JPH01169861A - Ion microanalyzer - Google Patents

Ion microanalyzer

Info

Publication number
JPH01169861A
JPH01169861A JP62327055A JP32705587A JPH01169861A JP H01169861 A JPH01169861 A JP H01169861A JP 62327055 A JP62327055 A JP 62327055A JP 32705587 A JP32705587 A JP 32705587A JP H01169861 A JPH01169861 A JP H01169861A
Authority
JP
Japan
Prior art keywords
primary
electric field
scanning
ions
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62327055A
Other languages
Japanese (ja)
Other versions
JP2607573B2 (en
Inventor
Hiroshi Hirose
広瀬 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62327055A priority Critical patent/JP2607573B2/en
Publication of JPH01169861A publication Critical patent/JPH01169861A/en
Application granted granted Critical
Publication of JP2607573B2 publication Critical patent/JP2607573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform the analysis in the depth direction without reducing the separation capability in an energy separator when primary ions are scanned by correcting the voltage of the electric field applied as an energy analyzer in response to the primary ion scanning width. CONSTITUTION:When the scanning voltage is applied to a deflecting electrode 5 by a scanning power source 22, a primary ion beam 2 is moved on an analysis sample 7 in proportion to the voltage, secondary ions extracted by a secondary ion extracting electrode 11 reach a sector electric field 14 through a lens 12 and an aperture 13. The image of the aperture 13 is focused on a beta slit 15, when the primary beam is moved on the sample 7, the convergence point on the beta slit 15 fluctuates. The signal of the scanning power source 22 is sent to an electric field power source 24 to correct this fluctuation, the normal electric field voltage is corrected, and an analyzer is operated so that the convergence point is not drifted when the beam on the beta slit 15 scans the primary ion beam. The analysis precision in the depth direction can be thereby improved in the measurement to scan the primary ion beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオンマイクロアナライザに係り特に深さ方向
分析を高精度で行うのに好適な二次イオン分析部の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion microanalyzer, and particularly to an improvement in a secondary ion analysis section suitable for performing depth direction analysis with high precision.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭47−37792号に記載のよう
に、二次イオン通路中に補正用偏向電極を設け、一次ビ
ーム走査による二次イオン収束点の変動を補正する手段
を設け、高分解能で二次イオン像を検出するようになっ
ていた。
As described in Japanese Patent Application Laid-open No. 47-37792, the conventional device has a correction deflection electrode in the secondary ion path, a means for correcting fluctuations in the secondary ion convergence point due to primary beam scanning, and It was designed to detect secondary ion images with high resolution.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は二次イオンのエネルギ分布については配
慮がなされておらず、エネルギにわずかの差があるイオ
ンを分離して分析の精度を上げることができないという
問題があった。
The above-mentioned conventional technology does not take into consideration the energy distribution of secondary ions, and has a problem in that it is not possible to separate ions with slight differences in energy to improve the accuracy of analysis.

本発明の目的は二次イオンを走査した場合でもエネルギ
分離器における分離能力を低下させることなく、深さ方
向の分析をすることにある。
An object of the present invention is to perform depth analysis without reducing the separation ability of an energy separator even when scanning secondary ions.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、エネルギアナライザとして作用する電場の
電圧を、一次イオン走査幅に応じて補正することによっ
て達成される。
The above object is achieved by correcting the voltage of the electric field acting as an energy analyzer depending on the primary ion scanning width.

〔作用〕[Effect]

偏向電極5に走査電源より走査電圧が印加されると二次
イオンビーム2は上記電圧に比例して分析試料7上を動
く、それによって、二次イオン引出電極11より引出さ
れた二次イオンは、レンズ12、アパーチャ13、を通
すリセクタ電場14に達する。アパーチャ13の像はβ
スリット15上に収束するが、試料7上を一次ビームが
動くと、βスリット15上の収束点の位置が変動する。
When a scanning voltage is applied to the deflection electrode 5 from the scanning power source, the secondary ion beam 2 moves over the analysis sample 7 in proportion to the voltage, and as a result, the secondary ions extracted from the secondary ion extraction electrode 11 , lens 12, and aperture 13 to reach the resector electric field 14. The image of aperture 13 is β
Although it converges on the slit 15, as the primary beam moves over the sample 7, the position of the convergence point on the β slit 15 changes.

上記変動を補正するため、走査電源22の信号を電場電
源24に送り、通常の電場電圧を補正し、βスリット1
5上のビームが一次イオンビームを走査してもずれない
ように動作する。
In order to correct the above fluctuation, the signal from the scanning power supply 22 is sent to the electric field power supply 24 to correct the normal electric field voltage, and
It operates so that the beam on the primary ion beam does not shift even when the primary ion beam is scanned.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。イオ
ン銃1で生成されたOz+などのイオンは10〜20K
yに加速され、一次イオンビーム2となる。この一次イ
オンビーム2はコンデンサーレンズ3.対物絞り4.偏
向電極5.対物レンズ6などを通過し、試料7上に細く
収束され照射される、一次イオンが試料上に照射される
とスパッターリング現象により試料は徐々に掘られ、掘
られた試料は一部イオン化している。この二次イオンは
、二次イオン引出し電極11によって引出され、レンズ
12でアパーチャ13上に収束される。
An embodiment of the present invention will be described below with reference to FIG. Ions such as Oz+ generated by ion gun 1 have a temperature of 10 to 20K.
It is accelerated to y and becomes a primary ion beam 2. This primary ion beam 2 is passed through a condenser lens 3. Objective aperture 4. Deflection electrode5. The primary ions pass through the objective lens 6, etc., and are narrowly focused and irradiated onto the sample 7. When the sample is irradiated with primary ions, the sample is gradually dug up due to the sputtering phenomenon, and a portion of the dug sample is ionized. There is. These secondary ions are extracted by a secondary ion extraction electrode 11 and focused onto an aperture 13 by a lens 12 .

このアパーチャ13が質量分析計の物点として作用する
This aperture 13 acts as the object point of the mass spectrometer.

アパーチャを通過したイオンはセクタ電場14、にてエ
ネルギ分散と角度収束をされβスリット15上に収束す
る。このため、もしイオンにエネルギ幅がある場合、β
スリットで、特定エネルギのイオンを選択的に通過させ
ることができるβスリットを通過した特定エネルギを持
ったイオンはセクタ磁場16で質量分離されコレクタス
リット17上に再び収束する。質量分離されたイオンは
二次イオン検出器で検知後増幅器19で増幅され、記録
計20で記録される。このシグナルはCRT23の輝度
変調にも用いられる。
The ions that have passed through the aperture undergo energy dispersion and angular focusing in the sector electric field 14 and are focused on the β slit 15. Therefore, if ions have an energy range, β
Ions with a specific energy that have passed through the β slit through which ions with a specific energy can selectively pass through the slit are separated by mass in the sector magnetic field 16 and converge on the collector slit 17 again. The mass-separated ions are detected by a secondary ion detector, amplified by an amplifier 19, and recorded by a recorder 20. This signal is also used for brightness modulation of the CRT 23.

一方一次イオンビーム2は走査電源22と偏向電極5に
よって試料上を走査することができる。
On the other hand, the primary ion beam 2 can be scanned over the sample by a scanning power source 22 and a deflection electrode 5.

この走査シグナルはCRT23と電場電源に送られる。This scanning signal is sent to the CRT 23 and the electric field power supply.

また、二次イオンは二次イオン検出器10で検出し、増
幅器21を通ってCRT23でも記録される。増幅器1
0のシグナルを輝度変調に、偏向電圧をXY倍信号用い
ると試料7からスパッタされた全イオンの像を記録する
ことが出来る。一方セクター磁場16の強度を特定の質
量数が通過出来るように設定しておき増幅器19のシグ
ナルをCRT23の輝度変調に用いれば、特定イオンの
像を記録することが出来る。さらに、増幅器19のシグ
ナルを記録計20に接続し、上記偏向電極5によってビ
ームを走査させておくと、試料表面のある面積部を掘り
ながらその部分から放出する特定イオンをモニタするこ
とが出来る。この方法が深さ方向分析と言われ表面層の
研究、時にシリコーンウェハーに打込まれたBやPの濃
度分布の測定などに用いられている。深さ方向分析の場
合、本来分析すべき同相からスパッターされるイオンの
他に気相ガスと結合したイオンが出現することがある。
Further, secondary ions are detected by a secondary ion detector 10, passed through an amplifier 21, and also recorded on a CRT 23. amplifier 1
If the 0 signal is used for brightness modulation and the deflection voltage is used as an XY times signal, an image of all the ions sputtered from the sample 7 can be recorded. On the other hand, if the strength of the sector magnetic field 16 is set so that a specific number of masses can pass through it, and the signal from the amplifier 19 is used to modulate the brightness of the CRT 23, an image of a specific ion can be recorded. Furthermore, by connecting the signal from the amplifier 19 to the recorder 20 and scanning the beam with the deflection electrode 5, it is possible to dig into a certain area of the sample surface and monitor specific ions emitted from that area. This method is called depth direction analysis and is used to study the surface layer and sometimes to measure the concentration distribution of B and P implanted into silicone wafers. In the case of depth direction analysis, in addition to ions sputtered from the same phase that should be analyzed, ions combined with gas phase gas may appear.

更に、これらのイオンの質量数が同じ場合、たとえばS
i中のPの分析をする場合、 SiHとPは同じ29の
質量数である。
Furthermore, if these ions have the same mass number, for example S
When analyzing P in i, SiH and P have the same mass number of 29.

この場合、両イオンのエネルギはPにくらべてSiHは
10eV程度低いことが多い。このため、この両イオン
は、前に説明したように、βスリットで分離することが
できる。このエネルギ幅は例えば軌道半径200nuの
電場で、二次イオン加速電圧が3KVの場合、約0.6
nm程度である。−方、深さ方向分析をする場合、一次
イオンを例えば、0.61m走査すると、電場の像倍率
が1の場合、βスリット上で0.6no偏向されること
になり、PのイオンはSiHイオンのピークに替ってし
まうことになる。このため、実際には0 、6 onも
走査出来ない。
In this case, the energy of both ions is often about 10 eV lower for SiH than for P. Therefore, both ions can be separated by a β slit, as explained earlier. For example, this energy width is approximately 0.6 when the secondary ion accelerating voltage is 3 KV in an electric field with an orbital radius of 200 nu.
It is about nm. - On the other hand, when performing depth direction analysis, if the primary ions are scanned, for example, 0.61m, if the image magnification of the electric field is 1, they will be deflected by 0.6no on the β slit, and the P ions will be deflected by 0.6no on the SiH This will be replaced by an ion peak. Therefore, in reality, even 0 and 6 on cannot be scanned.

ところが電場電圧を約0.3%だけ、一次イオンの走査
に同期して走査すると、βスリットの位置でPのピーク
は変化しない。したがってコレクタスリット17上には
常にPのピークを設定しておくことができ、SiHの影
響が少いから、深さ方向分析の精度を上げることができ
る。
However, when the electric field voltage is scanned by about 0.3% in synchronization with the scan of the primary ions, the peak of P does not change at the position of the β slit. Therefore, a peak of P can always be set on the collector slit 17, and since the influence of SiH is small, the accuracy of depth direction analysis can be improved.

第2図に本発明の効果の一例を示す。試料はPの打込ま
れたSiウェハーであり、時間の関数として、P+の強
度を測定した。図には二つの測定曲線が示しであるが(
a)は従来法の結果であり、(b)が本発明の結果を示
す。横軸は時間の関数であるが、試料は常に一次イオン
を約0.2mm”走査しながらイオン照射によるスパッ
ターリングが生じているため、表面からの深さと等価で
ある。
FIG. 2 shows an example of the effects of the present invention. The sample was a P-implanted Si wafer, and the P+ intensity was measured as a function of time. The figure shows two measurement curves (
(a) shows the results of the conventional method, and (b) shows the results of the present invention. Although the horizontal axis is a function of time, it is equivalent to the depth from the surface because sputtering occurs due to ion irradiation while the sample is constantly scanning primary ions for about 0.2 mm''.

(a)では表面近くに最大濃度の部分があり、次第にP
+の量は少なくなっているが、ある深さ以上では低下し
ない。一方(b)では(a)に比較して、P+イオンは
大幅に低下している。はぼ平行になった点に於ける(a
)の値が約1017個/C!118、(b)では約10
工5個/a113であった。このため、約二桁の精度向
上が認められた。(a)の結果で、P+の値が低下しな
いのは、前記した、メインピークであるSiHが重なっ
ているためである。
In (a), there is a region of maximum concentration near the surface, and gradually P
The amount of + is decreasing, but it does not decrease beyond a certain depth. On the other hand, in (b), the P+ ions are significantly reduced compared to (a). At the point where are almost parallel (a
) value is approximately 1017/C! 118, about 10 in (b)
5 pieces/a113. As a result, an approximately two-digit improvement in accuracy was observed. The reason why the P+ value does not decrease in the result of (a) is that the main peaks of SiH mentioned above overlap.

〔発明の効果〕〔Effect of the invention〕

本発明によれば一次イオンビームを走査する測定におい
ても、電場でエネルギ選択が正確にできるようになった
ので、深さ方向分析の精度を上げることができた。Si
中のPの分析では約2桁精度が向上した。
According to the present invention, it is now possible to accurately select energy using an electric field even in measurements using a scanning primary ion beam, making it possible to improve the accuracy of depth direction analysis. Si
In the analysis of P in the middle, the accuracy improved by about two orders of magnitude.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は本発明の
効果を示す図である。 1・・・イオン銃、2・・・一次イオンビーム、3・・
・コンデンサーレンズ、4・・・対物絞り、訃・・偏向
電極、6・・・対物レンズ、7・・・分析試料、8・・
・試料ホルダ。 9・・・シールド電極、1o・・・二次イオン検出器、
11・・・二次イオン引出電極、12・・・補正用レン
ズ、13・・・アパーチャ、14・・・セクタ電場、1
5・・・βスリット、16・・・セクタ磁場、17・・
・コレクタスリット、18・・・二次イオン検出器、1
9・・・増幅器、2o・・・記録計、21・・・増幅器
、22・・・走査電源、23・・・CRT、24・・・
電場電源。 第1図 第2図 う¥フガ藺
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the effects of the present invention. 1...Ion gun, 2...Primary ion beam, 3...
・Condenser lens, 4...Objective aperture, Deflection electrode, 6...Objective lens, 7...Analysis sample, 8...
・Sample holder. 9... Shield electrode, 1o... Secondary ion detector,
DESCRIPTION OF SYMBOLS 11... Secondary ion extraction electrode, 12... Correction lens, 13... Aperture, 14... Sector electric field, 1
5... β slit, 16... Sector magnetic field, 17...
・Collector slit, 18...Secondary ion detector, 1
9...Amplifier, 2o...Recorder, 21...Amplifier, 22...Scanning power supply, 23...CRT, 24...
Electric field power supply. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、一次イオン源、一次イオンを試料面上で走査するた
めの走査手段を含む一次イオン照射系、試料室エネルギ
ー分離手段を有する質量分析計から成るイオンマイクロ
アナライザにおいて、一次イオンを試料面上で走査する
走査幅に比例して二次イオン質量分析計部の電場電極の
電圧を走査するようにしたことを特徴とするイオンマイ
クロアナライザ。
1. In an ion microanalyzer consisting of a primary ion source, a primary ion irradiation system including a scanning means for scanning the primary ions on the sample surface, and a mass spectrometer having a sample chamber energy separation means, the primary ions are scanned on the sample surface. An ion microanalyzer characterized in that the voltage of an electric field electrode of a secondary ion mass spectrometer section is scanned in proportion to the scanning width.
JP62327055A 1987-12-25 1987-12-25 Ion micro analyzer Expired - Lifetime JP2607573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327055A JP2607573B2 (en) 1987-12-25 1987-12-25 Ion micro analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327055A JP2607573B2 (en) 1987-12-25 1987-12-25 Ion micro analyzer

Publications (2)

Publication Number Publication Date
JPH01169861A true JPH01169861A (en) 1989-07-05
JP2607573B2 JP2607573B2 (en) 1997-05-07

Family

ID=18194798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327055A Expired - Lifetime JP2607573B2 (en) 1987-12-25 1987-12-25 Ion micro analyzer

Country Status (1)

Country Link
JP (1) JP2607573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138850A (en) * 1989-10-23 1991-06-13 Hitachi Ltd Secondary ion mass spectrograph
KR100377026B1 (en) * 1993-07-07 2003-06-18 가부시끼가이샤 히다치 세이사꾸쇼 Focused ion beam apparatus, focused ion beam observation method and focused ion beam processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138850A (en) * 1989-10-23 1991-06-13 Hitachi Ltd Secondary ion mass spectrograph
KR100377026B1 (en) * 1993-07-07 2003-06-18 가부시끼가이샤 히다치 세이사꾸쇼 Focused ion beam apparatus, focused ion beam observation method and focused ion beam processing method

Also Published As

Publication number Publication date
JP2607573B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
EP0769799B1 (en) Scanning electron microscope
US6403972B1 (en) Methods and apparatus for alignment of ion beam systems using beam current sensors
EP1101123B1 (en) Particle beam current monitoring technique
JPH06132002A (en) Scanning electron microscope
JPH0286036A (en) Ion micro-analyzer
US4645929A (en) Method and apparatus for the compensation of charges in secondary ion mass spectrometry (SIMS) of specimens exhibiting poor electrical conductivity
US3881108A (en) Ion microprobe analyzer
Castaing et al. Analytical microscopy by secondary ion imaging techniques
Wittmaack Successful operation of a scanning ion microscope with quadrupole mass filter
EP0179716B1 (en) A secondary ion mass spectrometer
JPH01169861A (en) Ion microanalyzer
US5034605A (en) Secondary ion mass spectrometer with independently variable extraction field
US4081674A (en) Ion microprobe analyzer
JPH10302700A (en) Electron spectroscope and transmission type electron microscope provided with it
Schuetzle et al. High‐spatial and high‐mass‐resolution SIMS instrument for the surface analysis of chemically complex materials
Gersch et al. Postionization of sputtered neutrals by a focused electron beam
JPH04112443A (en) Secondary ion mass-spectrometric device
JP2754425B2 (en) Method for analyzing mixed ions in an ion implanter
JP2544034B2 (en) Secondary ion mass spectrometry and secondary ion mass spectrometer
JP2004134300A (en) Beam current stabilizer and electrically-charged particle beam device
JPH1167138A (en) Micro-area observation device
JPS5913151B2 (en) quadrupole mass spectrometer
JPH0233848A (en) Secondary ion mass analyser
JP2000329716A (en) Auger electron spectral apparatus and analytical method for depth direction
JPH03138844A (en) Ion micro-analyzer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A621 Written request for application examination

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051114

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060217

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090224

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100224

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120224

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7