JPH0117036B2 - - Google Patents

Info

Publication number
JPH0117036B2
JPH0117036B2 JP55177222A JP17722280A JPH0117036B2 JP H0117036 B2 JPH0117036 B2 JP H0117036B2 JP 55177222 A JP55177222 A JP 55177222A JP 17722280 A JP17722280 A JP 17722280A JP H0117036 B2 JPH0117036 B2 JP H0117036B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating layer
resin
expanded
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55177222A
Other languages
Japanese (ja)
Other versions
JPS57101196A (en
Inventor
Motomi Nogiwa
Toshitake Suzuki
Takeshi Yamanochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP17722280A priority Critical patent/JPS57101196A/en
Publication of JPS57101196A publication Critical patent/JPS57101196A/en
Publication of JPH0117036B2 publication Critical patent/JPH0117036B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/10Arrangements for preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Description

【発明の詳細な説明】 本発明は断熱貯槽の底部断熱層の施工方法に関
し、詳しくは、貯槽の基礎と底板との間に、圧縮
強度の大きい、断熱性に優れた膨張パーライトの
断熱層を形成する作業性のよい施工方法を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for constructing a bottom heat insulating layer of a heat insulated storage tank, and more specifically, a heat insulating layer made of expanded perlite, which has high compressive strength and excellent heat insulation properties, is installed between the foundation and the bottom plate of a storage tank. This provides a construction method with good workability.

(技術的背景) 高温または低温の液体を貯蔵する貯槽の多くは
貯槽の側壁や屋根はもとより、底部にも断熱材を
施して熱エネルギーの流出または流入を防いでい
る。殊にLNG(液化天然ガス)LPG(液化石油ガ
ス)貯槽のように大容量の液体を超低温で貯蔵す
る貯槽においては槽底部の断熱層構造をいかにす
るかは貯槽の安全性の上から、また建設費が貯蔵
経費の上からも重要な問題である。
(Technical background) Many storage tanks that store high-temperature or low-temperature liquids have insulation materials applied not only to the side walls and roofs of the tank, but also to the bottom to prevent thermal energy from flowing out or flowing into the tank. In particular, in storage tanks that store large volumes of liquid at extremely low temperatures, such as LNG (liquefied natural gas) and LPG (liquefied petroleum gas) storage tanks, the structure of the insulation layer at the bottom of the tank is determined from the safety of the storage tank and Construction costs are also an important issue in terms of storage costs.

LNG,LPG貯槽等で現在最も普及している槽
構造は二重殻構造であり、底部に関しては槽全体
を支持するコンクリート基礎上に外殻タンクと内
殻タンクを設け両者の間の空間部に断熱層を設け
るか、または外殻タンクの底板上に内殻タンクを
支持する環状のいわゆるリングコンクリートを設
けこのリングコンクリートと内、外殻タンクの底
板で囲まれた空間に断熱層を設けるのが一般であ
る。そして、これらの貯槽の多くは地上に設置さ
れるが、近年は地下埋設式のものも普及してい
る。
The tank structure currently most popular for LNG, LPG storage tanks, etc. is a double shell structure, and the bottom part is an outer shell tank and an inner shell tank on a concrete foundation that supports the entire tank, and the space between them is It is best to provide a heat insulating layer, or to provide an annular so-called ring concrete that supports the inner shell tank on the bottom plate of the outer shell tank, and to provide a heat insulating layer in the space surrounded by this ring concrete and the bottom plate of the inner and outer tank. It is common. Most of these storage tanks are installed above ground, but in recent years underground storage tanks have also become popular.

このような断熱貯槽の底部断熱層に求められる
要件は優れた断熱性を有することは勿論のこと、
貯槽内容物の液圧に耐える圧縮強度を有するこ
と、そのほか高温または低温時の強度低下が少な
いこと、鉄板を腐蝕させないこと、安価で施工が
容易であることなどである。
The requirements for the bottom insulation layer of such an insulation storage tank are, of course, that it has excellent insulation properties;
It has the compressive strength to withstand the liquid pressure of the contents of the storage tank, has little loss of strength at high or low temperatures, does not corrode iron plates, and is inexpensive and easy to construct.

従来、このような断熱貯槽の底部断熱層は、膨
張パーライトをコンクリートで固めて成形したパ
ーライトコンクリートブロツクまたは軽量コンク
リートブロツクを数枚重ねて敷設して断熱層とす
る方式、あるいは膨張パーライトとコンクリート
を施工現場で打設する方式等によつて施工されて
きた。しかし、これらのうち前者の方式はブロツ
クを工場で生産するため経済的でなく、比較的重
量のあるブロツクを取扱はなければならないこ
と、ブロツク同士の隙間をパーライト粉等でうめ
なければならないことなど施工性に劣る欠点があ
る。また、後者の現場打設方式は前者に比べ経済
性に優れ施工性も良好であるが、コンクリート打
設後乾燥、養生するのに長期間(数週間)を要
し、また完全に乾燥させることは困難であり、断
熱性能の低下や、内部の結露または凍結の不安が
残る。
Conventionally, the bottom insulation layer of such a heat-insulated storage tank has been constructed by laying several layers of perlite concrete blocks or lightweight concrete blocks formed by hardening expanded perlite with concrete, or by constructing expanded perlite and concrete. It has been constructed using methods such as pouring on site. However, the former method is not economical because the blocks are produced in a factory, and it requires handling relatively heavy blocks, and the gaps between the blocks must be filled with perlite powder, etc. It has the disadvantage of poor workability. In addition, although the latter on-site pouring method is more economical and easier to construct than the former, it requires a long period of time (several weeks) for drying and curing after concrete is poured, and it is difficult to completely dry the concrete. It is difficult to do so, and there remains a concern that the insulation performance will deteriorate and there will be condensation or freezing inside.

更に、現場打設を合理化するためパーライトコ
ンクリートをポンプ車等で圧送すると膨張パーラ
イトの粒子が破壊して断熱性が低下するおそれが
あり人手によつて打設現場まで運搬しているのが
現状である。
Furthermore, in order to streamline on-site pouring, if perlite concrete is pumped using a pump truck, etc., the expanded perlite particles may break and the insulation properties may deteriorate, so currently the concrete is transported to the pouring site by hand. be.

また、両者の方式の共通の欠点として、両者と
もコンクリートをベースとしているため断熱層の
熱伝導率は0.15Kcal/m.時.℃程度で比較的大
きく、例えば、パーライトコンクリートを断熱層
として数万KlのLNGタンクを設置する場合には
断熱層の厚みは40〜50cmにもなる。
In addition, a common drawback of both methods is that since both are based on concrete, the thermal conductivity of the heat insulating layer is 0.15 Kcal/m. Time. For example, when installing an LNG tank with tens of thousands of kiloliters using pearlite concrete as a heat insulating layer, the thickness of the heat insulating layer will be 40 to 50 cm.

(本発明の目的) 発明者らは断熱貯槽の基礎と底板との間に断熱
層を設けるにさいし、上記のような従来の欠点を
解消して、断熱性に優れ圧縮強度の大きい断熱層
を形成する作業性のよい施工法を得るよう鋭意研
究した結果、本発明の方法を完成させたものであ
る。
(Objective of the present invention) In providing a heat insulating layer between the foundation and the bottom plate of a heat insulated storage tank, the inventors solved the above-mentioned conventional drawbacks and created a heat insulating layer with excellent heat insulating properties and high compressive strength. The method of the present invention was completed as a result of intensive research to find a construction method with good forming workability.

(本発明の方法) 本発明の方法は、基礎と底板の間に膨張パーラ
イトの断熱層を設けるに際し、膨張パーライト
100重量部に対し、粘度が2000センチポイズ以下
の液状の常温硬化性樹脂3〜30重量部を平均粒度
0.3〜5mmの膨張パーライト粒子の表面に予め被
覆し、得られる混合被覆物を基礎上に打設したの
ち該常温硬化性樹脂を硬化させることを特徴とす
る断熱貯槽の底部断熱層の施工方法である。
(Method of the present invention) In the method of the present invention, when providing a heat insulating layer of expanded pearlite between the foundation and the bottom plate,
For every 100 parts by weight, add 3 to 30 parts by weight of a liquid room-temperature curing resin with a viscosity of 2000 centipoise or less to an average particle size of
A method for constructing a heat insulating layer at the bottom of a heat insulating storage tank, characterized in that the surface of expanded pearlite particles of 0.3 to 5 mm is coated in advance, the resulting mixed coating is cast on a foundation, and then the room temperature curing resin is cured. be.

(膨張パーライト) 本発明に用いる膨張パーライトは真珠岩、松脂
岩、黒曜石等を粉砕した後、900〜1100℃の温度
で焼成し、岩石中に含まれる発泡成分(構造水と
いわれている)により発泡させて中空体となした
ものである。これらは見掛比重が0.07〜0.25g/
c.c.と非常に軽く、また熱伝導率も0.03〜
0.05Kcal/m、時間.℃と断熱性に優れ、特に黒
曜石系のものは吸着水が少なく、粒子の表面が平
滑で細孔がほとんどなく、内部は一次発泡粒子が
集合した、いわゆる蜂の巣構造をとつているため
粒子の圧縮強度が大きく、またほぼ真球に近い形
状をもつており、硬化性樹脂で結合したさいの強
度が大きいので本発明に使用するパーライトとし
ては最も好ましいものである。
(Expanded pearlite) The expanded pearlite used in the present invention is produced by crushing pearlite, rosinite, obsidian, etc., and then firing it at a temperature of 900 to 1100°C. It is made into a hollow body by foaming. These have an apparent specific gravity of 0.07 to 0.25g/
It is extremely light (cc) and has a thermal conductivity of 0.03 ~
0.05Kcal/m, time. ℃ and has excellent insulation properties, especially obsidian-based ones, which have little adsorbed water, have smooth particle surfaces with almost no pores, and have a so-called honeycomb structure in which primary foam particles gather inside, making it easier to compress particles. It is the most preferable pearlite to be used in the present invention because it has high strength, has a nearly perfect spherical shape, and has high strength when bonded with a curable resin.

本発明においては、これらの膨張パーライトの
うち平均粒径が0.3〜5mmのものを使用すること
が好ましい。平均粒径が0.3mm以下であると断熱
層の見掛密度が高くなつて断熱性が低下する。ま
た平均粒度が5mm以上のパーライト粒子を使用し
た場合は断熱層の圧縮強度が低下するおそれがあ
る。
In the present invention, it is preferable to use among these expanded pearlites those having an average particle size of 0.3 to 5 mm. When the average particle size is 0.3 mm or less, the apparent density of the heat insulating layer becomes high and the heat insulating properties decrease. Furthermore, if pearlite particles having an average particle size of 5 mm or more are used, the compressive strength of the heat insulating layer may be reduced.

(常温硬化性樹脂) 本発明において膨張パーライト粒子を結合させ
る常温硬化性樹脂は、液状モノマーまたはポリマ
ーを硬化剤等によつて三次元架橋構造にして硬化
させたものであり、本発明においては、この硬化
性樹脂を液体の状態で膨張パーライト粒子の表面
を被覆し常温で放置して硬化させ膨張パーライト
粒子同士を結合させる。
(Room temperature curable resin) In the present invention, the room temperature curable resin to which the expanded pearlite particles are bonded is obtained by curing a liquid monomer or polymer into a three-dimensional crosslinked structure using a curing agent or the like. The surface of the expanded pearlite particles is coated with this curable resin in a liquid state, and the resin is left to stand at room temperature to harden and bond the expanded pearlite particles together.

本発明で使用する常温硬化性樹脂は特定のもの
ではなく、不飽和ポリエステル樹脂、フエノール
樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹
脂、ウレタン樹脂、変性液状ポリブタジエン等が
使用される。これらは一般的には硬化剤を使用し
て常用の方法で硬化されるが、硬化剤は使用する
樹脂によつて適当に選ばれる。例えば、フエノー
ル樹脂、ユリア樹脂、メラミン樹脂等にはホルマ
リンが、不飽和ポリエステル樹脂、変性液状ポリ
ブタジエン等には有機過酸化物が、またエポキシ
樹脂等にはアミン等が硬化剤として使用される。
なお、ウレタン樹脂のように空気中の水分で硬化
するようなものには硬化剤の添加は必要ない。
The room temperature curable resin used in the present invention is not particularly limited, and examples include unsaturated polyester resins, phenol resins, epoxy resins, urea resins, melamine resins, urethane resins, modified liquid polybutadiene, and the like. These are generally cured by a conventional method using a curing agent, and the curing agent is appropriately selected depending on the resin used. For example, formalin is used as a curing agent for phenolic resins, urea resins, melamine resins, etc., organic peroxides are used for unsaturated polyester resins, modified liquid polybutadiene, etc., and amines are used as curing agents for epoxy resins, etc.
Note that it is not necessary to add a curing agent to materials that harden with moisture in the air, such as urethane resins.

これ等の常温硬化性樹脂の多くは粘稠な液体で
あり、また硬化剤を配合したときもかなりの粘度
を有する。本発明を実施するさい粘度が高すぎる
と混合被覆が不均一になつたり、打設するさい膨
張パーライト粒子の流動性が悪くなり打設操作が
困難になつたりする場合があるので硬化剤を配合
した後の粘度が2000センチポイズ以下のものを使
用することが好ましい。
Many of these room temperature curable resins are viscous liquids, and even when a curing agent is added, they have a considerable viscosity. When implementing the present invention, if the viscosity is too high, the mixed coating may become uneven, and the fluidity of the expanded pearlite particles during casting may deteriorate, making the casting operation difficult, so a hardening agent is added. It is preferable to use one with a viscosity of 2000 centipoise or less after drying.

従つて、比較的粘度の高い常温硬化性樹脂を使
用するさいは、反応性または非反応性の希釈剤等
を添加して粘度を上記の範囲内にすることが好ま
しい。
Therefore, when using a room temperature curable resin with a relatively high viscosity, it is preferable to add a reactive or non-reactive diluent to bring the viscosity within the above range.

常温硬化性樹脂は膨張パーライト100重量部に
対して3重量部以上、好ましくは5重量部以上使
用する。これが3重量部以下では膨張パーライト
粒子同士の結合力が弱く貯槽内の液圧に耐えられ
ない。硬化性樹脂の使用量の上限については特に
制限はないが、30重量部以上使用しても耐圧強度
の大幅な向上は期待できず経済的見地から不利で
ある。
The room temperature curable resin is used in an amount of 3 parts by weight or more, preferably 5 parts by weight or more, based on 100 parts by weight of expanded pearlite. If this amount is less than 3 parts by weight, the bonding force between the expanded pearlite particles will be weak and they will not be able to withstand the liquid pressure in the storage tank. There is no particular restriction on the upper limit of the amount of curable resin used, but even if 30 parts by weight or more is used, no significant improvement in compressive strength can be expected and it is disadvantageous from an economic standpoint.

(施工方法) 本発明の断熱貯槽の底部断熱層を施工する時期
は、貯槽の構造等によつて異なるが、添付第1図
(本発明の断熱貯槽の底部断熱層の施工方法の一
実施態様を示す縦断面図)のような貯槽において
は基礎コンクリート8、外殻底板3、およびリン
グコンクリート6、が施工された後に施工される
のが一般である。
(Construction method) The timing for constructing the bottom insulation layer of the insulation storage tank of the present invention varies depending on the structure of the storage tank, etc. In a storage tank such as that shown in the vertical sectional view (longitudinal cross-sectional view), it is generally constructed after the foundation concrete 8, the outer shell bottom plate 3, and the ring concrete 6 are constructed.

本発明においては、まず施工現場付近で膨張パ
ーライト粒子に液状の硬化性樹脂を均一に混合被
覆するが、この場合、回転翼、特に高速で回転す
る回転翼をもつた混合機を使用したさいは膨張パ
ーライト粒子が破壊されるおそれがある。また一
般に回転翼をもつた混合機を使用した場合には混
合操作を中断したさい、混合機壁や回転翼などに
付着した硬化性樹脂が硬化してその後の混合操作
に支障をきたし、その都度有機溶剤等で洗滌しな
ければならないという不便がある。
In the present invention, first, expanded pearlite particles are uniformly mixed and coated with a liquid hardening resin near the construction site. Expanded pearlite particles may be destroyed. Additionally, in general, when a mixer with rotary blades is used, when the mixing operation is interrupted, the hardening resin adhering to the mixer wall or rotor hardens, interfering with subsequent mixing operations. There is the inconvenience of having to wash it with an organic solvent or the like.

この点について、本願の発明者らは先に、この
ような固体粒子と液状の接着物質とを混合機を汚
染させることなく混合する方法を提案した(特願
昭55−107164号)が、本発明においては、この方
法が極めて有効に利用できる。
Regarding this point, the inventors of the present application previously proposed a method of mixing such solid particles and a liquid adhesive substance without contaminating the mixer (Japanese Patent Application No. 107164/1982); This method can be used very effectively in the invention.

すなわち、この方法は、膨張パーライトと常温
硬化性樹脂とを、例えばプラスチツク製の袋に入
れ、容器全体または容器の一部を運動させる型の
混合機を使用して混合被覆する方法であり、この
型の混合機には揺動型混合機、あるいは容器回転
型混合機等がある。
That is, in this method, expanded perlite and a cold-curing resin are placed in a plastic bag, for example, and mixed and coated using a mixer that moves the entire container or a part of the container. Types of mixers include rocking mixers and container rotating mixers.

本発明において上記揺動型混合機を使用する場
合は、膨張パーライト粒子と必要に応じて硬化剤
を添加した常温硬化性樹脂をポリエチレン等の袋
に入れたままこれを該揺動型混合機の混合容器内
に装填して混合する。なお、この型の混合機は容
器全体、あるいは容器底部を揺動させ内容物を上
下運動させて混合を行なうものであり、現在、千
代田技研工業社製の「オムニミキサー」(商品名)
などが知られている。
When the above-mentioned oscillating mixer is used in the present invention, the expanded perlite particles and a room-temperature curing resin to which a curing agent has been added as necessary are placed in a bag made of polyethylene or the like, and then transferred to the oscillating mixer. Load into a mixing container and mix. This type of mixer mixes the contents by shaking the entire container or the bottom of the container to move the contents up and down.
etc. are known.

また、前述の容器回転型混合機を使用する場合
は、膨張パーライト粒子と常温硬化性樹脂をポリ
エチレン等の袋に入れこれをドラム缶等の容器に
袋を容器壁に密着させた状態で装填し、容器全体
を回転させて混合する。
In addition, when using the above-mentioned container rotating type mixer, the expanded perlite particles and room temperature curing resin are placed in a bag made of polyethylene, etc., and this is loaded into a container such as a drum with the bag in close contact with the container wall. Swirl the entire container to mix.

このようにして得られた膨張パーライトの混合
被覆物は、空気圧送、ベルトコンベヤーまたは手
押車等によつて打設現場まで運搬されるが、この
場合も混合被覆物を前記のポリエチレン等の袋に
入れたまま混合機から取出し運搬すれば運搬器具
が常温硬化性樹脂等によつて汚れる心配が全くな
い。
The expanded pearlite mixture coating obtained in this way is transported to the casting site by pneumatic transport, belt conveyor, handcart, etc. In this case as well, the mixed coating is placed in the polyethylene bag mentioned above. If the mixture is taken out of the mixer and transported while still in the container, there is no need to worry about the transport equipment being contaminated by the room-temperature curing resin or the like.

また、上記の膨張パーライト粒子の混合被覆物
を施工現場において打設するには従来からのパー
ライトコンクリート等を打設する方法と同じ方法
を用い、混合被覆物を打設点に流し込み、必要に
応じバイブレーターあるいは押え板等を使用して
密に充填したのち表面を均して仕上げる。その後
は、常温硬化性樹脂の種類や硬化剤の配合量等に
よつて異なるが数時間乃至1日程度放置し硬化さ
せて底部断熱層の施工を完了する。
In addition, to cast the above-mentioned expanded pearlite particle mixture coating at the construction site, use the same method as the conventional method of pouring pearlite concrete, etc., and pour the mixed coating at the pouring point, and as needed. After densely packing using a vibrator or press plate, the surface is leveled and finished. Thereafter, the resin is left to harden for several hours to one day, depending on the type of room-temperature curable resin, the amount of curing agent, etc., to complete the construction of the bottom heat insulating layer.

以上のようにして断熱層を施工したのちは、こ
の断熱層の上にアスベスト板等を敷設し、更にそ
の上に内殻タンクの底板を溶接しタンク底部を仕
上げる。
After constructing the heat insulating layer as described above, an asbestos board or the like is laid on top of the heat insulating layer, and the bottom plate of the inner shell tank is welded on top of this to finish the bottom of the tank.

(本発明の効果) 次に、本発明の効果について述べる。(Effects of the present invention) Next, the effects of the present invention will be described.

(1) 本発明においては、熱伝導率が0.03〜
0.05Kcal/m、時.℃の本来断熱性の高い膨張
パーライトを使用するので底板の断熱層は充分
な断熱性を有する。
(1) In the present invention, the thermal conductivity is 0.03~
0.05Kcal/m, hour. Since expanded perlite, which is inherently highly insulating at ℃, is used, the heat insulating layer of the bottom plate has sufficient heat insulating properties.

(2) 結合剤としての常温硬化性樹脂の使用量が少
ない(3重量%以上使用すればよい)ので従来
のコンクリートバインダーを使用する方法に比
べ断熱性の低下が少ない(硬化後の熱伝導率
は、0.05〜0.07Kcal/m、時.℃である)。
(2) Since the amount of room-temperature curing resin used as a binder is small (it is sufficient to use 3% by weight or more), there is less deterioration in insulation properties compared to the method using conventional concrete binders (thermal conductivity after curing is is 0.05-0.07 Kcal/m, h.°C).

従つて、従来のコンクリート系の断熱層に比
べ断熱層の厚みを薄くすることができる。
Therefore, the thickness of the heat insulating layer can be made thinner than the conventional concrete-based heat insulating layer.

(3) 膨張パーライト粒子は無機の発泡体であり、
それ自身強い圧縮強度を有するが、適当な粒径
の膨張パーライトを選ぶことにより数万Klとい
う超大型の貯槽の液圧に耐える断熱層が得られ
る。
(3) Expanded pearlite particles are inorganic foams;
Although it itself has strong compressive strength, by selecting expanded pearlite with an appropriate particle size, it is possible to obtain a heat insulating layer that can withstand the liquid pressure of an extremely large storage tank of tens of thousands of kiloliters.

(4) 常温硬化性樹脂は数時間で硬化させることが
できるのでコンクリート施工法に比べ施工時間
を大幅に短縮することができる。
(4) Room-temperature curing resin can be cured in a few hours, so construction time can be significantly shortened compared to concrete construction methods.

(5) 水を一切使用しないで残留水分がほとんどな
く内部結露の心配がない。
(5) No water is used and there is almost no residual moisture, so there is no need to worry about internal condensation.

(6) 2000センチポイズ以下の比較的低粘度の常温
硬化性樹脂を使用すれば膨張パーライトえの被
覆は非常に容易であり、被覆後も粒子の流動性
が良好(安息角は30〜45度)で打設作業および
表面を均す作業が容易である。
(6) It is very easy to coat expanded pearlite by using a room-temperature curing resin with a relatively low viscosity of 2000 centipoise or less, and the particles maintain good fluidity even after coating (the angle of repose is 30 to 45 degrees). This makes pouring work and surface leveling work easy.

(7) 混合被覆物は、未硬化状態のパーライトコン
クリートに比べ密度がはるかに小さく打設現場
までの運搬が非常に容易である。
(7) The mixed covering has a much lower density than uncured pearlite concrete and is very easy to transport to the pouring site.

(8) 膨張パーライト粒子と常温硬化性樹脂の混合
被覆物をつくるさい両者をプラスチツク等の袋
に入れて混合機で混合し、更に袋のまま打設現
場まで運搬する方法がとれるので混合被覆から
打設までの工程中、混合機が運搬機器が常温硬
化性樹脂で汚れる心配が全くない。
(8) When making a mixed coating of expanded perlite particles and room-temperature curing resin, it is possible to put both into a plastic bag, mix them in a mixer, and then transport the bag to the casting site. During the process up to pouring, there is no need to worry about the mixer or transport equipment being contaminated with room-temperature curing resin.

以下に、本発明の方法の実施例を記載する。 Examples of the method of the invention are described below.

実施例 液状エポキシ樹脂(三井石油化学社製
「EPOMIK VR−130A」)100重量部に硬化剤
(同社製「EPOMIK VQ−5」)40重量部を調合
して調合樹脂(常温硬化性樹脂)とした。
Example: 100 parts by weight of liquid epoxy resin ("EPOMIK VR-130A" manufactured by Mitsui Petrochemical Co., Ltd.) and 40 parts by weight of a curing agent ("EPOMIK VQ-5" manufactured by Mitsui Petrochemicals) were mixed to form a blended resin (room-temperature curable resin). did.

平均粒径が1mmの膨張パーライト(フヨーライ
ト社製「フヨーライト1号」)100重量部を厚み30
ミクロンのポリエチレンフイルム製の袋の中に入
れ、これを袋ごと揺動型混合機(千代田技研工業
社製「オムニミキサーOM−10」)の混合容器の
中に入れた。
100 parts by weight of expanded pearlite (Fuyolite No. 1 manufactured by Fuyolite Co., Ltd.) with an average particle size of 1 mm was added to a thickness of 30 mm.
The mixture was placed in a micron polyethylene film bag, and the bag was placed in a mixing container of a rocking mixer (Omnimixer OM-10, manufactured by Chiyoda Giken Industries, Ltd.).

次に、混合機を作動させて内容物を揺動させな
がら上記の調合樹脂10重量部を少しづつ滴下し、
滴下後1分間混合操作を続行し膨張パーライト粒
子表面にエポキシ樹脂が被覆された混合物を得
た。この混合物は流動性に富み、断熱貯槽の底部
断熱層に使用するに適したものであり、また混合
したのち袋ごと内容物を取り出したところ混合機
の汚染は全く認められなかつた。
Next, while operating the mixer and shaking the contents, 10 parts by weight of the above blended resin was added little by little.
After dropping, the mixing operation was continued for 1 minute to obtain a mixture in which the surfaces of the expanded pearlite particles were coated with the epoxy resin. This mixture has high fluidity and is suitable for use as a heat insulating layer at the bottom of a heat insulating storage tank, and when the contents of the bag were taken out after mixing, no contamination of the mixer was observed.

この混合被覆物を一昼夜放置し硬化させて得ら
れたブロツクの熱伝導率は0.07Kcal/m.時.℃
であり、圧縮強度は7Kg/cm2であり、内容物が数
万Klの超大型貯槽の底板断熱層に要求される強度
を十分満足させるものであつた。
The thermal conductivity of the block obtained by leaving this mixed coating for a day and night to harden was 0.07 Kcal/m. Time. ℃
The compressive strength was 7 Kg/cm 2 , which fully satisfied the strength required for the bottom plate insulation layer of an ultra-large storage tank with a content of tens of thousands of kiloliters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の断熱貯槽の底部断熱層の施
工方法の一実施態様を示す縦断面図である。 符号、1……二重壁タンク、2……外殻側板、
2′……内殻側板、3……外殻底板、3′……内殻
底板、4……断熱材、5……アスベスト板、6…
…リングコンクリート、7……本発明の底部断熱
層、8……基礎コンクリート。
FIG. 1 is a longitudinal sectional view showing one embodiment of the method for constructing a bottom heat insulating layer of a heat insulating storage tank according to the present invention. Code, 1...Double wall tank, 2...Outer shell side plate,
2'...Inner shell side plate, 3...Outer shell bottom plate, 3'...Inner shell bottom plate, 4...Insulating material, 5...Asbestos board, 6...
...Ring concrete, 7...Bottom insulation layer of the present invention, 8...Foundation concrete.

Claims (1)

【特許請求の範囲】 1 基礎と底板の間に膨張パーライトの断熱層を
設けるに際し、膨張パーライト100重量部に対し、
粘度が2000センチポイズ以下の液状の常温硬化性
樹脂3〜30重量部を平均粒度0.3〜5mmの膨張パ
ーライト粒子の表面に予め被覆し、得られる混合
被覆物を基礎上に打設したのち該常温硬化性樹脂
を硬化させることを特徴とする断熱貯槽の底部断
熱層の施工方法。 2 前記混合被覆物が、膨張パーライト粒子と常
温硬化性樹脂の両者を充填した袋をさらに容器に
装填し、該容器の全体または一部を運動させる混
合機によつて、前記両者を混合して形成した混合
被覆物である特許請求の範囲第1項記載の断熱貯
槽の底部断熱層の施工方法。
[Claims] 1. When providing a heat insulating layer of expanded pearlite between the foundation and the bottom plate, for 100 parts by weight of expanded pearlite,
The surface of expanded pearlite particles with an average particle size of 0.3 to 5 mm is coated in advance with 3 to 30 parts by weight of a liquid room temperature curing resin with a viscosity of 2000 centipoise or less, and the resulting mixed coating is poured onto a foundation and then cured at room temperature. A method for constructing a bottom insulation layer of a heat insulation storage tank, characterized by curing a plastic resin. 2. The mixed coating is obtained by further loading a bag filled with both expanded perlite particles and room-temperature curable resin into a container, and mixing the two by a mixer that moves the whole or part of the container. A method for constructing a bottom heat insulating layer of a heat insulating storage tank according to claim 1, which is a mixed coating formed.
JP17722280A 1980-12-17 1980-12-17 Work process of bottom insulation layer of insulating storage tank Granted JPS57101196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17722280A JPS57101196A (en) 1980-12-17 1980-12-17 Work process of bottom insulation layer of insulating storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17722280A JPS57101196A (en) 1980-12-17 1980-12-17 Work process of bottom insulation layer of insulating storage tank

Publications (2)

Publication Number Publication Date
JPS57101196A JPS57101196A (en) 1982-06-23
JPH0117036B2 true JPH0117036B2 (en) 1989-03-28

Family

ID=16027286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17722280A Granted JPS57101196A (en) 1980-12-17 1980-12-17 Work process of bottom insulation layer of insulating storage tank

Country Status (1)

Country Link
JP (1) JPS57101196A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL209294B1 (en) * 2005-01-27 2011-08-31 Bernard Bujwicki Pressure vessel
JP2017150568A (en) * 2016-02-24 2017-08-31 株式会社Ihi Low temperature liquid tank

Also Published As

Publication number Publication date
JPS57101196A (en) 1982-06-23

Similar Documents

Publication Publication Date Title
US4111713A (en) Hollow spheres
US3625724A (en) Cellular concrete and method for producing the same
CN105037789B (en) A kind of fiber-resin composite hollow ball and preparation method thereof
US4393901A (en) Low-permeability hollow spheres and pipe filled with the spheres for temporary weight reduction
FI69259B (en) FORM FOER BLAOSFORMNING AV INFODRINGEN I ETT FOER SMAELT METALL AVSETT KAERL INFODRINGSFOERFARANDE I VILKET NAEMNDA FORM ANVAENDS OCH INFODRINGSBLANDNING SOM ANVAENDS VID NAEMNDA INFODRINGSFOERFARANDE
CN107446502B (en) Self-repairing water-based epoxy/asphalt composite waterproof coating and preparation method thereof
JP2003509243A (en) Multi-layer composite material comprising cement-bonded concrete and polymer-bonded concrete, and method for producing the same
CN113185181A (en) 3D printing phase-change aggregate, preparation and application
JPH0117036B2 (en)
JPH01500029A (en) Compositions and methods that do not require mixing
CN101237923B (en) Transport and erection of very large vessels
JPS6227757Y2 (en)
KR102214620B1 (en) Method for making water-soluble mold and making the fuel tank using the same
CN102909787A (en) Cast-in-situ construction method of composite foaming slurry
RU2257503C1 (en) Method of applying ballast coating on underwater pipe
CN110500450A (en) The Fluorine-lined processing technology of high temperature resistant negative pressure resistant
JP2004060995A (en) Heat storage tank
JP2610476B2 (en) How to reuse pearlite grain insulation in existing low-temperature storage tanks
EP1614667A1 (en) Cementitious composition for a cementitious end-product, cementitious end-product and production method thereof
GB2164072A (en) Composite concrete building panel
CA1333914C (en) Compositions of no mix compounds and methods of applying same
JP2005146773A (en) Buckling restraining member for vibration control
JPS6339536B2 (en)
CA1158572A (en) Low permeability hollow spheres and pipe filled with the spheres for temporary weight reduction
CN113684744A (en) Pouring and curing method for C100 concrete