JPH0117043B2 - - Google Patents

Info

Publication number
JPH0117043B2
JPH0117043B2 JP56099167A JP9916781A JPH0117043B2 JP H0117043 B2 JPH0117043 B2 JP H0117043B2 JP 56099167 A JP56099167 A JP 56099167A JP 9916781 A JP9916781 A JP 9916781A JP H0117043 B2 JPH0117043 B2 JP H0117043B2
Authority
JP
Japan
Prior art keywords
combustion
gas
heating
catalytic combustion
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56099167A
Other languages
Japanese (ja)
Other versions
JPS582508A (en
Inventor
Hisashi Fukuzawa
Yoshimi Ishihara
Yoshikazu Hasegawa
Saburo Maruko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denryoku Chuo Kenkyusho
Original Assignee
Denryoku Chuo Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho filed Critical Denryoku Chuo Kenkyusho
Priority to JP56099167A priority Critical patent/JPS582508A/en
Publication of JPS582508A publication Critical patent/JPS582508A/en
Publication of JPH0117043B2 publication Critical patent/JPH0117043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は接触燃焼による熱分解反応器などの加
熱方法に関する。 化学工業における熱化学反応装置例えばメタン
分解反応装置においては、その加熱源としてバー
ナによる燃焼ガスが用いられ、これを被加熱物が
通される反応パイプとその外部フレーム間に通し
て、燃焼ガスの輻射作用と対流作用により加熱す
ることが行われている。ところでこの場合高温の
燃焼ガスによる熱反応装置の構成材料の酸化消耗
を防ぐためには、燃焼ガスが高温であればある程
含有酸素濃度を低くすることが望ましい。しかし
従来のバーナによる加熱方法では、燃焼ガス中の
残存酸素濃度を低くしようとすると、空気中の酸
素の理論値に相当する燃料より多い燃料を燃焼し
なければならないため、一酸化炭素などの未燃焼
成分が残る。このため残存酸素濃度を低くするこ
とは原理的に難かしく、どうしても熱反応装置の
酸化消耗を現在以下に少なくするのは難かしい。
また未燃成分が残ることによつて廃ガス量が多
く、しかもバーナによる場合は有炎燃焼であるの
で燃焼ガス中に多量例えば数100ppmにものぼる
窒素酸化物が含有されて大気汚染源となる欠点が
ある。また含有酸素濃度を低くした状態におい
て、燃焼ガスの温度を自由に調節できにくいた
め、熱回収効率の低下を招き易いなどの欠点があ
り、その廃ガスの組成は例えばLPGを燃料とし
た場合第1表の通りとなる。
The present invention relates to a method for heating a pyrolysis reactor or the like by catalytic combustion. Thermochemical reactors in the chemical industry, such as methane decomposition reactors, use combustion gas from a burner as a heating source, and the combustion gas is passed between the reaction pipe through which the object to be heated is passed and its external frame. Heating is performed by radiation and convection. In this case, in order to prevent the constituent materials of the thermal reaction device from being oxidized and consumed by the high-temperature combustion gas, it is desirable that the higher the temperature of the combustion gas, the lower the contained oxygen concentration. However, in the conventional heating method using a burner, in order to reduce the residual oxygen concentration in the combustion gas, it is necessary to burn more fuel than the theoretical value of oxygen in the air, which results in the generation of unmixed substances such as carbon monoxide. Combustion components remain. For this reason, it is difficult in principle to reduce the residual oxygen concentration, and it is difficult to reduce the oxidation consumption of the thermal reaction device to a level below the current level.
In addition, the amount of waste gas is large due to unburned components remaining, and since combustion is flammable when using a burner, a large amount of nitrogen oxides, for example, several hundred ppm, are contained in the combustion gas, which is a source of air pollution. There is. Furthermore, when the oxygen content is low, it is difficult to freely adjust the temperature of the combustion gas, which tends to lead to a decrease in heat recovery efficiency. As shown in Table 1.

【表】 本発明は触媒を用いる接触燃焼法の利用が、上
記の如き難点の解決に効果的であることを着想し
てなされたものである。即ち接触燃焼法において
は、第1に含有酸素気体と燃料との混合比の調節
によりバーナ法に比べて未燃分の生成少なく容易
に燃焼温度を調節でき、しかも燃料濃度を爆発限
界外とすることにより容易に無炎燃焼(バーナの
場合有炎燃焼)として窒素酸化物の含有の少ない
所望の温度の燃焼ガスが得られる。第2には接触
燃焼装置を多段設け、前段の燃焼排ガスを燃料と
して用いて繰返し燃焼させて、その含有酸素を順
次消費させることにより、最終的に残存酸素濃度
の極めて低い燃焼ガスが得られる。 本発明は以上の点に着目し、各段の接触燃焼温
度を所要の加熱温度が得られるように調節して、
加熱温度の高い被加熱物においては含有酸素量が
低く温度が高い燃焼ガスを加熱に使用する。また
加熱温度の低い被加熱物においては含有酸素量が
高く温度の低い燃焼ガスを加熱に使用しうるよう
に、被加熱装置に組合せることにより、熱反応装
置などの酸化消耗を少なくして加熱でき、しかも
廃ガスを不活性ガスとして有効利用して、廃ガス
による大気汚染のおそれをなくすことができるこ
とを着想してなされたものである。次に実施例図
によつて本発明の詳細を説明する。 第1図はメタンガスから水素と二酸化炭素ガス
を得る熱化学反応装置における本発明の一実施例
系統図である。空気ブロワー1により空気2を空
気予熱器3に通して予熱したのち第1混合器4に
送り、こゝで第1燃料送入管5からのメタン
(CH4)6を燃料濃度が爆発限界となるように混
合する。そして第1接触燃焼装置7の触媒8に通
して接触燃焼を行わせ、その熱エネルギーを第1
熱交換器9、蒸気室10により蒸気11として回
収して、後記するようにメタン6と混合されて熱
分解反応装置19に加えられてメタンの熱分解に
使用される。なお12はポンプである。こゝで接
触燃焼温度が1600℃以下では空気2の含有酸素の
約60%程度しか消費されないため、被加熱装置の
酸化消耗が激しく使用できない。そこで接触燃焼
温度を低くし、これを要求加熱温度が比較的低い
蒸気として熱回収する。 次に熱回収された第1接触燃焼装置7の排ガス
13を第2混合器14に入れて、第2燃料送入管
15からのメタンと爆発限界外となるように混合
したのち、第2接触燃焼装置16の触媒層17に
通して第2の接触燃焼を行わせ、その燃焼ガス1
8により熱分解反応器19(外熱リフオーマ)を
加熱する。そしてこゝで混合器20における前記
蒸気室10からの蒸気11とメタン6の混合気体
21を、水素(H2)と一酸化炭素(CO)とに分
解する。こゝで加熱側ガスとして1200〜1300℃の
温度が要求され、また熱分解温度としては700〜
800℃程度の温度が要求されるが、これに利用さ
れる第2接触燃焼装置16の燃焼排ガスは、前段
の燃焼装置7の排ガス即ち酸素を消費された排ガ
スの燃焼によつて作られる。従つてその残留酸素
濃度を容易に0.1%以下にすることができ、加熱
温度が高温であつても熱反応装置19の構成材料
の酸化消耗を効果的に防ぎながら加熱を行うこと
ができる。 次に熱分解反応装置19による熱分解反応によ
り生じた水素と一酸化炭素とよりなるガスは、第
2熱交換器22に送られて熱エネルギーを回収さ
れ、これは第1熱交換器9からのそれと共に蒸気
室10に加えられるが、第2熱交換器22の加熱
温度は熱分解反応装置19での熱利用によつて低
く、しかも残留酸素量も低いため酸化消耗を効果
的に防止しうる。一方熱分解反応装置19を出た
燃焼排ガス23は、前記した空気予熱器3に加え
られて空気2を予熱したのち、第1変換反応器2
4を冷却する。そしてこゝで熱分解反応装置19
からのCOとH2Oとを触媒により(H2)と二酸化
炭素(CO2)に変換する。即ち発熱反応のために
前述の空気予熱器3により冷却された燃焼排ガス
を冷却媒体として使用して行われる。従つて例え
ばH2Oを凝縮分離25すれば、二酸化炭素
(CO2)窒素(N2)などよりなる不活性ガス26
として利用できる。また第1変換反応器24から
出た温度の低いCOとH2Oとを、更に第2変換反
応器27に加えてその触媒との接触によりH2
CO2とに分離したのち、分離器28により余剰の
H2Oを凝縮水として取除けば、水素29を取出
すことができる。第2表は実験の結果の
[Table] The present invention was made based on the idea that the use of a catalytic combustion method using a catalyst is effective in solving the above-mentioned difficulties. That is, in the catalytic combustion method, firstly, by adjusting the mixing ratio of the oxygen-containing gas and the fuel, the combustion temperature can be easily adjusted with less unburned matter produced than in the burner method, and the fuel concentration can be kept outside the explosive limit. As a result, combustion gas containing less nitrogen oxides and having a desired temperature can be easily obtained as flameless combustion (flamed combustion in the case of a burner). Second, by providing multiple stages of catalytic combustion devices and repeatedly burning the combustion exhaust gas from the previous stages as fuel, the oxygen contained therein is sequentially consumed, thereby finally producing combustion gas with an extremely low residual oxygen concentration. The present invention focuses on the above points, and adjusts the catalytic combustion temperature of each stage to obtain the required heating temperature.
For objects to be heated whose heating temperature is high, combustion gas having a low oxygen content and a high temperature is used for heating. In addition, in order to use low-temperature combustion gas with high oxygen content for heating objects that require low heating temperatures, by combining it with the heating device, heating can be done while reducing oxidation consumption of thermal reaction devices, etc. The idea was that the waste gas could be effectively used as an inert gas, eliminating the risk of air pollution caused by the waste gas. Next, details of the present invention will be explained with reference to embodiment figures. FIG. 1 is a system diagram of an embodiment of the present invention in a thermochemical reaction apparatus for producing hydrogen and carbon dioxide gas from methane gas. The air 2 is passed through the air preheater 3 to be preheated by the air blower 1, and then sent to the first mixer 4, where the methane (CH 4 ) 6 from the first fuel inlet pipe 5 is heated until the fuel concentration reaches the explosive limit. Mix until the mixture is evenly mixed. Then, catalytic combustion is performed through the catalyst 8 of the first catalytic combustion device 7, and the thermal energy is transferred to the first catalytic combustion device 7.
It is recovered as steam 11 by a heat exchanger 9 and a steam chamber 10, and is mixed with methane 6 and added to a thermal decomposition reactor 19 to be used for thermal decomposition of methane, as will be described later. Note that 12 is a pump. If the catalytic combustion temperature is below 1600°C, only about 60% of the oxygen contained in the air 2 is consumed, and the equipment to be heated is severely oxidized and cannot be used. Therefore, the catalytic combustion temperature is lowered and the heat is recovered as steam with a relatively low required heating temperature. Next, the heat-recovered exhaust gas 13 from the first catalytic combustion device 7 is put into the second mixer 14 and mixed with methane from the second fuel feed pipe 15 so as to be outside the explosion limit, and then the second catalytic combustion device 7 is heated. The combustion gas 1 is passed through the catalyst layer 17 of the combustion device 16 to perform second catalytic combustion.
8 to heat the pyrolysis reactor 19 (exothermal reformer). Then, the mixed gas 21 of the steam 11 from the steam chamber 10 and methane 6 in the mixer 20 is decomposed into hydrogen (H 2 ) and carbon monoxide (CO). Here, a temperature of 1200 to 1300℃ is required for the heating gas, and the thermal decomposition temperature is 700 to 1300℃.
A temperature of about 800° C. is required, and the combustion exhaust gas of the second catalytic combustion device 16 used for this purpose is produced by combustion of the exhaust gas of the combustion device 7 in the previous stage, that is, the exhaust gas in which oxygen has been consumed. Therefore, the residual oxygen concentration can be easily reduced to 0.1% or less, and even if the heating temperature is high, heating can be performed while effectively preventing oxidative consumption of the constituent materials of the thermal reaction device 19. Next, the gas consisting of hydrogen and carbon monoxide produced by the thermal decomposition reaction in the thermal decomposition reactor 19 is sent to the second heat exchanger 22 to recover thermal energy, which is transferred from the first heat exchanger 9. However, the heating temperature of the second heat exchanger 22 is low due to the heat utilization in the pyrolysis reactor 19, and the amount of residual oxygen is also low, so oxidative consumption is effectively prevented. sell. On the other hand, the combustion exhaust gas 23 that has exited the pyrolysis reactor 19 is added to the air preheater 3 described above to preheat the air 2, and then is sent to the first conversion reactor 2.
Cool 4. And here the thermal decomposition reactor 19
The CO and H 2 O from are converted into (H 2 ) and carbon dioxide (CO 2 ) by a catalyst. That is, for exothermic reaction, the combustion exhaust gas cooled by the air preheater 3 is used as a cooling medium. Therefore, for example, if H 2 O is condensed and separated 25, an inert gas 26 consisting of carbon dioxide (CO 2 ), nitrogen (N 2 ), etc.
It can be used as In addition, the low-temperature CO and H 2 O discharged from the first conversion reactor 24 are further added to the second conversion reactor 27 and converted into H 2 by contact with the catalyst.
After separating it into CO 2 , the excess
If H 2 O is removed as condensed water, hydrogen 29 can be extracted. Table 2 shows the results of the experiment.

【表】 一例を示すガスの組成および含有割合であつて、
この場合水素ガス中には0.5容量%の一酸化炭素
を含んでいる。また第1接触燃焼装置7の燃焼排
ガス中の残留酸素濃度が高い場合には、第2図に
示すように更に接触燃焼装置30を設け、その燃
焼排ガスを熱分解反応装置19に加えるようにし
てもよい。 以上の説明から明らかなように、本発明におい
ては例えば第1図の熱分解反応装置および第1熱
交換器の接触燃焼ガスによる加熱に見られるよう
に、要求加熱温度の高低に対応した残留酸素量を
もつ燃焼排ガスにより加熱できる。従つて加熱ガ
ス中の含有酸素による構成材の酸化消耗を効果的
に防ぎながら加熱できる、バーナー方法によつて
は得られないすぐれた効果を得ることができ、ま
た最終的に燃焼排ガスを不活性ガスなどとして利
用できるので、廃ガスが大気汚染源となるおそれ
少なく加熱できる、バーナー法にないすぐれた利
点を得られるもので、実用上の効果は著しい。
[Table] Composition and content ratio of gas showing an example,
In this case, the hydrogen gas contains 0.5% by volume of carbon monoxide. Further, if the residual oxygen concentration in the combustion exhaust gas from the first catalytic combustion device 7 is high, a catalytic combustion device 30 is further provided as shown in FIG. 2, and the combustion exhaust gas is added to the pyrolysis reaction device 19. Good too. As is clear from the above description, in the present invention, as seen in heating by catalytic combustion gas in the pyrolysis reactor and the first heat exchanger shown in FIG. It can be heated by a large amount of combustion exhaust gas. Therefore, it is possible to heat the constituent materials while effectively preventing oxidation and consumption due to the oxygen contained in the heating gas, and it is possible to obtain an excellent effect that cannot be obtained with the burner method, and finally to inert the combustion exhaust gas. Since it can be used as a gas, it has the advantage of being able to heat the waste gas with less risk of becoming a source of air pollution, an advantage not found in the burner method, and has a remarkable practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2
図はその変形例図である。 1……空気ブロワー、3……空気予熱器、4…
…第1混合器、5……第1燃料送入管、7……第
1接触燃焼装置、8……その触媒、9……第1熱
交換器、10……蒸気室、12……ポンプ、14
……第2混合器、15……第2燃料送入管、16
……第2接触燃焼装置、17……触媒層、19…
…熱分解反応器、20……混合器、22……第2
熱交換器、24……第1変換反応器、25……凝
縮分離器、27……第2変換反応器、28……分
離器、30……接触燃焼装置。
Figure 1 is a system diagram showing one embodiment of the present invention, Figure 2 is a system diagram showing an embodiment of the present invention.
The figure shows a modification thereof. 1... Air blower, 3... Air preheater, 4...
...First mixer, 5... First fuel feed pipe, 7... First catalytic combustion device, 8... Catalyst, 9... First heat exchanger, 10... Steam chamber, 12... Pump , 14
...Second mixer, 15...Second fuel feed pipe, 16
...Second catalytic combustion device, 17...Catalyst layer, 19...
...Pyrolysis reactor, 20...Mixer, 22...Second
Heat exchanger, 24...first conversion reactor, 25...condensation separator, 27...second conversion reactor, 28...separator, 30...catalytic combustion device.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒による接触燃焼装置を多段設けて、その
前段の燃焼排ガスにより燃焼を繰返し行うように
して、各段の燃焼排ガス中の酸素濃度を順次低下
させて最終的に残留酸素の低い燃焼排ガスを得る
ようにすると共に、上記各段接触燃焼装置におけ
る燃焼温度を調節して、要求加熱温度が高くなる
に伴い低含有酸素濃度の燃焼ガスにより被加熱物
の加熱が行われるように接触燃焼装置を組合せ
て、被加熱物或いは被加熱装置の酸化更には廃ガ
スによる大気汚染を生ずることなく加熱できるよ
うにしたことを特徴とする接触燃焼による加熱方
法。
1 A multi-stage catalytic combustion device is installed, and combustion is repeatedly performed using the combustion exhaust gas from the previous stage, so that the oxygen concentration in the combustion exhaust gas at each stage is sequentially reduced, and finally combustion exhaust gas with low residual oxygen is obtained. At the same time, the combustion temperature in each stage of the catalytic combustion device is adjusted so that as the required heating temperature increases, the catalytic combustion device is combined so that the object to be heated is heated by the combustion gas with a low oxygen content concentration. A method of heating by catalytic combustion, characterized in that heating can be performed without causing oxidation of the object or device to be heated, and without causing air pollution due to waste gas.
JP56099167A 1981-06-26 1981-06-26 Heating method by means of catalytic combustion Granted JPS582508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56099167A JPS582508A (en) 1981-06-26 1981-06-26 Heating method by means of catalytic combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56099167A JPS582508A (en) 1981-06-26 1981-06-26 Heating method by means of catalytic combustion

Publications (2)

Publication Number Publication Date
JPS582508A JPS582508A (en) 1983-01-08
JPH0117043B2 true JPH0117043B2 (en) 1989-03-28

Family

ID=14240086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56099167A Granted JPS582508A (en) 1981-06-26 1981-06-26 Heating method by means of catalytic combustion

Country Status (1)

Country Link
JP (1) JPS582508A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185213A (en) 1984-10-02 1986-04-30 株式会社デンソー Air conditioner for automobile
KR100820339B1 (en) 2007-10-31 2008-04-08 (주)인화엔지니어링 Control point surveying method for underground space

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522682A (en) * 1978-08-02 1980-02-18 Roussel Uclaf Novel imidazoquinoxaline and its salt*their manufacture*their use as drug and medical composition containing them

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522682A (en) * 1978-08-02 1980-02-18 Roussel Uclaf Novel imidazoquinoxaline and its salt*their manufacture*their use as drug and medical composition containing them

Also Published As

Publication number Publication date
JPS582508A (en) 1983-01-08

Similar Documents

Publication Publication Date Title
US4128700A (en) Fuel cell power plant and method for operating the same
EP0600621A1 (en) A combined reformer and shift reactor
CN101802495A (en) Method of and a plant for combusting carbonaceous fuel by using a solid oxygen carrier
US8758710B2 (en) Process for treating a flue gas
JPH10231102A (en) Steam reforming
JPS61247601A (en) Hydrocarbon fuel treating apparatus
DK162935B (en) PRODUCT GAS PRODUCTION CONTAINING HYDROGEN AND CARBON OXIDES
KR20110032532A (en) Fuel cell combined power system using waste gasification process
CN1045277C (en) Production of NO from N2O
KR100898881B1 (en) A combined heat and power plant and a rpocess for the operation thereof
JPS59203372A (en) Fuel reformer for fuel cell
JPH0117043B2 (en)
JPS5736784A (en) Method of effectively utilizing exhaust gas in fuel-cell power generation device, and system for that
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
FI81072C (en) FOERFARANDE FOER PRODUKTION AV VAERMEENERGI GENOM FOERBRAENNING AV SYNTESGAS.
EP0026610A1 (en) All dry solid potassium seed regeneration system for magnetohydrodynamic power generation plant
JPH05253446A (en) Method to decrease nox emission and its apparatus
JPS58241A (en) Production of inert gas by catalytic combustion
CN220951181U (en) Apparatus for producing hydrogen by ammonothermal reforming
US6986870B1 (en) Combined methane decomposition and ammonia formation cell
Saxena et al. An equilibrium model for predicting flue‐gas composition of an incinerator
SU740711A1 (en) Method of producing reduction gas
RU2097314C1 (en) Method of catalytic conversion of natural gas
JPH04332570A (en) Method for pyrolyzing organic matter
EP0936272A1 (en) Smelting iron ore