JPH01170300A - Piezoelectric element plate - Google Patents

Piezoelectric element plate

Info

Publication number
JPH01170300A
JPH01170300A JP62327343A JP32734387A JPH01170300A JP H01170300 A JPH01170300 A JP H01170300A JP 62327343 A JP62327343 A JP 62327343A JP 32734387 A JP32734387 A JP 32734387A JP H01170300 A JPH01170300 A JP H01170300A
Authority
JP
Japan
Prior art keywords
piezoelectric
plate
diaphragm
piezoelectric element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62327343A
Other languages
Japanese (ja)
Other versions
JPH0522440B2 (en
Inventor
Seishi Nagasawa
長沢 晴司
Hiroshi Ban
浩志 伴
Masaki Oyama
正樹 大山
Naoto Narita
直人 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP62327343A priority Critical patent/JPH01170300A/en
Publication of JPH01170300A publication Critical patent/JPH01170300A/en
Publication of JPH0522440B2 publication Critical patent/JPH0522440B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PURPOSE:To prevent the production of bent or crack in a piezoelectric clement plate and to improve the tracking with respect to the dimension change attended with the operation of the piezoelectric plate by providing a conductive highpolymer material film in common use with an electrode and a adhesion layer adhered to a diaphragm to the piezoelectric plate. CONSTITUTION:Electrodes 2,2' of conductive highpolymer material are formed to the diezoelectric plate and used for the adhesion layer 3 of the piezoelectric element and the diaphragm 4 in common. Since the viscoelastic property of the conductive highpolymer material is improved and the layer between the piezoelectric plate and the diaphragm is formed thin, the piezoelectric element is polarized and distortion is caused due to type of and the shape factor, the electrode follows to it and the production of bent and crack of the piezoelectric element plate is prevented. Since one process is enough in comparison with the conventional two processes providing the electrode and the adhesive layer, then the production efficiency is improved and the manufacture cost is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電振動板用の振動板と貼り合わせて使用さ
れる圧電素子板を改良したものに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improved piezoelectric element plate used in conjunction with a diaphragm for a piezoelectric diaphragm.

従来の技術 圧電振動板には、強誘電体自身の誘起歪をそのまま利用
する単純型素子のほかに、他の弾性材料などと組み合わ
せて変位量を空間的に拡大する複合型素子がある。この
複合型素子には、2枚の圧電素子板の間に金属板を接着
させたバイモルフ型と、圧電素子板の片側に金属板を接
着させたユニモルフ型等がある。
Conventional piezoelectric diaphragms include simple elements that utilize the induced strain of the ferroelectric material itself, as well as complex elements that spatially expand displacement by combining with other elastic materials. This composite type element includes a bimorph type in which a metal plate is bonded between two piezoelectric element plates, and a unimorph type in which a metal plate is bonded to one side of the piezoelectric element plate.

例えばユニモルフ型としては、図に示すように、圧電板
1の両面に電極2.2“を形成した圧電素子板の電極2
°に振動板3を導電性接着剤4により接着させ、振動板
3に金属材料を用いるときはこの振動板と電極2とにリ
ード線5を接続した構造のものが通常用いられている。
For example, as a unimorph type, as shown in the figure, electrodes 2.2" of a piezoelectric element plate are formed on both sides of a piezoelectric plate 1.
A structure in which the diaphragm 3 is bonded to the diaphragm with a conductive adhesive 4 and a lead wire 5 is connected to the diaphragm and the electrode 2 when a metal material is used for the diaphragm 3 is usually used.

ここで、一般に圧電素子板の圧電板1には酸化物セラミ
、り材料が使用され、電極2.2”にはAg、Pds 
Pts Nts Cus Co等の金属材料が使用され
、これらの膜が真空蒸着法、スパッタリング法、無電解
メツキ法あるいはガラスと混ぜて作成したペーストをス
クリーン印刷する塗布法により形成されている。また、
振動板3には真鍮、ステンレス鋼等の金属材料が通常用
いられるが、ポリエステル樹脂等のプラスチック材料も
用いられる。
Generally, oxide ceramic or other material is used for the piezoelectric plate 1 of the piezoelectric element plate, and Ag or Pds is used for the electrode 2.2''.
Metal materials such as Pts Nts Cus Co are used, and these films are formed by vacuum evaporation, sputtering, electroless plating, or a coating method in which a paste prepared by mixing with glass is screen printed. Also,
Metal materials such as brass and stainless steel are usually used for the diaphragm 3, but plastic materials such as polyester resin are also used.

このような圧電振動板は、一方の端部を固定し、他端を
変位可能にし機械的変位を電気信号として検出したり、
あるいは逆に電気信号を与えて機械的変位を生じさせる
微小変位素子として使用される。また、円板状の圧電振
動板は周縁を固定し、共鳴箱等に組み込むことにより電
気信号を音声信号に変える圧電ブザーや圧電スピーカ素
子として利用される。
Such a piezoelectric diaphragm has one end fixed and the other end movable, and mechanical displacement can be detected as an electrical signal.
Alternatively, it is used as a minute displacement element that generates mechanical displacement by applying an electrical signal. In addition, a disk-shaped piezoelectric diaphragm has its periphery fixed and is incorporated into a resonance box or the like to be used as a piezoelectric buzzer or piezoelectric speaker element that converts an electric signal into an audio signal.

近年、圧電スピーカの改良が活発に行われており、特に
IKHz以下の低周波領域の音圧が低いという圧電スピ
ーカの欠点を克服するために、圧電素子板や振動板の薄
膜化が試みられ、振動板については金属材料からプラス
チック材料への代替も行わている。このような研究が行
われている中で、最近、圧電素子板、振動板ともに厚さ
20μ−のものを使用した圧電スピーカが主車された。
In recent years, improvements have been made to piezoelectric speakers, and in order to overcome the drawback of piezoelectric speakers that the sound pressure in the low frequency range below IKHz is low, attempts have been made to make the piezoelectric element plate and diaphragm thinner. For the diaphragm, we are also replacing metal materials with plastic materials. While such research is being carried out, recently a piezoelectric speaker using a piezoelectric element plate and a diaphragm having a thickness of 20 μm has been put into use.

これは従来の150μ讃程度の圧電素子板、振動板を使
用したものからすれば1桁異なる薄さである。
This is an order of magnitude thinner than the conventional piezoelectric element plate and diaphragm of about 150 μm.

発明が解決しようとする問題点 しかしながら、このように圧電素子板や振動板が薄くな
ると、電極層や、圧電素子板と振動板を接着させる接着
剤層の材質や、厚みも無視しきれなくなり、電極に用い
られる金属材料の材質や、その設けられる厚さでは圧電
スピーカの物理的特性に悪影響を及ぼすようになる。
Problems to be Solved by the Invention However, as the piezoelectric element plate and the diaphragm become thinner, the material and thickness of the electrode layer and the adhesive layer that adheres the piezoelectric element plate and the diaphragm cannot be ignored. The quality of the metal material used for the electrodes and the thickness at which they are provided have an adverse effect on the physical characteristics of the piezoelectric speaker.

例えば電極は、金属材料としてAg、 Niを用いてい
るが、この電極を設けた圧電素子板を分極させると、圧
電素子板に反りや割れが生じることが良く見受けられる
。これは、分極時圧電素子板の材料である強誘電性結晶
粒子中の90度ドメインが分極方向に反転する際、分極
軸に垂直な方向、すなわち圧電素子板の径方向に縮むが
、その寸法変化に電極が追従できず、圧電素子板に内部
歪が生じ、この歪による内部応力が圧電素子板の反りや
割れを生じるものと考えられる。このような現象は、圧
電素子板が薄くなればなるほど顕著に現れ易く、それだ
け電極の材質や厚さの選択が重要なこととなる。このこ
とは接着剤層についても同様に当てはまる。
For example, the electrodes use Ag and Ni as metal materials, but when a piezoelectric element plate provided with these electrodes is polarized, it is often observed that the piezoelectric element plate warps or cracks. This is due to the fact that when the 90 degree domains in the ferroelectric crystal particles, which are the material of the piezoelectric element plate, reverse in the polarization direction during polarization, they shrink in the direction perpendicular to the polarization axis, that is, in the radial direction of the piezoelectric element plate. It is thought that the electrodes are unable to follow the changes, causing internal strain in the piezoelectric element plate, and the internal stress caused by this strain causes warping and cracking of the piezoelectric element plate. Such a phenomenon is more likely to appear as the piezoelectric element plate becomes thinner, and the selection of the material and thickness of the electrode becomes more important. This applies equally to the adhesive layer.

このように圧電スピーカは、その圧電素子板等を薄くし
て低周波数領域の音圧を高くしようとすると、これに設
けられる電極や接着剤層に問題が生じ、マグネチック型
発音体の性能に及ばず、その用途拡大が阻まれている。
In this way, when piezoelectric speakers try to increase the sound pressure in the low frequency range by making the piezoelectric element plate thinner, problems occur with the electrodes and adhesive layer provided on the piezoelectric speaker, and the performance of the magnetic sounding body is affected. This has hindered the expansion of its uses.

問題点を解決するための手段 本発明は、上記問題点を解決するために、圧電板に振動
板と接着可能な接着層と電極とを兼用した導電性高分子
材料膜を設けた構造を有することを特徴とする圧電素子
板を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention has a structure in which a conductive polymer material film is provided on a piezoelectric plate and serves as an adhesive layer and an electrode that can be bonded to a diaphragm. The present invention provides a piezoelectric element plate characterized by the following.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明において使用される導電性高分子材料としては、
高分子自体が導電性を有する高分子化合物導電体、樹脂
に金属粉や化合物等を混合分散させた複合型高分子組成
物導電体が挙げられる。前者の例としては導電性共役重
合体、高分子電荷移動錯体等が挙げられる。導電性共役
重合体の例としては、次のものが挙げられる。
The conductive polymer material used in the present invention includes:
Examples include a polymer compound conductor in which the polymer itself has electrical conductivity, and a composite polymer composition conductor in which metal powder, a compound, etc. are mixed and dispersed in a resin. Examples of the former include conductive conjugated polymers and polymer charge transfer complexes. Examples of conductive conjugated polymers include the following.

ポリフェニレンサルファイド、 ポリチアジン、ポリチ
ェニレン、ポリ(トランス白金アセチリド)、ジエチル
複素芳香環化合物重合体、 (Ar:複素芳香環) セレン含有芳香族ポリマー、 ポリ(クロロフェニルキョノリン) これらの導電性共役重合体に各種のドナーやアクセプタ
ーを電気化学的にドープすることにより導電性を高める
こともできる。また、銀、カーボン等の導電性粉末と併
用し導電性を高めることもできる。
Polyphenylene sulfide, polythiazine, polythenylene, poly(trans platinum acetylide), diethyl heteroaromatic compound polymer, (Ar: heteroaromatic ring) selenium-containing aromatic polymer, poly(chlorophenylkyonorin) Various types of these conductive conjugated polymers Conductivity can also be increased by electrochemically doping donors and acceptors. Further, conductivity can be increased by using it in combination with conductive powder such as silver or carbon.

また、高分子電荷移動錯体としてはポリビニルカルバゾ
ールやポリビニルピリジン等と7.7.8.8−テトラ
シアノ−p−キノジメタン、ヨウ素等のアクセブタ−と
組み合わせたもの等が挙げられる。
Examples of the polymeric charge transfer complex include those in which polyvinylcarbazole, polyvinylpyridine, etc. are combined with acceptors such as 7,7,8,8-tetracyano-p-quinodimethane, and iodine.

また、複合型高分子組成物導電体としては、高分子マト
リックス中に金属粉、金属繊維や炭素繊維の繊維フィラ
ー、カーボンブランク、YBazCu30g−y等の超
電導材料粉末、5rCr03、Sr2(FeMo) 0
6、HaメFeRe)06等の金属導電性酸化物粉末を
混合分散させたものが挙げられる。これらは高分子とし
てエポキシ樹脂、フェノール樹脂等の硬化性樹脂に混練
され、ペースト化して使用される。
In addition, the composite polymer composition conductor includes metal powder in the polymer matrix, fiber filler such as metal fiber or carbon fiber, carbon blank, superconducting material powder such as YBazCu30g-y, 5rCr03, Sr2(FeMo) 0
Examples include those in which metal conductive oxide powder such as 6, FeRe) 06 is mixed and dispersed. These are used as polymers by being kneaded with curable resins such as epoxy resins and phenol resins to form a paste.

上記の導電性高分子材料は、ペースト化してスクリーン
印刷等により圧電素子板又は振動板に塗布されたり、溶
剤と混合されてスピンコード法等により圧電板又は振動
板に塗布され、揮発物が加熱等により除かれた後、圧電
板と振動板が重ねられ、必要に応じて加熱又は超音波に
より融着される。この点から、導電性高分子材料として
は圧電板と振動板に対して接着性の大きいこと、電気的
な接触が良いものが好ましい。
The above conductive polymer material is made into a paste and applied to a piezoelectric element plate or diaphragm by screen printing, etc., or mixed with a solvent and applied to a piezoelectric plate or diaphragm by a spin code method, etc., and the volatile matter is heated. After the piezoelectric plate and the diaphragm are removed by, for example, the piezoelectric plate and the diaphragm are placed on top of each other, and if necessary, they are fused together by heating or ultrasonic waves. From this point of view, it is preferable that the conductive polymer material has high adhesion to the piezoelectric plate and the diaphragm, and has good electrical contact.

また、本発明において圧電板用材料としては、PZT 
(Pb(Zr、Ti)03) 、PLZT(Pb、La
)(Zr、Ti)03)、PT(PbTi03)系、あ
るいはPZTを基にした3成分系等の圧電材料を用いた
ものが挙げられる。
In addition, in the present invention, PZT is used as the piezoelectric plate material.
(Pb(Zr, Ti)03), PLZT(Pb, La
)(Zr, Ti)03), PT(PbTi03) type, or a three-component type based on PZT.

また、本発明において振動板としは、真鍮、ステンレス
鋼等の金属材料、ポリエステル等のプラスチック材料が
挙げられる。
Further, in the present invention, examples of the diaphragm include metal materials such as brass and stainless steel, and plastic materials such as polyester.

上記材料から圧電振動板を作成するには、導電性高分子
材料からなる電極兼用の接着層を有する圧電素子板と振
動板を例えば熱圧着する等により接着させる。
To create a piezoelectric diaphragm from the above-mentioned materials, a piezoelectric element plate having an adhesive layer that also serves as an electrode made of a conductive polymer material and a diaphragm are bonded together by, for example, thermocompression bonding.

なお、本発明の圧電素子板は振動板に上記の導電性高分
子材料膜を設け、これを圧電板に接着させた場合の圧電
板と導電性高分子材料膜とからなる構造のものにも通用
されることは勿論である。
Note that the piezoelectric element plate of the present invention may also have a structure consisting of a piezoelectric plate and a conductive polymer material film in which the above-mentioned conductive polymer material film is provided on the diaphragm and this is adhered to a piezoelectric plate. Of course, it is commonly used.

作用 圧電板に振動板と接着させる接着層と電極を兼用した導
電高分子材料膜を設けたので、導電高分子材料は粘弾性
的挙動を示し、圧電板の動作に伴う寸法変化に対して追
従性が金属材料よりも良く、また、従来の電極と接着剤
層の2層構造を1層構造にでき、その厚みを薄くできる
Since the working piezoelectric plate is provided with a conductive polymer material film that serves both as an adhesive layer and an electrode to adhere to the diaphragm, the conductive polymer material exhibits viscoelastic behavior and follows dimensional changes caused by the movement of the piezoelectric plate. It has better properties than metal materials, and the conventional two-layer structure of an electrode and an adhesive layer can be reduced to a single-layer structure, and its thickness can be reduced.

実施例 次に本発明の一実施例を図を参照して説明する。Example Next, one embodiment of the present invention will be described with reference to the drawings.

Pb(Mar2Nbダ3)0.375Ti0.2500
3の組成を有する原料粉末を用い、ドクターブレード法
によりグリーンシートを作製し、これを1300℃にて
焼成し、厚さ30μm、直径26日の円板状焼結体の圧
電板(図の圧電板1に相当)を得た。この圧電板の一方
の面は幅1flのサイドマージンを除く部分、他方の面
は全面にA、粉末(平均粒径0.5μ01) 70部、
ポリアセチレン(平均粒径10μm) 30部、酢酸ブ
チルエステル20部を十分に混練して得たペーストをス
クリーン印刷法にて塗布・乾燥する。ついで、これをテ
フこのようにして得られた圧電素子板をヨウ素蒸気(1
50℃)に1時間放置した。この時の電極の厚みは約1
5μ−であった。
Pb(Mar2Nbda3)0.375Ti0.2500
A green sheet was prepared using the doctor blade method using the raw material powder having the composition No. 3, and this was fired at 1300°C to form a piezoelectric plate in the form of a disk-shaped sintered body with a thickness of 30 μm and a diameter of 26 days (the piezoelectric plate shown in the figure). (corresponding to plate 1) was obtained. One side of this piezoelectric plate has a width of 1fl except for the side margin, and the other side has 70 parts of A powder (average particle size 0.5μ01),
A paste obtained by sufficiently kneading 30 parts of polyacetylene (average particle size 10 μm) and 20 parts of butyl acetate is applied and dried by screen printing. Then, the piezoelectric element plate obtained in this way was heated with iodine vapor (1
50° C.) for 1 hour. The thickness of the electrode at this time is approximately 1
It was 5 μ-.

さらにこの圧電素子板を100℃の空気中で80V、3
0分分極処理し、そのまま電界冷却を行った。
Furthermore, this piezoelectric element plate was heated at 80V at 3°C in air at 100°C.
After 0 polarization treatment, electric field cooling was performed as it was.

比較例 実施例で作製したと同様の圧電板の両面に市販の圧電用
銀電極ペースト(昭栄化学社製)をスクリーン印刷法に
て塗布・乾燥後、800℃にて15分間熱処理を行って
電極を形成し、圧電素子板を得た。このときの電極の厚
みは約7μmであった。
Comparative Example A commercially available piezoelectric silver electrode paste (manufactured by Shoei Kagaku Co., Ltd.) was applied on both sides of a piezoelectric plate similar to that produced in Example using a screen printing method, and after drying, heat treatment was performed at 800°C for 15 minutes to form an electrode. was formed to obtain a piezoelectric element plate. The thickness of the electrode at this time was approximately 7 μm.

得られた圧電素子板を100℃の空気中で80V 、 
30分間の分極処理を行い、そのまま電界冷却を行った
The obtained piezoelectric element plate was heated to 80V in air at 100°C.
Polarization treatment was performed for 30 minutes, followed by electric field cooling.

上記の実施例、比較例の圧電素子板について反り、割れ
の発生を観察したところ以下の通りであった。
The occurrence of warpage and cracking in the piezoelectric element plates of the above Examples and Comparative Examples was observed, and the results were as follows.

なお、反り発生率は、上記のそれぞれの分極済の圧電素
子板を平滑な面を有する鉄板に挟み、IKg/ aJの
圧力を加えたとき、割れた場合「反りが発生した」と見
做し、その発生率(サンプル数5゜個)で示した。
The rate of warping is calculated based on the assumption that "warping has occurred" if the polarized piezoelectric element plate above is sandwiched between iron plates with smooth surfaces and cracks when a pressure of IKg/aJ is applied. , expressed as the incidence rate (number of samples: 5°).

また、割れの発生は、上記分極を行うときに明らかに割
れたものを目視判断し、その発生率(サンプル数50個
)で示した。
Moreover, the occurrence of cracks was determined by visual inspection of those that were clearly cracked during the above polarization, and was expressed as the incidence rate (number of samples: 50).

発明の効果 本発明によれば、圧電板に導電性高分子材料の電極を形
成し、これを圧電素子板と振動板の接着層に兼用したの
で、この導電性高分子材料の粘弾性的性質及び圧電素子
板と振動板との間の層を薄く形成できることにより、材
質と形状因子の両方から圧電素子が分極され歪が生じた
場合でも電極はこれに追従することができ、圧電素子板
の反りや割れの発生を防止できる。
Effects of the Invention According to the present invention, an electrode made of a conductive polymer material is formed on a piezoelectric plate, and this is also used as an adhesive layer between the piezoelectric element plate and the diaphragm, so that the viscoelastic properties of the conductive polymer material are Also, by forming a thin layer between the piezoelectric element plate and the diaphragm, even if the piezoelectric element is polarized and distorted due to both the material and form factor, the electrodes can follow this, and the piezoelectric element plate It can prevent warping and cracking.

また、電極と接着剤層を設ける従来の2工程に比べ、l
工程でよいので生産能率を向上させ、製造コストを低減
できる。
In addition, compared to the conventional two-step process of providing an electrode and an adhesive layer,
Since it only requires a single process, production efficiency can be improved and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図は圧電振動板の断面図である。 図中、1は圧電板、2.2”は金属薄板、3は振動板、
4は導電性接着層、5はリード線である。
The figure is a cross-sectional view of a piezoelectric diaphragm. In the figure, 1 is a piezoelectric plate, 2.2" is a thin metal plate, 3 is a diaphragm,
4 is a conductive adhesive layer, and 5 is a lead wire.

Claims (1)

【特許請求の範囲】[Claims] (1)圧電板に振動板と接着する接着層と電極とを兼用
した導電性高分子材料膜を設けた構造を有することを特
徴とする圧電素子板。
(1) A piezoelectric element plate characterized in that it has a structure in which a conductive polymer material film that serves as an electrode and an adhesive layer that adheres to a diaphragm is provided on a piezoelectric plate.
JP62327343A 1987-12-25 1987-12-25 Piezoelectric element plate Granted JPH01170300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327343A JPH01170300A (en) 1987-12-25 1987-12-25 Piezoelectric element plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327343A JPH01170300A (en) 1987-12-25 1987-12-25 Piezoelectric element plate

Publications (2)

Publication Number Publication Date
JPH01170300A true JPH01170300A (en) 1989-07-05
JPH0522440B2 JPH0522440B2 (en) 1993-03-29

Family

ID=18198077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327343A Granted JPH01170300A (en) 1987-12-25 1987-12-25 Piezoelectric element plate

Country Status (1)

Country Link
JP (1) JPH01170300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025244A1 (en) * 1995-02-16 1996-08-22 Precision Acoustics Limited Electrical coupling for piezoelectric ultrasound detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025244A1 (en) * 1995-02-16 1996-08-22 Precision Acoustics Limited Electrical coupling for piezoelectric ultrasound detector
GB2314205A (en) * 1995-02-16 1997-12-17 Precision Acoustics Ltd Electrical coupling for piezoelectric ultrasound detector
US6094988A (en) * 1995-02-16 2000-08-01 Precision Acoustics Limited Electrical coupling for piezoelectric ultrasound detector

Also Published As

Publication number Publication date
JPH0522440B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
FI57679B (en) ELEKTRETMIKROFON
JP2016015354A (en) Electroacoustic conversion film and conduction method of the same
US8532316B2 (en) Flat panel piezoelectric loudspeaker
GB2090700A (en) Piezoelectric flexure element and method of manufacture
US3588552A (en) Prestressed piezoelectric audio transducer
JP6216884B2 (en) Electroacoustic conversion film and digital speaker
CN104451545B (en) A kind of ZnO film material, SAW filter composite film material and preparation method
WO2016002678A1 (en) Electro-acoustic conversion film and digital speaker
JPH11242562A (en) Low reflective resistor film touch panel and its production and substrate having transparent conductive film
JPH01170300A (en) Piezoelectric element plate
JPH04221867A (en) Ceramic piezoelectric transformer disc and its manufacture
KR20010009714A (en) Membraneless piezoelectric/electrostrictive micro actuator and fabricating method thereof
JP7331143B2 (en) Polymer composite piezoelectric film
JP2000196402A (en) High frequency resonator and its manufacture
CN101668240A (en) Electrode connecting structure of loudspeaker monomer
JPH0554319B2 (en)
JPS59880Y2 (en) Vibrator for piezoelectric buzzer
JPH05275764A (en) Piezoelectric laminate
JPH0419650B2 (en)
JPS6311792B2 (en)
JP3116484B2 (en) Piezoelectric ceramic thin plate element
KR20010008972A (en) Method for fabricating piezoelectric/electrostrictive actuator using adhesion process
CN111933786A (en) Pyroelectric sensor and manufacturing method thereof
JPS6194025A (en) Plastic liquid crystal display element
JPH08203707A (en) Overcurrent protection element and its manufacture