/microscopic spectrophotometer according to the present invention is an apparatus that implements the method described in "1", and exhibits the above-mentioned effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の一実施例に係り、第1図は
熱分析・顕微分光光度計のブロック構成図、第2図はコ
ントローラ34の処理手順を示すフローチャート、第3
〜5図は測定結果に係り、第3図は試料温度の変化に対
する特定赤外波長の光強度の関係を示す線図、第4図は
顕微鏡を覗いたときの球晶の境界を示す図、第5図は第
4図に示すへ点とB点の赤外吸収スペクトルの差スペク
トル図である。 10:X−Yステージ 12:ホットステージ 12A、試料セル 12B:ヒータ 12C温度検出器 18 偏光子 20 アパーチャ 22:光路切換鏡 28、案内光学系
1 to 5 relate to one embodiment of the present invention, in which FIG. 1 is a block diagram of a thermal analysis/microspectrophotometer, FIG. 2 is a flowchart showing the processing procedure of the controller 34, and FIG.
Figures 5 to 5 relate to the measurement results, Figure 3 is a line diagram showing the relationship of light intensity of a specific infrared wavelength to changes in sample temperature, Figure 4 is a diagram showing the boundaries of spherulites when viewed through a microscope, FIG. 5 is a difference spectrum diagram of the infrared absorption spectra of point B and point B shown in FIG. 10: X-Y stage 12: Hot stage 12A, Sample cell 12B: Heater 12C Temperature detector 18 Polarizer 20 Aperture 22: Optical path switching mirror 28, Guide optical system

Claims (7)

【特許請求の範囲】[Claims] (1)顕微鏡のステージに置かれた試料の温度を変化さ
せて熱分析を行うことにより該試料の巨視変化をとらえ
、該顕微鏡下で該試料の微少領域のスペクトル測定を行
うことにより該巨視的変化と関連させて該試料の微視的
変化をとらえることを特徴とする熱分析・顕微分光方法
(1) By changing the temperature of a sample placed on the stage of a microscope and performing thermal analysis, we can capture macroscopic changes in the sample, and by measuring the spectrum of a minute area of the sample under the microscope, we can detect macroscopic changes in the sample. A thermal analysis/microspectroscopy method characterized by capturing microscopic changes in the sample in relation to changes.
(2)前記熱分析は、示差熱分析、示差走査熱量分析ま
たは前記顕微鏡の出射光の特定赤外波長の強度の変化を
とらえることによる熱分析であることを特徴とする特許
請求の範囲第1項記載の方法。
(2) The thermal analysis is differential thermal analysis, differential scanning calorimetry, or thermal analysis by capturing changes in the intensity of a specific infrared wavelength of light emitted from the microscope. The method described in section.
(3)前記試料温度を変化させる過程において、試料温
度を略一定に保持し、この状態で前記微小領域を移動さ
せて複数の微小領域につきスペクトル測定を行うことを
特徴とする特許請求の範囲第2項記載の方法。
(3) In the process of changing the sample temperature, the sample temperature is held substantially constant, and in this state, the minute area is moved to perform spectrum measurement on a plurality of minute areas. The method described in Section 2.
(4)前記試料温度は、熱分析により相変化が検出され
た付近において、略一定に保持されることを特徴とする
特許請求の範囲第3項記載の方法。
(4) The method according to claim 3, wherein the sample temperature is maintained substantially constant in the vicinity where a phase change is detected by thermal analysis.
(5)前記微小領域を固定し、前記試料を昇温または降
温させながら前記熱分析と前記スペクトル測定を同時に
行うことを特徴とする特許請求の範囲第2項記載の方法
(5) The method according to claim 2, wherein the thermal analysis and the spectrum measurement are performed simultaneously while fixing the minute region and increasing or decreasing the temperature of the sample.
(6)光学顕微鏡と、 該光学顕微鏡のステージに置かれる試料の温度を変化さ
せて熱分析を行う熱分析装置と、 該光学顕微鏡の出射光が入射される分光光度計と、 を有することを特徴とする熱分析・顕微分光光度計。
(6) An optical microscope, a thermal analysis device that performs thermal analysis by changing the temperature of a sample placed on the stage of the optical microscope, and a spectrophotometer into which light emitted from the optical microscope is incident. Features of thermal analysis/microscopic spectrophotometer.
(7)前記光学顕微鏡は、視野を絞るアパーチャが備え
られ、ステージに置かれた試料を走査する走査型光学顕
微鏡であることを特徴とする特許請求の範囲第6項記載
の装置。
(7) The apparatus according to claim 6, wherein the optical microscope is a scanning optical microscope that is equipped with an aperture that narrows down the field of view and that scans a sample placed on a stage.
JP62329316A 1987-12-25 1987-12-25 Thermal analysis / microspectroscopy method and apparatus Expired - Fee Related JPH0623697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329316A JPH0623697B2 (en) 1987-12-25 1987-12-25 Thermal analysis / microspectroscopy method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329316A JPH0623697B2 (en) 1987-12-25 1987-12-25 Thermal analysis / microspectroscopy method and apparatus

Publications (2)

Publication Number Publication Date
JPH01170843A true JPH01170843A (en) 1989-07-05
JPH0623697B2 JPH0623697B2 (en) 1994-03-30

Family

ID=18220101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329316A Expired - Fee Related JPH0623697B2 (en) 1987-12-25 1987-12-25 Thermal analysis / microspectroscopy method and apparatus

Country Status (1)

Country Link
JP (1) JPH0623697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992759B2 (en) 2002-10-21 2006-01-31 Nippon Shokubai Co., Ltd. Sample holder for spectrum measurement and spectrophotometer
JP2007298282A (en) * 2006-04-27 2007-11-15 Sumika Chemical Analysis Service Ltd Evaluation method of material by thermooptical analyzing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186147A (en) * 1981-05-13 1982-11-16 Agency Of Ind Science & Technol Simultaneous measurement of heat quantity change and thermogravimetric change
JPS612050A (en) * 1984-04-02 1986-01-08 ザ ダウ ケミカル カンパニ− Combination heat-quantity analyzer and x-ray diffractometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186147A (en) * 1981-05-13 1982-11-16 Agency Of Ind Science & Technol Simultaneous measurement of heat quantity change and thermogravimetric change
JPS612050A (en) * 1984-04-02 1986-01-08 ザ ダウ ケミカル カンパニ− Combination heat-quantity analyzer and x-ray diffractometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992759B2 (en) 2002-10-21 2006-01-31 Nippon Shokubai Co., Ltd. Sample holder for spectrum measurement and spectrophotometer
JP2007298282A (en) * 2006-04-27 2007-11-15 Sumika Chemical Analysis Service Ltd Evaluation method of material by thermooptical analyzing method

Also Published As

Publication number Publication date
JPH0623697B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US20160091366A1 (en) Auto-focus raman spectrometer system
US20110205527A1 (en) Dynamic power control, beam alignment and focus for nanoscale spectroscopy
CN107884388A (en) A kind of micro-Raman spectroscopy and its application method of fast automatic focusing
CN101256113A (en) Micro-measurement apparatus
JP3822785B2 (en) Scattering particle size distribution measuring device
JP2002116133A5 (en)
WO1994025861A1 (en) Raman analysis apparatus and methods
EP1674851B1 (en) Near field analysis apparatus
JPH01170843A (en) Method and apparatus for thermal analysis and microspectroscopy method
JP4674910B2 (en) Crystal polymorph automatic determination method and apparatus by Raman spectroscopy
JP6722111B2 (en) Autofocus system
JP2008529091A (en) Method and apparatus for variable field illumination
JPH05332934A (en) Spectroscope
JPH09133617A (en) Laser abrasion analyzer
GB2235604A (en) Transient thermography
Golzar et al. Online temperature measurement and simultaneous diameter estimation of fibers by thermography of the spinline in the melt spinning process
JPH11108868A (en) Method and apparatus for heat analysis control type raman spectroscopy
JP2002005860A (en) Measuring apparatus for minute region thermal physical property
CN116678497B (en) Automatic calibration device and method for spectrometer
JPH04116452A (en) Microscopic infrared atr measuring apparatus
JPH04213404A (en) Light irradiating device
JPH0776746B2 (en) Infrared microspectrophotometer
US5991044A (en) Method and apparatus for determining characteristics of microstructures utilizing micro-modulation reflectance spectrometry
JPH1054793A (en) Spectral reflection light amount measuring device
JP4491882B2 (en) Microscope using deep ultraviolet light as light source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees