JPH01168626A - Oxidative conversion of methane - Google Patents

Oxidative conversion of methane

Info

Publication number
JPH01168626A
JPH01168626A JP62328208A JP32820887A JPH01168626A JP H01168626 A JPH01168626 A JP H01168626A JP 62328208 A JP62328208 A JP 62328208A JP 32820887 A JP32820887 A JP 32820887A JP H01168626 A JPH01168626 A JP H01168626A
Authority
JP
Japan
Prior art keywords
catalyst
methane
oxide
rare earth
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62328208A
Other languages
Japanese (ja)
Inventor
Hiroshi Osada
長田 容
Takao Ikariya
隆雄 碇屋
Tsutomu Shikada
鹿田 勉
Sadao Ogasawara
小笠原 貞夫
Takakazu Fukushima
福島 貴和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62328208A priority Critical patent/JPH01168626A/en
Publication of JPH01168626A publication Critical patent/JPH01168626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To inexpensively obtain >=2C hydrocarbons essentially containing ethane and ethylene in good yield, by reacting methane with molecular oxygen at high temperature using a complex oxide of an alkaline earth metal oxide and rare earth oxide as a catalyst. CONSTITUTION:Methane is reacted with molecular oxygen at 600-850 deg.C (preferably 650-800 deg.C) using a complex oxide of alkaline earth metal oxide (e.g., MgO, CaO, SrO or BaO) and rare earth oxide (e.g., Y2O3, La2O3 or Nd2O3) as a catalyst to provide >=2C hydrocarbons essentially containing ethane and ethylene. In the catalyst composition, the content of rare oxide is 1-80mol% (preferably 20-50mol%). Activity and selectivity at low temperature are improved and simultaneously catalytic activity is maintained over long period by complex formation of the catalyst. The catalyst is obtained by burning constitutional two components.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はメタンの酸化脱水素三量化反応によって、主と
してエタン、エチレン等の炭化水素類を合成する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for synthesizing hydrocarbons, mainly ethane, ethylene, etc., by an oxidative dehydrogen trimerization reaction of methane.

[従来技術] メタンと分子状酸素を触媒の存在下において高温で反応
させ、、エタンとエチレンを主成分とする炭素数2以上
の炭化水素類〈以下、C2+化合物という)を合成する
方法においては数多くの触媒系を使用した提案がなされ
ている0例えば、■ 触媒として例えば、Sm2O3、
D ’/ 205rHO20S 、Gd20s 、Er
20s等の希土類酸化物を単独で用い、温度700〜8
00℃で反応させる方法(CheIIl、 Lett、
 、 499 、1985) 。
[Prior art] In a method of reacting methane and molecular oxygen at high temperature in the presence of a catalyst to synthesize hydrocarbons with a carbon number of 2 or more (hereinafter referred to as C2+ compounds) whose main components are ethane and ethylene, A number of proposals have been made using catalyst systems. For example, ■ As a catalyst, for example, Sm2O3,
D'/205rHO20S, Gd20s, Er
Rare earth oxide such as 20s is used alone at a temperature of 700 to 8
Method of reacting at 00°C (CheIII, Lett,
, 499, 1985).

■ 触媒として、BaO−CaOをはじめとするアルカ
リ土類金属酸化物を組み合わせたものを用い、温度80
0℃以上で反応させる方法(Chew。
■ As a catalyst, a combination of alkaline earth metal oxides including BaO-CaO is used, and the temperature is 80℃.
A method of reacting at 0°C or higher (Chew).

Let、t、  、  81. 1987)  。Let, t, , 81. 1987).

■ 触媒として、ペロブスカイト型酸化物、例えば、L
aA!;I+03 、LaBO3、BaCeO3を用い
、温度750〜850℃で反応させる方法(J、 C,
S、 Chew、 Cmmum 、 、 52.198
6;CheIIl、  Lett、  、  18’3
5. 1987)  。
■ As a catalyst, perovskite-type oxides such as L
aA! ; A method of reacting at a temperature of 750 to 850°C using I+03, LaBO3, and BaCeO3 (J, C,
S, Chew, Cmmum, , 52.198
6; CheIIl, Lett, , 18'3
5. 1987).

などがある。and so on.

[発明が解決しようとする問題点] しかし、前述の触媒系においては、種々の問題点を有し
ている。すなわち、 ■の方法について使用される触媒は、メタンの転化活性
〈以下、活性という)および02″化合物選択率(以下
、選択率という)が高価なSm20)を除いてはあまり
高くないという問題がある。
[Problems to be Solved by the Invention] However, the above catalyst system has various problems. That is, the catalyst used in method (2) has the problem that its methane conversion activity (hereinafter referred to as activity) and selectivity for 02'' compounds (hereinafter referred to as selectivity) are not very high except for the expensive Sm20). be.

また、■または■の方法において使用される触媒は、反
応温度が750°Cあるいは800℃以上の高温でない
と、十分な活性1選択性が得られないという欠点がある
Further, the catalyst used in the method (1) or (2) has the disadvantage that sufficient selectivity to one activity cannot be obtained unless the reaction temperature is as high as 750°C or 800°C or higher.

このように、従来の方法において使用される触媒系には
、低温での活性および選択性そして価格の面で全ての条
件を満足するものは開発されていない。
As described above, no catalyst system has been developed that satisfies all the requirements in terms of low-temperature activity, selectivity, and price among the catalyst systems used in conventional methods.

本発明は、このような従来技術の問題点を解決するため
になされたもので、低温においても高い活性および選択
性を有し、かつ安価な触媒の存在下において、メタンと
分子状酸素を反応させるメタンの酸化的転化方法を提供
することを目的とする。
The present invention was made to solve the problems of the prior art, and involves reacting methane with molecular oxygen in the presence of an inexpensive catalyst that has high activity and selectivity even at low temperatures. The object of the present invention is to provide a method for oxidative conversion of methane.

[問題点を解決するための手段] 本発明は、メタンと分子状酸素を触媒の存在下において
高温で反応させ、エタンとエチレンを主成分とする炭素
数2以上の炭化水素類を合成する方法において、反応条
件下で、触媒がアルカリ土類金属酸化物と希土類酸化物
による複合酸化物であることを特徴とするメタンの酸化
的転化方法である。
[Means for Solving the Problems] The present invention is a method of reacting methane and molecular oxygen at high temperature in the presence of a catalyst to synthesize hydrocarbons having 2 or more carbon atoms, the main components of which are ethane and ethylene. is a method for oxidative conversion of methane, characterized in that the catalyst is a composite oxide of an alkaline earth metal oxide and a rare earth oxide under reaction conditions.

さらに詳述すれば、メタンの酸化的脱水素二重化による
C2+化合物への転化反応であり、触媒としてアルカリ
土類金属酸化物と希土類酸化物の複合酸化物を存在させ
、メタンと分子状酸素を含むガスとを反応゛させる方法
である。
More specifically, it is a conversion reaction of methane to a C2+ compound by double oxidative dehydrogenation, in which a composite oxide of an alkaline earth metal oxide and a rare earth oxide is present as a catalyst, and it contains methane and molecular oxygen. This is a method of reacting with gas.

本発明において使用する触媒は、アルカリ土類金属酸化
物と希土類酸化物の複合酸化物であることが必要である
。前記複合酸化物はアルカリ土類金属化合物と希土類化
合物の混合物を焼成する方法によって得られるが、前記
混合物を、メタンと分子状酸素を反応させる反応条件下
に存在させることによっても得ることができる。
The catalyst used in the present invention needs to be a composite oxide of an alkaline earth metal oxide and a rare earth oxide. The composite oxide can be obtained by firing a mixture of an alkaline earth metal compound and a rare earth compound, but it can also be obtained by placing the mixture under reaction conditions in which methane and molecular oxygen are reacted.

前記複合酸化物を焼成法によって製造する方法としては
、機械的混合法あるいは共沈法等によって得られたアル
カリ土類金属化合物と希土類化合物の混合物を焼結する
方法、アルカリ土類金属化合物と希土類化合物を含む溶
液を滴下熱分解する方法等がある。
Methods for producing the composite oxide by a sintering method include a method of sintering a mixture of an alkaline earth metal compound and a rare earth compound obtained by a mechanical mixing method or a coprecipitation method, a method of sintering a mixture of an alkaline earth metal compound and a rare earth compound, There are methods such as dropwise pyrolysis of a solution containing a compound.

触媒の組成として、アルカリ土類金属酸化物はMgO,
Cab、Sr○、BaOの中がら選択される1種または
2種以上であり、好ましくはCab、BaOの中から選
択される1種または2種、さらに好ましくはCaOであ
る。また、希土類酸化物はY2O3、La2O3、Nd
203の中から選択される1種または2種以上であり、
好ましくはY20s 、Nd203の中から選択される
1種または2種、さらに好ましくはY 203である。
As for the composition of the catalyst, the alkaline earth metal oxides are MgO,
One or more types selected from Cab, Sr○, and BaO, preferably one or two types selected from Cab and BaO, and more preferably CaO. In addition, rare earth oxides include Y2O3, La2O3, Nd
One or more types selected from 203,
Preferably, one or two selected from Y20s and Nd203, more preferably Y203.

さらに、触媒中の希土類酸化物の含有率は1〜80mo
1%、好ましくは20〜5oIIlo看%である場合に
良好の結果が得られる。
Furthermore, the content of rare earth oxide in the catalyst is 1 to 80 mo
Good results are obtained when the amount is 1%, preferably 20 to 5%.

反応温度は600℃を超え850”C以下の範囲で好結
果が得られ、好ましくは650〜800℃の範囲である
のがよい0反応温度が600℃以下であると、メタンの
転化率が低く、また850℃を超えると、完全酸化性が
増大してC2+化合物の選択率が低下する。
Good results are obtained when the reaction temperature is in the range of more than 600°C and less than 850"C, preferably in the range of 650 to 800"C. If the reaction temperature is less than 600°C, the conversion rate of methane is low. Moreover, when the temperature exceeds 850°C, the complete oxidation property increases and the selectivity of C2+ compounds decreases.

なお、上述の触媒組成の説明において、触媒組成を酸化
物で表示したが、これは複合酸化物をつくる段階におけ
る化合物の形態を称したものである。アルカリ土類金属
酸化物は、通常、原子番号が増すにつれてCO2を吸収
し易くなり、条件によっては炭酸塩になる。メタンと分
子状酸素の反応条件下においても、触媒は反応の過程で
生成するCo2を吸収して一部が炭酸塩になることもあ
るが、著しい)支障を生ずるものではない。
In the above description of the catalyst composition, the catalyst composition was expressed as an oxide, but this refers to the form of the compound at the stage of producing the composite oxide. Generally, alkaline earth metal oxides absorb CO2 more easily as their atomic number increases, and depending on the conditions, they become carbonates. Even under the reaction conditions of methane and molecular oxygen, the catalyst may absorb Co2 produced during the reaction process and some of it may become carbonate, but this does not cause any significant trouble.

また、本発明における触媒と反応ガスとの接触方法は、
流動床、固定床のいずれをも採用することができる。
Further, the method of contacting the catalyst and the reaction gas in the present invention is as follows:
Either a fluidized bed or a fixed bed can be employed.

[作用] 本発明における触媒は構造が高温において安定なアルカ
リ土類金属酸化物と希土類酸化物の複合酸化物であり、
この複合化により、低温での活性および選択性が向上す
ると共に、触媒活性が長期にわたって持続する。
[Function] The catalyst in the present invention is a composite oxide of an alkaline earth metal oxide and a rare earth oxide whose structure is stable at high temperatures,
This complexation improves activity and selectivity at low temperatures and maintains catalytic activity over a long period of time.

メタンの酸化脱水素三量化反応における触媒反応機構に
ついては諸説があり、未だ確定的な説明がなされたもの
はないが、その中で、塩基性酸化物であるアルカリ土類
金属酸化物および希土類酸化物の触媒作用は、これらの
酸化物に吸着された酸素がスーパーオキサイドイオン(
0□−)を形成し、これがメタンの水素引き抜き能を増
加させ。
There are various theories regarding the catalytic reaction mechanism in the oxidative dehydrogen trimerization reaction of methane, and no definitive explanation has been given yet. The catalytic action of substances is due to the fact that oxygen adsorbed on these oxides forms superoxide ions (
0□-), which increases the hydrogen abstraction ability of methane.

メチルラジカルを生成し易くするという説がある。アル
カリ土類金属酸化物と希土類酸化物とを複合酸化物にし
た本発明の触媒が低温領域から高活性、高選択性を発現
するするのは、前記酸化物の複合化によって、スーパー
オキサイドイオンがより低温で生成し易くなると共に、
活性点が相乗的に増加したものと考えられる。
There is a theory that it makes it easier to generate methyl radicals. The catalyst of the present invention, which is a composite oxide of an alkaline earth metal oxide and a rare earth oxide, exhibits high activity and high selectivity from low temperature ranges because superoxide ions are generated by the composite of the oxides. It becomes easier to generate at lower temperatures, and
It is thought that the number of active sites increased synergistically.

本発明の方法による反応に供する反応ガスは、メタンと
酸素を含むガスとの混合ガスであり、酸素に対するメタ
ンの比率が高いほどメタンの完全酸化が抑制され、C2
+化合物の選択率はよくなる。酸素を含むガスは、空気
として、あるいは酸素と不活性ガスとの混合ガスとして
供給される。
The reaction gas used in the reaction according to the method of the present invention is a mixed gas of methane and a gas containing oxygen, and the higher the ratio of methane to oxygen, the more complete oxidation of methane is suppressed, and the more
+Selectivity of compounds improves. The oxygen-containing gas is supplied as air or as a mixed gas of oxygen and an inert gas.

[発明の実施例コ 以下、本発明の実施例について説明する。[Embodiments of the invention] Examples of the present invention will be described below.

(実施例1) (触媒の調製) アルカリ土類金属であるMg、Ca、Sr。(Example 1) (Preparation of catalyst) Mg, Ca, and Sr, which are alkaline earth metals.

Baの炭酸塩をそれぞれ硝酸で溶解した溶液と、希土類
であるY、La、Ndの硝酸塩をそれぞれ水に溶解した
溶液とを調整した。この2グループの溶液を各種の元素
の組み合わせにより混合して多数のアルカリ土類金属化
合物と希土類化合物の混合溶液とし1、これに各々アル
カリ土類金属と希土類元素の含有量の2倍当量以上のシ
ュウ酸を加え、シュウ酸塩の共沈物を得た。これらの沈
殿物をろ別後、120℃で乾燥し、空気中800℃。
A solution in which Ba carbonate was dissolved in nitric acid, and a solution in which nitrates of rare earth elements Y, La, and Nd were dissolved in water were prepared. These two groups of solutions are mixed with various combinations of elements to form a mixed solution of a large number of alkaline earth metal compounds and rare earth compounds1. Oxalic acid was added to obtain a coprecipitate of oxalate. After filtering these precipitates, they were dried at 120°C and then heated in air at 800°C.

6時間焼成してアルカリ土類金属酸化物と希土類酸化物
の各種複合酸化物の触媒を得た。この際の希土類酸化物
の含有率はいずれも10m0ρ%とした。
After firing for 6 hours, catalysts of various composite oxides of alkaline earth metal oxides and rare earth oxides were obtained. The content of rare earth oxides at this time was 10m0ρ% in all cases.

(反応) 上述のようにして調製した触媒0.5gを充填した固定
床常圧流通式反応装置に、メタン、酸素、ヘリウムを1
5ニア、5ニア7.5のモル比で混合したガスを流量4
0mρ/分で送入した。
(Reaction) Methane, oxygen, and helium were added to a fixed bed normal pressure flow reactor filled with 0.5 g of the catalyst prepared as described above.
Gas mixed at a molar ratio of 5 nia and 5 nia 7.5 at a flow rate of 4
It was fed at a rate of 0 mρ/min.

反応温度は650℃と750℃の2条件で実施した。こ
れと同一条件での実験を前記各種複合酸化物の触媒につ
いても実施した9反応後のガスは氷温で水分をトラップ
した後、ガスクロマトグラフィーで分析し、メタンの転
化率と、エタン、エチレン、プロパン、プロピレンの合
計(C2+化合物)の選択率を算出した。なお、エタン
、エチレン、プロパン、プロピレン以外の炭化水素は分
析限界以下であり、炭化水素以外の反応生成物は主とし
て一酸化炭素と二酸化炭素であった。この結果を第1表
に示す。
The reaction was carried out under two conditions: 650°C and 750°C. Experiments under the same conditions were also conducted for the various composite oxide catalysts mentioned above.9 The gas after the reaction was analyzed by gas chromatography after trapping moisture at ice temperature, and the conversion rate of methane, ethane, ethylene, etc. , propane, and propylene (C2+ compound) was calculated. Note that hydrocarbons other than ethane, ethylene, propane, and propylene were below the analysis limit, and reaction products other than hydrocarbons were mainly carbon monoxide and carbon dioxide. The results are shown in Table 1.

(実施例2) 実施例1と同様にして調製したY20Y2O31O%−
Ca090mo!;!%の触媒について、実施例1と同
じ反応装置、触媒量、反応ガス条件により、反応温度を
550〜850℃に変化させてメタンの酸化的転化反応
を行った。この結果を第1図に示す0図中の表示におい
て、C2+収率はメタンの転化率に02+選択率を乗じ
た値である。
(Example 2) Y20Y2O31O%- prepared in the same manner as Example 1
Ca090mo! ;! % catalyst, an oxidative conversion reaction of methane was carried out using the same reactor, catalyst amount, and reaction gas conditions as in Example 1, with the reaction temperature varied from 550 to 850°C. The results are shown in Figure 1, where the C2+ yield is the value obtained by multiplying the methane conversion rate by the 02+ selectivity.

(実施例3) 実施例1と同様にして調製しなY2O3−CaOの触媒
について、Y2O3の含有率を種々変えた実験を行った
。実験条件は、反応温度を700℃に固定したこと以外
は実施例1と同一の条件でメタンの酸化的転化反応を行
った。この結果を第2図に示す。
(Example 3) Experiments were conducted using a Y2O3-CaO catalyst prepared in the same manner as in Example 1, with various Y2O3 contents. The oxidative conversion reaction of methane was carried out under the same experimental conditions as in Example 1, except that the reaction temperature was fixed at 700°C. The results are shown in FIG.

(比較例1) 実施例1の触媒の調製と同様の方法により、Y2O,お
よびCaOそれぞれ単独の触媒を調製し、この触媒を実
施例1と同一の条件でメタンの酸化的転化反応を行った
。この結果は第1表の下欄に示す。
(Comparative Example 1) In the same manner as in the preparation of the catalyst in Example 1, a single catalyst of Y2O and CaO was prepared, and this catalyst was subjected to an oxidative conversion reaction of methane under the same conditions as in Example 1. . The results are shown in the lower column of Table 1.

(比較例2) 実施例1の触媒の調製と同様の方法により、Y203お
よびCaOそれぞれ単独の触媒を調製し、この触媒を実
施例2と同一の条件でメタンの酸化的転化反応を行った
。この結果は実施例2の結果と共に第1図に示す。
(Comparative Example 2) A single catalyst of Y203 and CaO was prepared in the same manner as in the preparation of the catalyst of Example 1, and the oxidative conversion reaction of methane was performed on this catalyst under the same conditions as in Example 2. The results are shown in FIG. 1 together with the results of Example 2.

上述の実験結果について説明する。The above experimental results will be explained.

第1表において、メタン転化率、C2+選択率について
実施例1の結果と比較例1の結果を比較すると、実施例
1は比較例1に対し大差のある高値を得ている。このよ
うに比較例1のごとくCaOやY2O,をそれぞれ単独
で触媒とするよりも、アルカリ土類金属酸化物と希土類
酸化物を複合酸化物とした場合の方が触媒性能を高めう
ろことが明らかに認められる。
In Table 1, when the results of Example 1 and Comparative Example 1 are compared with respect to methane conversion rate and C2+ selectivity, Example 1 obtains higher values that are significantly different from Comparative Example 1. In this way, it is clear that using a composite oxide of an alkaline earth metal oxide and a rare earth oxide will improve the catalytic performance, rather than using CaO or Y2O as a catalyst alone as in Comparative Example 1. recognized.

第1図は反応温度とC2″収率について実施例2と比較
例2の結果を比較した図であるが、反応温度が600℃
を超えると、実施例2と比較例2の差が歴然となり、実
施例2のC2“収率は極めて高い値となっている。
Figure 1 is a diagram comparing the results of Example 2 and Comparative Example 2 regarding reaction temperature and C2'' yield.
When it exceeds , the difference between Example 2 and Comparative Example 2 becomes obvious, and the C2'' yield of Example 2 becomes an extremely high value.

第2図は本発明の実施例単独の図であり、触媒のY2O
3の含有率と02+収率の関係を示しな図である。この
図においてAはY2O3含有率がl moρ%の点であ
り、Y2O3が僅かでも含まれていれば、C2+収率は
著しく向上することがわかる。この図で明らかなように
、触媒のY2O3の含有率の好ましい範囲は1〜80m
oρ%である。
FIG. 2 is a diagram of a single example of the present invention, in which the Y2O of the catalyst
FIG. 3 is a diagram showing the relationship between the content of 3 and the yield of 02+. In this figure, A is a point where the Y2O3 content is 1 moρ%, and it can be seen that if even a small amount of Y2O3 is contained, the C2+ yield is significantly improved. As is clear from this figure, the preferable range of the Y2O3 content of the catalyst is 1 to 80 m
oρ%.

Y2O3が8Qmof%を超えると02+収率の低下の
度合いが大きくなるので好ましくない。さらに好ましい
範囲は20〜50mof%である。
If Y2O3 exceeds 8Qmof%, the degree of decrease in 02+ yield will increase, which is not preferable. A more preferable range is 20 to 50 mof%.

触媒の組成; 実施例1の実験番号1〜6は希土類酸化物の含有率が1
0mo、R%、実験番号7はY2O3−CaO−3rO
の組成が10−45−45mo、&%、実験番号8はY
20B −La20g −CaOの組成が5−5−5−
9Oρ%である。
Composition of catalyst: Experiment numbers 1 to 6 of Example 1 had a rare earth oxide content of 1
0mo, R%, experiment number 7 is Y2O3-CaO-3rO
The composition of is 10-45-45mo, &%, experiment number 8 is Y
20B -La20g -CaO composition is 5-5-5-
It is 9Oρ%.

[発明の効果] 本発明によるメタンの転化方法は、アルカリ土類金属酸
化物と希土類酸化物の複合酸化物を触媒としてメタンと
分子状酸素を反応させる方法であり、この反応に使用す
る触媒は、従来技術におけるアルカリ土類金属酸化物ま
たは希土類酸化物単独の触媒に比べ、メタンの転化活性
およびC2+化合物選択性が高く、したがって、c2+
化合物の収率が極めて高い触媒である。また、この触媒
は反応温度が600℃近傍の低温においても、メタンの
転化活性および024″化合物選択性が発現する。この
ため、メタンから炭素数2以上の炭化水素類を収率よく
、しかも低温で合成することができ、炭化水素類を安価
に製造することができる。
[Effect of the invention] The method for converting methane according to the present invention is a method in which methane and molecular oxygen are reacted using a composite oxide of an alkaline earth metal oxide and a rare earth oxide as a catalyst, and the catalyst used for this reaction is , has higher methane conversion activity and C2+ compound selectivity than the prior art alkaline earth metal oxide or rare earth oxide alone catalysts, and therefore c2+
This is a catalyst with extremely high compound yield. In addition, this catalyst exhibits methane conversion activity and selectivity to 024'' compounds even at low reaction temperatures of around 600°C.For this reason, it is possible to convert hydrocarbons having 2 or more carbon atoms from methane in high yields and at low temperatures. Hydrocarbons can be synthesized at low cost.

以上のように、メタンから炭化水素類を安価に製造でき
る方法である本発明は、メタンを燃料としての用途から
合成化学原料への転換をなさしめる得る発明であり、極
めて優れた発明である。
As described above, the present invention, which is a method for producing hydrocarbons from methane at low cost, is an extremely excellent invention that allows methane to be converted from being used as a fuel to being used as a raw material for synthetic chemicals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応温度と024−収率について実施例2と比
較例2の結果を比較した図、第2図は本発明の実施例に
おける触媒中のY2O3の含有率と02+収率の関係を
示した図である。
Figure 1 is a diagram comparing the results of Example 2 and Comparative Example 2 regarding the reaction temperature and 024-yield, and Figure 2 is a diagram showing the relationship between the content of Y2O3 in the catalyst and the 02+ yield in the example of the present invention. FIG.

Claims (6)

【特許請求の範囲】[Claims] (1)メタンと分子状酸素を触媒の存在下において高温
で反応させ、エタンとエチレンを主成分とする炭素数2
以上の炭化水素類を合成する方法において、反応条件下
で、触媒がアルカリ土類金属酸化物と希土類酸化物によ
る複合酸化物であることを特徴とするメタンの酸化的転
化方法。
(1) Methane and molecular oxygen are reacted at high temperature in the presence of a catalyst, and the main components are ethane and ethylene, which have a carbon number of 2.
A method for oxidative conversion of methane, which is characterized in that the catalyst is a composite oxide of an alkaline earth metal oxide and a rare earth oxide under the reaction conditions in the above method for synthesizing hydrocarbons.
(2)触媒の組成物であるアルカリ土類金属酸化物がM
gO、CaO、SrO、BaOの中から選択される1種
または2種以上である特許請求範囲第1項記載のメタン
の酸化的転化方法。
(2) The alkaline earth metal oxide that is the composition of the catalyst is M
The method for oxidative conversion of methane according to claim 1, wherein the methane is one or more selected from gO, CaO, SrO, and BaO.
(3)触媒の組成物である希土類酸化物がY_2O_3
、La_2O_3、Nd_2O_3の中から選択される
1種または2種以上である特許請求範囲第1項記載のメ
タンの酸化的転化方法。
(3) The rare earth oxide that is the composition of the catalyst is Y_2O_3
, La_2O_3, and Nd_2O_3. The method for oxidative conversion of methane according to claim 1.
(4)触媒の組成物である希土類酸化物の含有率が1〜
80mol%である特許請求範囲第1項又は第2項又は
第3項記載のメタンの酸化的転化方法。
(4) The content of rare earth oxides in the catalyst composition is 1 to 1.
A method for oxidative conversion of methane according to claim 1 or 2 or 3, wherein the amount is 80 mol%.
(5)触媒の組成物である希土類酸化物の含有率が20
〜50mol%である特許請求範囲第1項〜第4項から
選ばれる1つの項に記載のメタンの酸化的転化方法。
(5) The content of rare earth oxides in the catalyst composition is 20
The method for oxidative conversion of methane according to one of claims 1 to 4, wherein the amount is 50 mol %.
(6)メタンの酸化的転化反応を600〜850℃の反
応温度で行う特許請求範囲第1項〜第5項から選ばれる
1つの項に記載のメタンの酸化的転化方法。
(6) A method for oxidative conversion of methane according to one of claims 1 to 5, wherein the oxidative conversion reaction of methane is carried out at a reaction temperature of 600 to 850°C.
JP62328208A 1987-12-24 1987-12-24 Oxidative conversion of methane Pending JPH01168626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328208A JPH01168626A (en) 1987-12-24 1987-12-24 Oxidative conversion of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328208A JPH01168626A (en) 1987-12-24 1987-12-24 Oxidative conversion of methane

Publications (1)

Publication Number Publication Date
JPH01168626A true JPH01168626A (en) 1989-07-04

Family

ID=18207657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328208A Pending JPH01168626A (en) 1987-12-24 1987-12-24 Oxidative conversion of methane

Country Status (1)

Country Link
JP (1) JPH01168626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113993A1 (en) 2009-04-01 2010-10-07 三井化学株式会社 Process for producing olefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113993A1 (en) 2009-04-01 2010-10-07 三井化学株式会社 Process for producing olefin

Similar Documents

Publication Publication Date Title
US3975300A (en) One step method of preparation of vanadium-phosphorus complex in the absence of hydrogen halide
US7384987B2 (en) Catalysts and processes for the manufacture of lower aliphatic alcohols from syngas
US4939311A (en) Catalysts for the oxidative conversion of methane to higher hydrocarbons
US5447705A (en) Oxidation catalyst and process for the partial oxidation of methane
US5691263A (en) Amorphous perovskite catalysts for nitrogen oxide reduction and methods of preparing the same
US5336826A (en) Oxidation of methane over heterogeneous catalysts
CN102105222A (en) Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
US4450313A (en) Oxidative dehydrogenation of paraffins
CA2085315A1 (en) Process for the preparation of synthetic gases
Conway et al. Comparison of lanthanum oxide and strontium-modified lanthanum oxide catalysts for the oxidative coupling of methane
AU718127B2 (en) Process for the selective production of acetic acid
CA2283137A1 (en) Use of ce/zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
US4654459A (en) Alkali promoted manganese oxide compositions containing barium carbonate
Wu et al. Direct oxidation of methane to methanol using CuMoO 4
KR20140129935A (en) Method for preparing dimethyl carbonate using supported catalyst
Zhang et al. Methane oxidative coupling to C2 hydrocarbons over lanthanum promoted barium catalysts
JPH01168626A (en) Oxidative conversion of methane
US4482646A (en) Oxidative dehydrogenation of paraffins
JP3837520B2 (en) Catalyst for CO shift reaction
KR102310394B1 (en) Alkaline earth metal catalyst supported on perovskite carrier and method for oxidative coupling reaction of methane using the same
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
GB913836A (en) Improvements in and relating to the synthesis of hydrogen cyanide
CN112079704B (en) Preparation method of butyl butyrate and butyric acid
KR101525943B1 (en) Heterogeneous Cupper based catalysts for coproducing dimethyl ether and acetic acid from methanol
US3523135A (en) Process for producing pyromellitic acid