JPH0117060B2 - - Google Patents

Info

Publication number
JPH0117060B2
JPH0117060B2 JP58045999A JP4599983A JPH0117060B2 JP H0117060 B2 JPH0117060 B2 JP H0117060B2 JP 58045999 A JP58045999 A JP 58045999A JP 4599983 A JP4599983 A JP 4599983A JP H0117060 B2 JPH0117060 B2 JP H0117060B2
Authority
JP
Japan
Prior art keywords
inner cylinder
combustor
air
gas turbine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58045999A
Other languages
Japanese (ja)
Other versions
JPS59173632A (en
Inventor
Michio Kuroda
Yoji Ishibashi
Isao Sato
Fumio Kato
Takashi Oomori
Noryuki Hayashi
Yoshihiro Uchama
Katsuo Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4599983A priority Critical patent/JPS59173632A/en
Publication of JPS59173632A publication Critical patent/JPS59173632A/en
Publication of JPH0117060B2 publication Critical patent/JPH0117060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン用の燃焼器に係り、特に
NOxの発生量を著しく低減するように改良した
ガスタービン用燃焼器に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a combustor for a gas turbine, and in particular to a combustor for a gas turbine.
This invention relates to a gas turbine combustor that has been improved to significantly reduce the amount of NOx generated.

〔従来技術〕[Prior art]

ガスタービン燃焼器は燃焼圧力と入口空気温度
が高いためNOxの生成はボイラ、加熱炉等より
も一般に大きく、このためNOxの低減化が急務
となつている。
Because gas turbine combustors have high combustion pressures and inlet air temperatures, NOx production is generally greater than in boilers, heating furnaces, etc., and therefore there is an urgent need to reduce NOx.

燃焼過程中に生成するNOxは燃焼ガス温度、
酸素分圧、及びガスの滞留時間の影響を受ける
が、その中でも燃焼ガス温度の影響が最も大きい
ため、低NOx化には低温燃焼化が最も有効な手
段となる。従つて、ガスタービン燃焼器の低
NOx技術としては従来から燃焼領域へ理論空気
量以上の空気を供給して低温燃焼させるいわゆる
希薄燃焼法が開発されてきている。ところで、ガ
スタービン燃焼器は起動から定格負荷まで非常に
作動範囲が広いため、定格時に十分希薄燃焼させ
て低NOx化を達成しようとすると、部分負荷時
は燃料流量を減少させるため一層希燃焼となり、
着火不良や不安定燃焼及び未燃分の増大という悪
作用がでるため、希薄燃焼の程度は大きな制約を
受ける。また、ガスタービンのように高温高圧燃
焼は燃焼速度が非常に速いため、従来形である燃
料と空気を別々に燃焼器へ供給して燃焼させる拡
散燃焼では、みかけ上空気過剰の状態での燃焼で
あつても局所的には理論混合比もしくは燃料過濃
な混合気での燃焼が相当量を占めることとなり、
結果的にはホツトスポツトを生じ、大幅な低
NOx化は達成できない。これらの問題点の解決
案が種々検討されているが、前者の問題に関して
は、燃料を燃焼器の下流方向に分割して供給する
いわゆる二段燃焼方式の開発が進められている。
また、ホツトスポツトの除去に関しては、混合気
の濃淡をなくすことにより解決できることから、
予混合燃焼方式の実用化が検討されている。
NOx generated during the combustion process depends on the combustion gas temperature,
Although it is affected by oxygen partial pressure and gas residence time, combustion gas temperature has the greatest effect among these, so low-temperature combustion is the most effective means for reducing NOx. Therefore, the low
As NOx technology, a so-called lean burn method has been developed that involves supplying more than the theoretical amount of air to the combustion region to perform low-temperature combustion. By the way, gas turbine combustors have a very wide operating range from startup to rated load, so if you try to achieve low NOx by sufficiently lean combustion at rated time, the fuel flow will be reduced at partial load, resulting in even leaner combustion. ,
The degree of lean combustion is subject to significant restrictions because of the adverse effects of poor ignition, unstable combustion, and an increase in unburned matter. In addition, because the combustion speed of high-temperature, high-pressure combustion as in gas turbines is extremely fast, conventional diffusion combustion, in which fuel and air are supplied separately to the combustor and burned, is not possible due to the fact that combustion occurs in an apparent excess of air. Even so, locally a considerable amount of combustion occurs at the stoichiometric mixture ratio or at a fuel-rich mixture.
The result is hot spots and a significant drop in
NOx conversion cannot be achieved. Various solutions to these problems have been considered, and regarding the former problem, progress is being made in the development of a so-called two-stage combustion system in which fuel is divided and supplied downstream of the combustor.
In addition, since hot spots can be removed by eliminating the concentration of the air-fuel mixture,
The practical application of premix combustion is being considered.

上記の課題に関する技術的問題は次の如くであ
る。(i)予混合気は、燃料ガスと空気との混合比に
可燃範囲と不燃範囲とがあるので可燃混合比範囲
に保たねばならないこと。(ii)火炎は伝播性を有し
ているので逆火する虞れがあり、逆火を招かない
ようにしなければならないこと。
The technical problems related to the above problem are as follows. (i) The premixture must be kept within the flammable mixture ratio range since the mixture ratio of fuel gas and air has a flammable range and a non-flammable range. (ii) Since flame is propagated, there is a risk of backfire, and measures must be taken to prevent backfire.

上記(i)、(ii)の条件を満たして、しかもコンパク
トで圧力損失の小さい予混合室を構成することが
当面の技術的課題のポイントである。
The current technical challenge is to construct a premixing chamber that satisfies the above conditions (i) and (ii) and is compact and has low pressure loss.

上記の問題を解決するため、燃料を2段に供給
する構成にするとともに1段目の燃料を途中で一
旦カツトし、再投入することにより1段目の燃焼
に予混合燃焼としての作用を果たさせる方式の公
技術がある。また、1段目で安定な拡散燃焼を行
なわせ、2段目においてパイプ形の予混合器によ
り希薄予混合気を形成せしめる方式の公知技術も
ある。上記の両公知技術ともNOxの低減につい
ては相当の効果が有るが、予混合室と燃焼室とを
相互に独立させた構成であるため、(i)広範囲に亘
つて燃焼を安定させること、(ii)逆火を完全に防止
すること、及び、(iii)予混合室の圧力損失を軽減す
ることについて未解決の問題を残しており、予混
合室と燃焼室とを別個に設置するため構造が複雑
となり製造コストが高いという欠点も有る。
In order to solve the above problem, we created a configuration in which fuel is supplied to two stages, and by cutting off the fuel in the first stage and reinjecting it, we can achieve the effect of premix combustion in the first stage combustion. There is public technology that allows you to do this. There is also a known technique in which stable diffusion combustion is performed in the first stage, and a lean premixture is formed in the second stage by a pipe-shaped premixer. Both of the above-mentioned known technologies have a considerable effect on reducing NOx, but since the premixing chamber and combustion chamber are configured to be independent from each other, they are capable of (i) stabilizing combustion over a wide range; ii) Complete prevention of flashback and (iii) Reduction of pressure loss in the premixing chamber remain unresolved issues, and the structure for installing the premixing chamber and combustion chamber separately remains. It also has the disadvantage that it is complicated and the manufacturing cost is high.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、簡単な構
造で、予混合効果によるNOx低減を実現するこ
とができ、逆火の虞れ無く、安定燃焼を行なわし
め、しかも圧力損失の少ないガスタービン燃焼器
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a gas turbine with a simple structure, which can achieve NOx reduction through a premixing effect, perform stable combustion without the risk of backfire, and have low pressure loss. The purpose is to provide a combustor.

上記のごとく構造が簡単であれば、製造コスト
の安いこと及び装置全体が大形大重量にならない
ことといつた利点をも伴う。
If the structure is simple as described above, there are advantages such as low manufacturing cost and the fact that the entire device does not become large and heavy.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本出願の発明は、
周壁に空気流入用の開口を設けた円筒状の燃焼器
ライナを有するガスタービン燃焼器において、上
記燃焼器ライナの上流端付近の内部に、筒壁に開
口を設けた内筒を固定し、上記の内筒の内部に燃
料を供給するように構成し、かつ、上記内筒の長
手方向に分散せしめて燃料流出口を配設すると共
に、該内筒に向けて燃焼用空気を吹きつける構造
としたことを特徴とする。
In order to achieve the above object, the invention of the present application:
In a gas turbine combustor having a cylindrical combustor liner with an opening for air inflow in the peripheral wall, an inner cylinder with an opening in the cylindrical wall is fixed inside near the upstream end of the combustor liner, and the The fuel is configured to supply fuel to the inside of the inner cylinder, the fuel outlet is distributed in the longitudinal direction of the inner cylinder, and the combustion air is blown toward the inner cylinder. It is characterized by what it did.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の1実施例を第1図及び第2図に
ついて説明する。
Next, one embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG.

第1図は本発明のガスタービン燃焼器の1実施
例の概要的な縦断面図である。
FIG. 1 is a schematic longitudinal sectional view of one embodiment of the gas turbine combustor of the present invention.

以下に更に本発明の詳細を図面を引用しながら
説明する。第1図は本発明の1実施例の全体構成
を概略的に示したものである。燃焼器外筒8は圧
縮機吐出ケーシングの外周に取付けられ、燃焼器
外筒8の内部には燃焼器ライナ1が設けられ、そ
の下流端にはトランジシヨンピース13が接続さ
れ、燃焼器ライナ1で発生した燃焼ガスをタービ
ンノズル15へ導くように構成されている。燃焼
器ライナの側壁には、上流側からそれぞれ1次空
気孔10、2次空気孔11、それに希釈空気孔1
2が設けられている。
The details of the present invention will be further explained below with reference to the drawings. FIG. 1 schematically shows the overall configuration of one embodiment of the present invention. The combustor outer cylinder 8 is attached to the outer periphery of the compressor discharge casing, and the combustor liner 1 is provided inside the combustor outer cylinder 8. The transition piece 13 is connected to the downstream end of the combustor liner 1. It is configured to guide the combustion gas generated in the turbine nozzle 15 to the turbine nozzle 15. On the side wall of the combustor liner, from the upstream side, there are a primary air hole 10, a secondary air hole 11, and a dilution air hole 1, respectively.
2 is provided.

本実施例は、燃焼器ライナ1の上流端近傍に、
燃焼器ライナ1より径と長さが小さい内筒2を支
持板3によつて燃焼器ライナ1に取付ける。更
に、内筒2には燃焼器外筒カバー7を貫通して燃
料供給管5を接続する。燃料管5の下流端には燃
料流出用の開口部6が設けてあり、燃料は内筒2
の内部へ供給される。前記内筒の表面には燃料を
ライナ1へ噴出供給するための燃料流出口4を設
けてある。
In this embodiment, near the upstream end of the combustor liner 1,
An inner cylinder 2 having a smaller diameter and length than the combustor liner 1 is attached to the combustor liner 1 by a support plate 3. Further, a fuel supply pipe 5 is connected to the inner cylinder 2 by penetrating the combustor outer cylinder cover 7. An opening 6 for fuel outflow is provided at the downstream end of the fuel pipe 5, and the fuel flows into the inner cylinder 2.
is supplied to the inside of the A fuel outlet 4 for injecting and supplying fuel to the liner 1 is provided on the surface of the inner cylinder.

以上のように構成したガスタービン燃焼器にお
いては、圧縮機14からの吐出空気100は燃焼
器外筒8と燃焼器ライナ1との間を通つて上流側
(本図の左方)に流れながら、その途中で希釈空
気口12から希釈空気流103として、また2次
空気孔11から2次空気流102として、更に1
次空気孔10から1次空気流101として、それ
ぞれ燃焼器ライナ1内に流入する。
In the gas turbine combustor configured as described above, the discharge air 100 from the compressor 14 passes between the combustor outer cylinder 8 and the combustor liner 1 and flows upstream (to the left in the figure). , on the way, the dilution air flow 103 from the dilution air port 12, and the secondary air flow 102 from the secondary air hole 11, and further 1
The secondary air holes 10 each enter the combustor liner 1 as a primary air flow 101 .

一方、内筒2内に供給された燃料ガスは、内筒
表面に配列した燃料流出口4から燃焼器ライナ1
内へ、燃料流202として供給される。この燃料
流202は燃焼器ライナ1に設けられた1次空気
孔10から流入する1次空気と急速な混合をす
る。すなわち、通常のガスタービン燃焼器におい
ては、燃焼器ライナからの流入空気速度は概略50
m/s程度以上の高速空気流として供給されるた
め、本発明によるライナ内に設けられた内筒2の
表面には、周囲の燃焼器ライナ1から供給される
空気が衝突噴流として作用し、内筒表面の燃料を
四方八方へ飛散させることとなり著しい混合の促
進が達成される。
On the other hand, the fuel gas supplied into the inner cylinder 2 flows through the combustor liner 1 through the fuel outlet 4 arranged on the inner cylinder surface.
into the fuel stream 202 as a fuel stream 202 . This fuel stream 202 rapidly mixes with primary air entering from the primary air holes 10 provided in the combustor liner 1 . That is, in a typical gas turbine combustor, the inflow air velocity from the combustor liner is approximately 50
Since it is supplied as a high-speed air flow of about m/s or more, the air supplied from the surrounding combustor liner 1 acts as an impinging jet on the surface of the inner cylinder 2 provided in the liner according to the present invention, The fuel on the inner cylinder surface is scattered in all directions, and mixing is significantly promoted.

従つて、第2図に示すごとく内筒2の長さを
L1とし、燃焼器ライナ1の上流端から上記のL1
よりも短かい距離L2の区間内から理論空気量若
しくはそれ以上の空気を供給して燃焼を行なわせ
ると、非常に均一な低温燃焼が実現され、低
NOx効果が著しく大きくなる。
Therefore, the length of the inner cylinder 2 is determined as shown in Fig. 2.
L 1 , and from the upstream end of combustor liner 1 to the above L 1
If combustion is performed by supplying the theoretical amount of air or more air from within a section of distance L2 , which is shorter than
The NOx effect increases significantly.

次に、本実施例における燃焼の安定性について
説明する。
Next, combustion stability in this example will be explained.

燃焼の安定性は、内筒2の下流部に起される再
循環流により、次のようにして保たれる。
Combustion stability is maintained by the recirculation flow generated downstream of the inner cylinder 2 in the following manner.

本実施例においては、内筒2の壁面を含むごく
狭い領域に比較的燃料の濃い層が形成され、この
比較的濃い燃料・空気混合流がそのまま下流へ流
れ、再循環流となるため一層この領域の燃焼安定
性は増し、この再循環流に形成される炎を一種の
火種として全体の火炎を希薄な混合気の状態であ
つても安定に燃焼させることになる。第2図はこ
のような流れと火炎の形成状況を模形的に表わし
たものである。内筒2の表面への1次空気流の衝
突の強さは軸方向流れとの関係、1次空気流の速
度および燃焼器ライナ1と内筒2との間隔で影響
を受けるが、後者の二条件が同一ならば軸方向流
れ速度が小さいほど衝突流は強くなるので、燃料
と空気との衝突混合を効果的に発揮させるには、
内筒表面の燃料流出口をなるべく上流側に設けれ
ばよい。但し、燃焼の安定性を高める観点から、
内筒2の後流に形成される再循環流50には周囲よ
り若干燃料濃度の濃い混合気が引き込まれること
が望ましい。従つて、これを実現するためには円
筒2に設ける燃料流出口を上流のみでなく、1部
下流側にも設けることにより、内筒表面のごとく
壁近傍に存在する燃料の比較的濃い部分を意図的
に助長してやることによつて更に効果的に再循環
流50内の燃料濃度を適切に調整することが出来
る。また、第2図においては火炎60は内筒後流
の循環流50の後方から形成される場合について
示したが、燃空比の条件や燃焼器の構造及び寸法
の関係によつては燃焼器ライナ1と内筒2との間
に火炎が形成される場合もある。しかし、この領
域の火炎は燃焼領域が内筒2によつて物理的に制
約されることと、1次空気流による高冷却および
急激な速度勾配の存在によつて通常の燃焼よりは
遥かに燃焼速度が遅く、従つて燃焼量が小さいた
め高NOx生成の悪作用はほとんど無視できる。
但し、強度的信頼性を高めるために火炎が存在す
る内筒表面は耐熱材料を用いる必要があり、更に
効果的にはセラミツクスコーテインを施したり、
空冷構造とすることにより強度信頼性は十分高め
ることが可能である。
In this embodiment, a relatively dense layer of fuel is formed in a very narrow area including the wall surface of the inner cylinder 2, and this relatively rich fuel/air mixture flows directly downstream and becomes a recirculation flow, making this even more difficult. Combustion stability in this area is increased, and the flame formed in this recirculated flow is used as a kind of ignition source to stably burn the entire flame even in a lean air-fuel mixture state. Figure 2 schematically shows the flow and flame formation. The strength of the impact of the primary air flow on the surface of the inner cylinder 2 is influenced by the relationship with the axial flow, the velocity of the primary air flow, and the distance between the combustor liner 1 and the inner cylinder 2, but the latter If the two conditions are the same, the smaller the axial flow velocity, the stronger the impingement flow will be, so in order to achieve effective impingement mixing between fuel and air,
The fuel outlet on the inner cylinder surface may be provided as far upstream as possible. However, from the perspective of increasing combustion stability,
It is desirable that the recirculation flow 50 formed downstream of the inner cylinder 2 draw in a mixture having a slightly higher fuel concentration than the surroundings. Therefore, in order to achieve this, the fuel outlet provided in the cylinder 2 is not only provided upstream, but also partially downstream, thereby removing the relatively dense portion of fuel that exists near the wall, such as the inner cylinder surface. By intentionally promoting this, the fuel concentration within the recirculation stream 50 can be more effectively adjusted. In addition, although FIG. 2 shows the case where the flame 60 is formed from the rear of the circulating flow 50 downstream of the inner cylinder, depending on the fuel-air ratio conditions and the relationship between the structure and dimensions of the combustor, A flame may also be formed between the liner 1 and the inner cylinder 2. However, the flame in this region burns much faster than normal combustion due to the fact that the combustion region is physically restricted by the inner cylinder 2, the high cooling caused by the primary air flow, and the presence of a steep velocity gradient. The negative effects of high NOx production are almost negligible due to the low velocity and therefore small combustion volume.
However, in order to increase strength and reliability, it is necessary to use a heat-resistant material on the surface of the inner cylinder where the flame exists, and more effectively, it is possible to apply ceramic coating or
By using an air-cooled structure, the strength and reliability can be sufficiently increased.

第3図、第4図はそれぞれ上記と異なる実施例
を示し、燃焼器の圧力損失を軽減するように改良
したものである。第3図に示すように、内筒2′
の径を下流側に向けて漸次縮小せしめた構造と
し、若しくは第4図に示すように燃焼器ライナ
1′の断面積を、内筒2に対向している区間につ
いて、下流側に向けて漸次拡大せしめた構造にす
ると、燃焼器ライナと内筒とに囲まれた空間の断
面積が下流方向に向つて拡大される。このため、
この空間における流速が等速流乃至は減速流とな
り、圧力損失を軽減することができる。特に燃焼
器ライナ1と内筒2の空間を減速度とし、かつ、
内筒出口において火炎が逆火しない流速条件を設
定してやれば、万一火炎が上流側へ伝播しようと
しても、上流側に向う程混合気の流速は速くなる
訳であるから、この流れに火炎が押し流されて、
上流側への火炎の伝播は阻止され、より安全性の
高い予混合室として機能させることができる。こ
のような効果は、図は省略したが内筒の断面積を
下流に向つて縮小し、かつ燃焼器ライナの断面積
を下流に向つて拡大する構造においても実現でき
る。
3 and 4 respectively show embodiments different from those described above, which have been improved to reduce pressure loss in the combustor. As shown in Figure 3, the inner cylinder 2'
The diameter of the combustor liner 1' is gradually reduced toward the downstream side, or as shown in FIG. When the structure is expanded, the cross-sectional area of the space surrounded by the combustor liner and the inner cylinder is expanded in the downstream direction. For this reason,
The flow velocity in this space becomes a constant velocity flow or a decelerated flow, and pressure loss can be reduced. In particular, the space between the combustor liner 1 and the inner cylinder 2 is used as a deceleration, and
If the flow velocity conditions are set so that the flame does not backfire at the outlet of the inner cylinder, even if the flame tries to propagate upstream, the flow velocity of the air-fuel mixture will increase as it moves upstream, so the flame will not spread to this flow. being swept away,
Flame propagation to the upstream side is prevented, and the premixing chamber can function as a safer premixing chamber. Although not shown, such an effect can also be achieved in a structure in which the cross-sectional area of the inner cylinder is reduced toward the downstream side, and the cross-sectional area of the combustor liner is expanded toward the downstream side.

第5図は前記と更に異なる実施例の縦断面図で
ある。
FIG. 5 is a longitudinal sectional view of a further different embodiment from the above.

図の左半部に示した構成部分は第3図に示した
実施例におけると同様乃至は類似の構成部材であ
る。本実施例における燃焼器ライナ1″は後流端
付近(本図において左端付近)を大径に構成し、
その段付部に2次燃料ノズル19、及びスワラ1
6を取付ける。
The components shown in the left half of the figure are the same or similar components as in the embodiment shown in FIG. The combustor liner 1'' in this embodiment has a large diameter near the wake end (near the left end in this figure),
A secondary fuel nozzle 19 and a swirler 1 are installed in the stepped part.
Install 6.

本実施例は、内筒2′を設けた予混合部を1次
燃焼器として作用させるとともに、燃焼器ライナ
1″の後流端均傍に2次燃焼器を形成した構成で
ある。
This embodiment has a configuration in which a premixing section provided with an inner cylinder 2' acts as a primary combustor, and a secondary combustor is formed near the downstream end of the combustor liner 1''.

本実施例(第5図)のように構成した燃焼器
は、低負荷時は1次燃焼器内へ供給する1次燃料
200によつて運転し、高負荷側は2次燃料20
3の2次燃焼器への供給によつて運転するいわゆ
る2段燃焼器としての適用例を示すものである。
本実施例のように2段燃焼器として作用し得るよ
うに構成すると、1次燃焼器成分(図の左半部)
と、2次燃焼器部分(図の右半部)とに、それぞ
れ分割して燃料を供給してガスタービンの全作動
域を運転することとなり、各燃焼領域の燃料流量
変化割合は従来の単段燃焼の場合に比較して非常
に小さくできる。
The combustor configured as in this embodiment (Fig. 5) is operated by the primary fuel 200 supplied into the primary combustor during low load, and the secondary fuel 200 is supplied to the primary combustor at high load.
This shows an example of application as a so-called two-stage combustor that operates by supplying the fuel to the secondary combustor of No. 3.
When configured to function as a two-stage combustor as in this example, the primary combustor component (left half of the figure)
Fuel is then supplied to the secondary combustor and secondary combustor (right half of the diagram) to operate the gas turbine over its entire operating range, and the rate of change in fuel flow rate in each combustion region is different from that of the conventional unit. It can be made much smaller than in the case of staged combustion.

従来技術においては、ガスタービンの作動条件
が広範囲であるため、特に部分負荷時の燃焼性能
が低下するという問題が有つたが、本実施例にお
ける希薄燃焼度の程度は、作動条件範囲が狭くな
つた分だけ有利になつて希薄燃焼代が高められ、
NOxの低減に有利である。
In the conventional technology, since the operating conditions of the gas turbine are wide-ranging, there was a problem that the combustion performance deteriorated especially at partial load. Therefore, the lean burn allowance is increased,
It is advantageous for reducing NOx.

また、本実施例のごとく2段燃焼器を構成する
と、前述した第1の発明と同様の効果が得られる
上に、1次燃焼室の内筒2の後流に安定な火炎が
形成されたため、二段目の火炎が更にこの火炎に
よつて安定化され1段目、2段目の火炎全体が安
定に燃焼させることができる。
Further, by configuring a two-stage combustor as in this embodiment, not only the same effects as the first invention described above can be obtained, but also a stable flame is formed in the wake of the inner cylinder 2 of the primary combustion chamber. The second stage flame is further stabilized by this flame, and the entire first and second stage flames can be stably combusted.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本願のガスタービン燃焼
器は、周壁に空気流入用の開口を設けた円筒状の
燃焼器ライナを有するガスタービン燃焼器におい
て、上記燃焼器ライナの上流端付近の内部に、、
筒壁に開口を設けた内筒を固定し、上記の内筒の
内部に燃料を供給すると共に、該内筒に燃焼用空
気を吹きつけるように構成することにより、簡単
な構造で、予混合効果によるNOx低減を実現す
ることができ、逆火の虞れ無く、安定燃焼を行な
わしめ、しかも圧力損失の少ないガスタービ量燃
焼器を構成することができる。
As described in detail above, the gas turbine combustor of the present application has a cylindrical combustor liner with an opening for air inflow in the peripheral wall. ,,
By fixing an inner cylinder with an opening in the cylinder wall, supplying fuel to the inside of the inner cylinder, and blowing combustion air into the inner cylinder, premixing can be achieved with a simple structure. As a result, NOx reduction can be realized, and a gas turbine combustor can be configured that allows stable combustion without the risk of backfire and has low pressure loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の1実施例を示し、
第1図は縦断面図、第2図は作動説明図である。
第3図及び第4図はそれぞれ上記と異る実施例の
断面図である。第5図は更に異なる実施例におけ
る縦断面図である。 1……燃焼器ライナ、2……内筒、3……支持
板、4……燃料流出口、5……燃料供給管、10
……一次空気孔、16……二次燃料用スワラ、1
7……二次燃料供給管、19……二次燃料ノズ
ル、50……再循環流。
1 and 2 show one embodiment of the present invention,
FIG. 1 is a longitudinal sectional view, and FIG. 2 is an explanatory diagram of the operation.
FIGS. 3 and 4 are sectional views of embodiments different from those described above. FIG. 5 is a longitudinal sectional view of a further different embodiment. DESCRIPTION OF SYMBOLS 1...Combustor liner, 2...Inner cylinder, 3...Support plate, 4...Fuel outlet, 5...Fuel supply pipe, 10
...Primary air hole, 16...Secondary fuel swirler, 1
7...Secondary fuel supply pipe, 19...Secondary fuel nozzle, 50...Recirculation flow.

Claims (1)

【特許請求の範囲】 1 周壁に空気流入用の開口を設けた円筒状の燃
焼器ライナを有するガスタービン燃焼器におい
て、 (a) 上記燃焼器ライナの上流端付近の内部に、下
流端を閉じた内筒を固定し、 (b) 上記の内筒の内部に燃料を供給するように構
成すると共に、 (c) 前記燃焼器ライナから上記内筒の表面に向け
て空気を衝突せしめる方向に供給し、かつ、 (d) 前記内筒の筒壁に、上流側から下流側にかけ
て分散せしめて燃料流出用の開口4を設け、 (e) 上記内筒の内部には、火炎を発生せしめるに
足る燃焼用空気を供給しない構成であることを
特徴とするガスタービン燃焼器。 2 前記の内筒の長さをL1とし、燃焼器ライナ
の外側から内側に流入する空気量をその上流端か
ら累積した値が理論空気量となる位置までの長さ
をL2とし、L1>L2ならしめたことを特徴とする
特許請求の範囲第1項に記載のガスタービン燃焼
器。 3 前記の内筒の周囲を、下流側に向かつて漸次
細くするように構成したことを特徴とする特許請
求の範囲第1項若しくは同第2項に記載のガスタ
ービン燃焼器。 4 前記の燃焼器ライナが内筒に対向している部
分の断面積を、下流側に向かつて漸次拡大するよ
うに構成したことを特徴とする特許請求の範囲第
1項乃至同第3項の内のいずれか一つに記載のガ
スタービン燃焼器。 5 前記の燃焼器ライナの下流端付近を拡大し、
この拡大部付近に2次燃料供給ノズル、及び、空
気導入手段を設けたことを特徴とする特許請求の
範囲第1項又は同第2項に記載のガスタービン燃
焼器。
[Scope of Claims] 1. In a gas turbine combustor having a cylindrical combustor liner with an opening for air inflow in the peripheral wall, (a) the downstream end is closed inside the combustor liner near the upstream end; (b) configured to supply fuel into the interior of the inner cylinder, and (c) to supply air from the combustor liner in a direction that causes air to collide with the surface of the inner cylinder. and (d) the cylinder wall of the inner cylinder is provided with openings 4 for fuel outflow distributed from the upstream side to the downstream side, and (e) there is enough space inside the inner cylinder to generate a flame. A gas turbine combustor characterized by having a configuration in which combustion air is not supplied. 2 The length of the inner cylinder mentioned above is L 1 , and the length of the amount of air flowing from the outside of the combustor liner to the inside from its upstream end to the point where the accumulated value is the theoretical air amount, is L 2 . The gas turbine combustor according to claim 1, characterized in that 1 > L2 . 3. The gas turbine combustor according to claim 1 or 2, wherein the periphery of the inner cylinder is configured to gradually become thinner toward the downstream side. 4. Claims 1 to 3 are characterized in that the cross-sectional area of the portion of the combustor liner facing the inner cylinder is configured to gradually expand toward the downstream side. The gas turbine combustor according to any one of the following. 5 Enlarge the vicinity of the downstream end of the combustor liner,
The gas turbine combustor according to claim 1 or 2, characterized in that a secondary fuel supply nozzle and an air introduction means are provided near the enlarged portion.
JP4599983A 1983-03-22 1983-03-22 Gas turbine combustor Granted JPS59173632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4599983A JPS59173632A (en) 1983-03-22 1983-03-22 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4599983A JPS59173632A (en) 1983-03-22 1983-03-22 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPS59173632A JPS59173632A (en) 1984-10-01
JPH0117060B2 true JPH0117060B2 (en) 1989-03-28

Family

ID=12734789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4599983A Granted JPS59173632A (en) 1983-03-22 1983-03-22 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPS59173632A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108638A (en) * 1974-02-01 1975-08-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108638A (en) * 1974-02-01 1975-08-27

Also Published As

Publication number Publication date
JPS59173632A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
JP5412283B2 (en) Combustion device
JP3619626B2 (en) Operation method of gas turbine combustor
RU2455569C1 (en) Burner
US6736338B2 (en) Methods and apparatus for decreasing combustor emissions
JPH02309124A (en) Combustor and operating method thereof
JP2009052877A (en) Gas turbine premixer with radial multistage flow path, and air-gas mixing method for gas turbine
JPS637283B2 (en)
JPH02208417A (en) Gas-turbine burner and operating method therefor
JP2006300448A (en) Combustor for gas turbine
JPH0587340A (en) Air-fuel mixer for gas turbine combustor
JPH10132278A (en) Gas turbine
JP2852110B2 (en) Combustion device and gas turbine device
JP2005106305A (en) Nozzle for fuel combustion and fuel supplying method for gas turbine combustor
JPH09222228A (en) Gas turbine combustion device
JP2004162959A (en) Annular type spiral diffusion flame combustor
JPH0440611B2 (en)
JP3959632B2 (en) Diffusion combustion type low NOx combustor
JPH08296851A (en) Gas turbine burner and burning method therefor
JPH0117060B2 (en)
JPH0942672A (en) Gas turbine combustor
JPH0240418A (en) Gas turbine burner
JP3449802B2 (en) Gas combustion equipment
JPH11223342A (en) Combustor for gas turbine
JP3951155B2 (en) Low NOx steam injection combustor
JP2004028352A (en) LOW NOx COMBUSTOR COMPRISING FUEL INJECTION VALVE FOR PREVENTING BACKFIRE AND SELF-IGNITION