JPH0117017B2 - - Google Patents
Info
- Publication number
- JPH0117017B2 JPH0117017B2 JP55129299A JP12929980A JPH0117017B2 JP H0117017 B2 JPH0117017 B2 JP H0117017B2 JP 55129299 A JP55129299 A JP 55129299A JP 12929980 A JP12929980 A JP 12929980A JP H0117017 B2 JPH0117017 B2 JP H0117017B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- liquid
- containment vessel
- pressure
- natural frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 17
- 230000001629 suppression Effects 0.000 claims description 12
- 230000010349 pulsation Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/002—Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Vibration Prevention Devices (AREA)
- Fluid-Damping Devices (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は構造物類、主として液体と接触する構
造物および機械、例えば原子炉格納容器、燃料タ
ンクなどの液体を内蔵する容器および液体の流通
する配管などの振動を防止する方法に関するもの
である。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to structures, mainly structures and machines that come into contact with liquid, such as containers containing liquid such as nuclear reactor containment vessels and fuel tanks, and liquid distribution. The present invention relates to a method for preventing vibrations in piping, etc.
原子炉格納容器(以下「格納容器」と称す。)
は第1図に示すように、隔壁4により上、下室に
区分されたドライウエル2と圧力抑制室3とから
なり、この両者2,3は複数個のベント管5を介
して連通されている。前記ドライウエル2内には
隔壁4を貫通するペデスタル7により支持される
圧力容器6が収納されている。
Reactor containment vessel (hereinafter referred to as “containment vessel”)
As shown in FIG. 1, it consists of a dry well 2 and a pressure suppression chamber 3, which are divided into upper and lower chambers by a partition wall 4, and both 2 and 3 are communicated through a plurality of vent pipes 5. There is. A pressure vessel 6 supported by a pedestal 7 passing through the partition wall 4 is housed within the dry well 2 .
また圧力抑制室3内には冷却水を充満したプー
ル8が形成されている。さらに隔壁4に設けられ
たベント管5はその上端側がドライウエル2に開
口され、下端側は常にプール8内の冷却水中に埋
没している。 Further, a pool 8 filled with cooling water is formed within the pressure suppression chamber 3. Further, the upper end of the vent pipe 5 provided in the partition wall 4 is opened to the dry well 2, and the lower end thereof is always submerged in the cooling water in the pool 8.
上記のように構成された格納容器1において、
ドライウエル2内に異常圧力が発生すると、その
ドライウエル2から放出される水蒸気はベント管
5を経て圧力抑制室3のプール8内へ噴射され
る。このように水蒸気がプール8内へ噴射される
に先だつて、ベント管5内の空気は冷却水中に押
し出され、気泡を生成して振動するから外力の例
えば圧力脈動が発生する。この圧力脈動により圧
力抑制室3内に過大な動的応力が発生する。 In the containment vessel 1 configured as described above,
When abnormal pressure is generated within the dry well 2, water vapor released from the dry well 2 is injected into the pool 8 of the pressure suppression chamber 3 via the vent pipe 5. Before the water vapor is injected into the pool 8 in this way, the air in the vent pipe 5 is forced out into the cooling water, generates bubbles and vibrates, thereby generating an external force such as pressure pulsations. This pressure pulsation generates excessive dynamic stress within the pressure suppression chamber 3.
そこで従来は上記圧力脈動の発生による動的応
力を求め、この動的応力が許容圧力より大である
場合には、格納容器1を補強することにより動的
応力を低減させている。この動的応力は圧力脈動
の振動数F4と格納容器の固有振動数Fとの関係
により決定される。もし圧力脈動の振幅が同じで
あるならば、一般にその振動数F0と格納容器の
固有振動数Fとが近接しているほど動的応力は大
きくなる。 Therefore, conventionally, the dynamic stress due to the occurrence of the pressure pulsation is determined, and if this dynamic stress is larger than the allowable pressure, the dynamic stress is reduced by reinforcing the containment vessel 1. This dynamic stress is determined by the relationship between the frequency F 4 of the pressure pulsation and the natural frequency F of the containment vessel. If the amplitude of the pressure pulsations is the same, generally the closer the frequency F 0 of the pressure pulsations is to the natural frequency F of the containment vessel, the greater the dynamic stress will be.
プール8内の水を考慮した格納容器1の固有振
動数Fは次式により求めることができる。 The natural frequency F of the containment vessel 1 considering the water in the pool 8 can be determined by the following equation.
1/F2=1/f1 2+1/f2 2……
ただし、
f1:液体が振動に及ぼす影響を考慮するが、水
の圧縮性はないものとしたときの固有振動
数。 1/F 2 = 1/f 1 2 + 1/f 2 2 ... However, f 1 : Natural frequency when considering the influence of liquid on vibration, but assuming that water is not compressible.
f2:構造物は振動しないで液体が音響的に振動
するときの固有振動数。 f 2 : Natural frequency when the structure does not vibrate but the liquid vibrates acoustically.
上記固有振動数f2は液体中に伝わる音速aの関
数になつており、この音速aは第2図に示すよう
に液体中に混入する気体の量により変化すること
が明らかである。 The above-mentioned natural frequency f 2 is a function of the sound speed a transmitted in the liquid, and it is clear that this sound speed a changes depending on the amount of gas mixed into the liquid, as shown in FIG.
なお、この種の技術としては実開昭53−112691
に記載されているものがある。 Note that this type of technology is based on Utility Model Application No. 53-112691.
There are things listed in.
上記従来技術は、上記f2を考慮しないで、構造
物の固有振動数FをF=f1としていた。仮りにそ
のf2を考慮する場合でも音速aは一定として動力
応力を評価している。すなわち設計段階におい
て、ある構造を決定すると共に、構造物の固有振
動数Fは一定として強度計算を行い、動的応力が
許容応力より大である場合に構造物の寸法および
材質などを変更していた。このためコストの増大
および工程の遅延などの問題を生ずる。
In the above-mentioned conventional technology, the natural frequency F of the structure is set to F=f 1 without considering the above-mentioned f 2 . Even if f 2 is considered, the power stress is evaluated assuming that the sound speed a is constant. In other words, at the design stage, a certain structure is determined, the strength is calculated assuming that the natural frequency F of the structure is constant, and if the dynamic stress is greater than the allowable stress, the dimensions and materials of the structure are changed. Ta. This causes problems such as increased costs and process delays.
また設計および製作上の誤差のため、稼動時に
しばしば振動を発生することがある。このような
場合、従来は構造物の補強あるいは機械の部品交
換などの対策を行つていたので、上記と同様にコ
ストの増大および工程の遅延などの問題を生ず
る。 Also, due to design and manufacturing errors, vibrations are often generated during operation. In such cases, conventional measures have been taken such as reinforcing the structure or replacing parts of the machine, resulting in the same problems as above, such as increased costs and process delays.
本発明の目的は液体と接触する構造物の振動の
防止方法を提供することにある。 An object of the present invention is to provide a method for preventing vibrations of a structure that comes into contact with a liquid.
上記目的は液体を内蔵する圧力抑制室を備えた
格納容器を含む構造物の振動防止方法において、
前記格納容器の固有振動数を検出し、その検出さ
れた振動数と前記圧力抑制室内の液体に加わる圧
力脈動の振動数とを離すように前記圧力抑制室内
の液体中に送りこむ気体の混入量を調節すること
によつて達成される。
The above purpose is a vibration prevention method for a structure including a containment vessel equipped with a pressure suppression chamber containing a liquid.
The natural frequency of the containment vessel is detected, and the amount of gas mixed into the liquid in the pressure suppression chamber is adjusted so as to separate the detected frequency from the frequency of pressure pulsations applied to the liquid in the pressure suppression chamber. This is accomplished by adjusting.
圧力抑制室内の液体中に混入する気体量を調節
することにより液体に加わる圧力脈動の振動数と
格納容器の固有振動数を離すため構造物において
生ずる振動を小さくすることができる。
By adjusting the amount of gas mixed into the liquid in the pressure suppression chamber, the frequency of the pressure pulsations applied to the liquid is separated from the natural frequency of the containment vessel, so that vibrations occurring in the structure can be reduced.
以下本発明の一実施例を図面を用いて説明す
る。第3図に示す符号のうち第1図に示す符号と
同一のものは同一部分を示すものとする。
An embodiment of the present invention will be described below with reference to the drawings. Among the symbols shown in FIG. 3, the same symbols as those shown in FIG. 1 indicate the same parts.
第3図において、9はプール8の底面に配置さ
れた気体噴射管で、この噴射管9には気体を噴出
する噴出孔(図示せず)が任意数設けられてお
り、その気体の供給量は適宜手段により調節され
る。その他の構造は第1図に示す従来例と同一で
あるから説明を省略する。 In FIG. 3, reference numeral 9 denotes a gas injection pipe arranged on the bottom surface of the pool 8, and this injection pipe 9 is provided with an arbitrary number of injection holes (not shown) for ejecting gas, and the amount of gas supplied is is adjusted by appropriate means. The rest of the structure is the same as the conventional example shown in FIG. 1, so the explanation will be omitted.
上記気体の供給量を調節する一手段を第4図に
ついて説明するに、送風機13の回転数とバルブ
15の開度を調整し、ボンベ10に貯蔵された気
体(空気)をフイルター11および流量計12を
経て配管9よりプール8中に噴出される。この場
合、気体の流量は流量計12により測定する。 One means of adjusting the amount of gas supplied is explained with reference to FIG. 4. The number of revolutions of the blower 13 and the opening degree of the valve 15 are adjusted, and the gas (air) stored in the cylinder 10 is transferred to the filter 11 and the flow meter. It is ejected into the pool 8 from the pipe 9 via the pipe 12. In this case, the gas flow rate is measured by a flow meter 12.
また電源17を備え、かつ格納容器1に取付け
られた振動センサ16により振動を感知して信号
を制御盤14へ送り、この制御盤14において振
動数が読み取られる。この読み取られた振動数が
目標値と著しく異なるときには、送風機13の回
転数およびバルブ15の開度を適宜に変更して空
気の供給量を調整する。このように空気の供給量
を調節することにより、格納容器1の固有振動数
Fを圧力脈動の振動数F0から最も離れた値に設
定する。 It is also provided with a power source 17 and a vibration sensor 16 attached to the containment vessel 1 senses vibrations and sends a signal to the control panel 14, where the frequency of vibration is read. If the read frequency is significantly different from the target value, the number of revolutions of the blower 13 and the opening degree of the valve 15 are changed as appropriate to adjust the amount of air supplied. By adjusting the air supply amount in this manner, the natural frequency F of the containment vessel 1 is set to a value farthest from the frequency F 0 of pressure pulsation.
一般に周期的に変動する荷重が付加されている
構造物において生ずる振動は、その荷重の振動数
と構造物の固有振動数とが近接すると大きくな
る。逆にその荷重の振動数と固有振動数が相違す
るほど、振動が小さくなることは周知のとおりで
ある。 Generally, vibrations occurring in a structure to which a periodically varying load is applied become larger when the frequency of the load approaches the natural frequency of the structure. Conversely, it is well known that the more the frequency of the load differs from the natural frequency, the smaller the vibration becomes.
本実施例では荷重の振動数F0は未知の場合で
も可能であるから、気体の供給量を調節して格納
容器の固有振動数Fを圧力脈動の振動数F0から
離すようにし、これに伴つて動的応力も小さくす
ることができる。 In this example, since it is possible even when the frequency F 0 of the load is unknown, the gas supply amount is adjusted to separate the natural frequency F of the containment vessel from the frequency F 0 of the pressure pulsation. At the same time, dynamic stress can also be reduced.
本発明によれば液体中に混入する気体量を調節
して構造物の振動を抑制することにより、振動応
力を最小にして安全性を向上させることができ
る。
According to the present invention, by controlling the vibration of the structure by adjusting the amount of gas mixed into the liquid, it is possible to minimize vibration stress and improve safety.
また本発明によれば設計時および製作過程にお
いて、多少の誤差があつても支障がない利点があ
る。 Further, according to the present invention, there is an advantage that there is no problem even if there are some errors in the design and manufacturing process.
第1図は従来の原子炉格納容器の断面図、第2
図は説明用線図、第3図は本発明に係わる構造物
類の振動防止方法を適用した原子炉格納容器の断
面図、第4図は本発明に使用される気体供給量の
調節手段を示す構成図である。
3…圧力抑制室、8…プール、9…気体噴射
管。
Figure 1 is a cross-sectional view of a conventional reactor containment vessel;
The figure is an explanatory diagram, FIG. 3 is a sectional view of a reactor containment vessel to which the method for preventing vibrations of structures according to the present invention is applied, and FIG. 4 is a diagram showing the gas supply amount adjusting means used in the present invention. FIG. 3...Pressure suppression chamber, 8...Pool, 9...Gas injection pipe.
Claims (1)
を含む構造物の振動防止方法において、前記格納
容器の固有振動数を検出し、その検出された振動
数と前記圧力抑制室内の液体に加わる圧力脈動の
振動数とを離すように前記圧力抑制室内の液体中
に送りこむ気体の混入量を調節することを特徴と
する構造物の振動防止方法。1. In a method for preventing vibration of a structure including a containment vessel having a pressure suppression chamber containing a liquid, the natural frequency of the containment vessel is detected, and the detected frequency and the pressure applied to the liquid in the pressure suppression chamber are detected. A method for preventing vibration of a structure, comprising adjusting the amount of gas mixed into the liquid in the pressure suppression chamber so as to separate the frequency of the pulsation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55129299A JPS5754751A (en) | 1980-09-19 | 1980-09-19 | Prevention or vibration in structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55129299A JPS5754751A (en) | 1980-09-19 | 1980-09-19 | Prevention or vibration in structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5754751A JPS5754751A (en) | 1982-04-01 |
JPH0117017B2 true JPH0117017B2 (en) | 1989-03-28 |
Family
ID=15006127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55129299A Granted JPS5754751A (en) | 1980-09-19 | 1980-09-19 | Prevention or vibration in structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5754751A (en) |
-
1980
- 1980-09-19 JP JP55129299A patent/JPS5754751A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5754751A (en) | 1982-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3904392A (en) | Method of and apparatus for debubbling liquids | |
Mallock | The damping of sound by frothy liquids | |
CN1699673A (en) | Washing machine | |
JPH08177723A (en) | Equipment and method of reducing fluid propagated noise | |
JPH0117017B2 (en) | ||
KR850000637A (en) | Water level control system for steam generator | |
JPH1071993A (en) | Vibration control device for marine vessel | |
SE515738C2 (en) | Centrifuge for separation of materials of different density | |
WO2001069182A3 (en) | Vibration sensor device for flow measurement | |
US3376976A (en) | Screen | |
FI79365C (en) | AKTIVDAEMPARE FOER DAEMPNING AV TRYCKVIBRATIONER I INLOPPSLAODAN OCH MASSAROERSYSTEMET I PAPPERS- OCH KARTONGMASKINER. | |
JPH116065A (en) | Liquid source bubbler for being used for cvd | |
JPH0826388A (en) | Apparatus for preventing liquid in container from sloshing | |
JPS5910310B2 (en) | ink storage tank | |
US5711350A (en) | Piping systems providing minimal acoustically-induced structural vibrations and fatigue | |
Foster et al. | Bubble trajectories and equilibrium levels in vibrated liquid columns | |
JPH10220522A (en) | Vibration damping device for vertical vibration | |
US1997423A (en) | Apparatus for compensating vibrations in ships and other structures | |
JP3404487B2 (en) | Automatic defoamer injection device | |
Takahagi et al. | The approximation of pressure waveforms of impact sound radiation from clamped circular plates of various thicknesses | |
JP2544126B2 (en) | Underwater bubble generator | |
Chiba et al. | Unstable sloshing vibration in a thin cylindrical weir | |
SU368887A1 (en) | ACOUSTIC SIREN | |
JP3883257B2 (en) | Control rod drive hydraulic device | |
JPH01263374A (en) | Device for controlling sloshing damper |