JPH0116836B2 - - Google Patents

Info

Publication number
JPH0116836B2
JPH0116836B2 JP55154663A JP15466380A JPH0116836B2 JP H0116836 B2 JPH0116836 B2 JP H0116836B2 JP 55154663 A JP55154663 A JP 55154663A JP 15466380 A JP15466380 A JP 15466380A JP H0116836 B2 JPH0116836 B2 JP H0116836B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
azabicycloalkane
following formula
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55154663A
Other languages
Japanese (ja)
Other versions
JPS5780383A (en
Inventor
Tsutomu Setsuda
Ryozo Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP55154663A priority Critical patent/JPS5780383A/en
Publication of JPS5780383A publication Critical patent/JPS5780383A/en
Publication of JPH0116836B2 publication Critical patent/JPH0116836B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyrrole Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は下記式で示される1―アザビシクロ
アルカンの製造に関するものであり、下記式で
示される2―(ω―アミノアルキル)―1―アザ
シクロアルカンを触媒の存在下に脱アンモニア分
子内閉環反応することによるものである。 本発明の目的物である1―アザビシクロアルカ
ン(以下ABAと略称する)はアルカロイドの基
本骨格であり、医薬、農薬の中間原料として有用
な化合物である。 ABAの合成法については、この形の環状構造
をもつ多種類の天然アルカロイドが存在するた
め、古くから様々の方法が提案されてきている
(小竹無二雄監修、“大有機化学”第17巻、325〜
423頁、広川書店(1959)発行)。 しかしながら、これら公知の方法はいずれも反
応ステツプが著しく長いか、特殊な出発原料を使
用するか、さらには一般に反応条件が苛酷になる
など工業的に実施するには余りにも制約が多く、
しかも目的物の収率も低い。例えば、オキシムジ
カルボン酸エステルあるいはニトロジカルボン酸
エステルの還元的閉環反応では、出発原料の合成
が煩雑であるのみならず、閉環反応も水素圧300
気圧以上、250℃という苛酷な条件が必要であり、
総合収率も高くても数%にとどまる(例えばN、
J、Leonard、L.R.Hruda、F.W.Long、J.Am.
Chem.Soc.、69、690(1947);N、J、Leonard、
W.E.Goode、J.Am.Chem.Soc.、72、5404
(1950)) さらに公知の方法は通常は特定のABAの合成
にのみ有効に適用できるのにすぎないのであつて
ABAの合成に普遍的に使用するには限界がある。 本発明者らは工業的にも入手容易な原料から容
易に得られる化合物を出発原料として使用する
ABAの一般的合成法を提供することを目的に
種々の方法を検討した結果、本発明の方法に到達
した。 すなわち、本発明は下記式で示される2―
(ω―アミノアルキル)―1―アザシクロアルカ
ン(m,nはそれぞれ3,4,5の整数)を触媒
の存在下に分子内脱アンモニアして閉環反応させ
ることによつてABAを取得するものである。 本発明の出発原料である2―(ω―アミノアル
キル)―1―アザシクロアルカンは工業的に入手
容易なα―ピロリドン、α―ピペリドン、あるい
はε―カプロラクタムを単独脱炭酸縮合、交叉脱
炭酸縮合したのち水素化して収率よく合成できる
化合物であり、この合成法は、例えば特公昭41―
18096号に記載されている。このように、本発明
の出発原料は従来の製法に比較してはるかに合成
しやすい化合物であるので、技術的にも経済的に
も有利である。 かくして本発明方法では出発原料2―(ω―ア
ミノアルキル)―1―アザシクロアルカンを脱ア
ンモニア閉環反応せしめるわけである。該反応
は、気相反応、液相反応のいずれも実施でき、原
料2―(ω―アミノアルキル)―1―アザビシク
ロアルカンを触媒の存在下に常圧下に加熱すれば
よい。加熱温度は50〜250℃、加熱時間は数時間
〜数十時間でよい。 本発明における反応は無溶媒下に実施すること
もできるが、次式 で表される分子間縮合反応を抑制するために、不
活性溶媒中で実施するのが好ましく、さらに反応
物質の濃度が50%以下の希薄溶液で実施するのが
好ましい。 かかる不活性溶媒としては芳香族炭化水素、脂
肪族炭化水素、肪環族炭化水素、アルコール、エ
ーテル類が挙げられるが、具体的にはベンゼン、
トルエン、キシレン、クロルベンゼン、シクロヘ
キサン、デカリン、メタノール、エタノール、テ
トラヒドロフラン、ジオキサン等が挙げられる。
不活性溶媒を使用する際には、反応はその不活性
溶媒の沸点下で実施することが好ましい。 反応を促進するためには、触媒を使用する。該
触媒としては脱アンモニア活性あるいは水素化活
性のある化合物が用いられ、周期律表第族金属
を含む化合物、例えばラネーニツケル、ラネーコ
バルトのようなラネー触媒、あるいはパラジウム
炭、白金黒のような貴金属触媒が好ましい。 触媒の使用量は数%以上であればよく、種々の
反応条件から適宜決めればよい。閉環反応はアン
モニアが生成し終えば終了であので、反応の進行
にともなつて生成するアンモニアの量を検知し
て、反応速度を触媒量により調整することができ
る。 反応物から目的物を分離するには、通常の分離
手段、蒸留等により行なえばよい。 得られた目的物、1―アザビシクロアルカン
は、農薬、濃薬を合成する際の出発原料として有
用である。 以下、本発明を実施例によつて説明するが本発
明はこれに限定されるものではない。 実施例 1 出発原料、2―(3―アミノプロピル)―1―
アザシクロペンタンは次の方法で合成した。 α―ピロリドン85g(1モル)を酸化カルシウ
ム100gとよく混合しレトルトに入れ、徐々に加
熱し、留出物を捕集しつつ最後に400〜450℃まで
加熱する。留出液に苛性ソーダを加えて強アルカ
リ性とし、分離する塩基成分を真空蒸留し58〜62
℃/0.1mmHgの留分25gを得る。分析の結果4―
オキソ―1,7―ヘプタメチレンジアミンの分子
内シツフ塩基であつた。このシツフ塩基20gを70
%酢酸100mlに溶解し、オートクレーブ中で酸化
白金0.5gを加え水素圧50Kg/cm2・Gの下、室温
でかきまぜると、約40分で水素吸収を停止する。
触媒を別、苛性ソーダで強アルカリ性としたの
ちエーテルで抽出し、真空蒸留すると沸点52〜54
℃/0.4mmHgの留分18gが得られた。スペクトル
分析によつて2―(3―アミノプロピル)―1―
アザシクロペンタンであることを確認した。 2―(3―アミノプロピル)―1―アザシクロ
ペンタン6.34g(0.0495モル)を撹拌器、窒素導
入口、還流冷却器を備えた100mlフラスコに入れ、
キシレン60mlに溶解する。ラネーニツケル15g
(湿潤)を加え、外部から加熱しつつ撹拌し、ゆ
つくり窒素ガスを導入する。反応混合物の沸騰と
共に還流冷却器の上端からの窒素ガス流中にアン
モニアの存在が認められるので、濃度既知の希硫
酸と接触させて発生したアンモニアを捕集する。 3時間後、アンモニア0.0442モルが留出した時
点で加熱を止め、冷却して触媒を別蒸留フラス
コに移してベンゼンを留去したのち減圧蒸留し
て、16mmHgにおける沸点39〜41℃の留分1.6g
(ガスクロ分析純度98%)を得た。 得られた留分は屈折率1.4680(20℃)沸点、
NMRスペクトル共、ピロリジジン(1―アザビ
シクロ〔3,3,0〕オクタン)に関する文献の
値と完全に一致した。 出発アザシクロペンタンの変化率は89.2%、ピ
ロリジン収率は33%であつた。 実施例 2 2―(4―アミノブチル)―1―アザシクロヘ
キサン6.07g(0.0389モル)、トルエン60ml、ラ
ネーニツケル(湿潤)15gを実施例1と同様に反
応させ、アンモニアの生成が認められなくなつて
から(2時間30分後)、触媒分離、蒸留を行なつ
た。60〜61℃(10mmHg)の留分2.29gを得た。 屈折率(1.4768)、沸点、ピクラートの沸点
(198〜200℃)赤外スペクトルはキノリジジン
(1―アザビシクロ〔4,4,0〕デカンの文献
値と完全に一致した。 キノリジジンの収率はアザシクロヘキサンに対
し42.4%であつた。 実施例 3 2―(5―アミノペンチル)―1―アザシクロ
ヘプタン100g(0.54モル)をラネーニツケル35
g(湿潤)の存在下、キシレン330ml中で窒素気
流下、撹拌しつつ還流加熱する。約6時間後アン
モニアの生成が止まつてから触媒分離、蒸留によ
つて110〜114℃(19mmHg)の留分32.5gおよび
残留分58.2gを得た。 留出液の屈折率1.4936(20℃)、ピクラート(1
―アザビシクロ〔5,5,0〕ドデカンの融点
142〜143℃は文献値と一致した。 出発置換アザシクロヘプタンからの収率は36%
であつた。 実施例 4〜9 2―(5―アミノペンチル)―1―アザシクロ
ヘプタンとラネーニツケルおよびキシレンの比率
を変えて、実施例3と同様の反応を行なつた結果
を第1表に示す。 第1表中、反応率および収率は反応混合物のガ
スクロ分析によつた値である。
The present invention relates to the production of 1-azabicycloalkane represented by the following formula, and involves deammonization and intramolecular ring closure of 2-(ω-aminoalkyl)-1-azacycloalkane represented by the following formula in the presence of a catalyst. It is by reacting. 1-Azabicycloalkane (hereinafter abbreviated as ABA), which is the object of the present invention, is the basic skeleton of an alkaloid, and is a compound useful as an intermediate raw material for medicines and agricultural chemicals. As there are many types of natural alkaloids with this type of cyclic structure, various methods for synthesizing ABA have been proposed for a long time (Supervised by Fujio Kotake, "Great Organic Chemistry" Vol. 17) , 325~
423 pages, published by Hirokawa Shoten (1959)). However, all of these known methods have too many limitations for industrial implementation, such as extremely long reaction steps, the use of special starting materials, and generally harsh reaction conditions.
Moreover, the yield of the target product is also low. For example, in the reductive ring-closing reaction of oxime dicarboxylic acid esters or nitrodicarboxylic acid esters, not only is the synthesis of starting materials complicated, but the ring-closing reaction is also carried out under hydrogen pressure of 300 ml.
It requires harsh conditions of over atmospheric pressure and 250℃.
Even if the overall yield is high, it will only be a few percent (for example, N,
J., Leonard, LRHruda, F.W.Long, J.Am.
Chem.Soc., 69 , 690 (1947); N.J. Leonard,
WEGoode, J.Am.Chem.Soc., 72 , 5404
(1950)) Furthermore, known methods are usually only effective for the synthesis of specific ABA;
There are limitations to its universal use in ABA synthesis. The present inventors use compounds that are easily obtained from industrially available raw materials as starting materials.
As a result of investigating various methods for the purpose of providing a general method for synthesizing ABA, the method of the present invention was arrived at. That is, the present invention provides 2-
(ω-Aminoalkyl)-1-azacycloalkane (m, n are integers of 3, 4, and 5, respectively) is intramolecularly deammoniated and ring-closing in the presence of a catalyst to obtain ABA. It is. The starting material of the present invention, 2-(ω-aminoalkyl)-1-azacycloalkane, is obtained by single decarboxylation condensation or cross decarboxylation condensation of industrially easily available α-pyrrolidone, α-piperidone, or ε-caprolactam. It is a compound that can be synthesized with high yield by hydrogenation.
Described in No. 18096. As described above, the starting material of the present invention is a compound that is much easier to synthesize than in conventional production methods, and is therefore advantageous both technically and economically. Thus, in the method of the present invention, the starting material 2-(ω-aminoalkyl)-1-azacycloalkane is subjected to a deammonia ring closure reaction. This reaction can be carried out in either a gas phase reaction or a liquid phase reaction, and the raw material 2-(ω-aminoalkyl)-1-azabicycloalkane may be heated under normal pressure in the presence of a catalyst. The heating temperature may be 50 to 250°C, and the heating time may be several hours to several tens of hours. Although the reaction in the present invention can be carried out without a solvent, the following formula In order to suppress the intermolecular condensation reaction represented by , it is preferable to carry out the reaction in an inert solvent, and more preferably to carry out the reaction in a dilute solution in which the concentration of the reactant is 50% or less. Examples of such inert solvents include aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, alcohols, and ethers, but specifically benzene,
Examples include toluene, xylene, chlorobenzene, cyclohexane, decalin, methanol, ethanol, tetrahydrofuran, dioxane, and the like.
When using an inert solvent, the reaction is preferably carried out below the boiling point of the inert solvent. A catalyst is used to accelerate the reaction. The catalyst used is a compound with deammonization activity or hydrogenation activity, such as a compound containing a group metal of the periodic table, such as a Raney catalyst such as Raney nickel or Raney cobalt, or a noble metal catalyst such as palladium charcoal or platinum black. is preferred. The amount of the catalyst used may be several percent or more, and may be determined as appropriate based on various reaction conditions. Since the ring-closing reaction ends once ammonia has been produced, the reaction rate can be adjusted by adjusting the amount of catalyst by detecting the amount of ammonia produced as the reaction progresses. The target product can be separated from the reactant by conventional separation means such as distillation. The obtained target product, 1-azabicycloalkane, is useful as a starting material for synthesizing agricultural chemicals and concentrated drugs. EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited thereto. Example 1 Starting material, 2-(3-aminopropyl)-1-
Azacyclopentane was synthesized by the following method. 85 g (1 mol) of α-pyrrolidone is thoroughly mixed with 100 g of calcium oxide, placed in a retort, heated gradually, and finally heated to 400-450° C. while collecting the distillate. Caustic soda is added to the distillate to make it strongly alkaline, and the base component to be separated is vacuum distilled.58-62
Obtain 25 g of fraction at °C/0.1 mmHg. Analysis result 4-
It was an intramolecular Schiff base of oxo-1,7-heptamethylenediamine. 70g of this Schizuf base
% acetic acid, add 0.5 g of platinum oxide in an autoclave, and stir at room temperature under a hydrogen pressure of 50 Kg/cm 2 ·G. Hydrogen absorption will stop in about 40 minutes.
Separate the catalyst, make it strong alkaline with caustic soda, extract with ether, and vacuum distillate to obtain a boiling point of 52-54.
A fraction of 18 g was obtained at a temperature of 0.4 mmHg. 2-(3-aminopropyl)-1- by spectral analysis
It was confirmed that it was azacyclopentane. 6.34 g (0.0495 mol) of 2-(3-aminopropyl)-1-azacyclopentane was placed in a 100 ml flask equipped with a stirrer, nitrogen inlet, and reflux condenser.
Dissolve in 60 ml of xylene. Ranney Nickel 15g
(wet), stir while heating from the outside, and slowly introduce nitrogen gas. As the reaction mixture boils, the presence of ammonia is observed in the nitrogen gas stream from the top of the reflux condenser, so it is brought into contact with dilute sulfuric acid of known concentration to collect the generated ammonia. After 3 hours, when 0.0442 mol of ammonia was distilled out, the heating was stopped, the catalyst was cooled, the catalyst was transferred to a separate distillation flask, the benzene was distilled off, and the benzene was distilled off under reduced pressure, resulting in a fraction of 1.6 with a boiling point of 39 to 41°C at 16 mmHg. g
(Gas chromatography analysis purity 98%) was obtained. The obtained fraction has a refractive index of 1.4680 (20℃) and a boiling point of
Both NMR spectra were completely consistent with literature values for pyrrolizidine (1-azabicyclo[3,3,0]octane). The conversion rate of the starting azacyclopentane was 89.2%, and the yield of pyrrolidine was 33%. Example 2 6.07 g (0.0389 mol) of 2-(4-aminobutyl)-1-azacyclohexane, 60 ml of toluene, and 15 g of Raney nickel (wet) were reacted in the same manner as in Example 1, until no ammonia formation was observed. From then on (after 2 hours and 30 minutes), catalyst separation and distillation were performed. 2.29 g of a fraction at 60-61°C (10 mmHg) was obtained. The refractive index (1.4768), boiling point, boiling point of picrate (198-200°C) and infrared spectrum completely matched the literature values for quinolizidine (1-azabicyclo[4,4,0]decane. The yield of quinolizidine was that of azacyclohexane. Example 3 100 g (0.54 mol) of 2-(5-aminopentyl)-1-azacycloheptane was mixed with Raney Nickel 35
The mixture is heated to reflux in 330 ml of xylene under a nitrogen atmosphere with stirring in the presence of 100 g (wet). After about 6 hours, when the production of ammonia stopped, the catalyst was separated and distilled to obtain 32.5 g of a fraction at 110-114°C (19 mmHg) and 58.2 g of a residue. Refractive index of distillate 1.4936 (20℃), picrate (1
-Melting point of azabicyclo[5,5,0]dodecane
The temperature of 142-143°C was consistent with the literature value. Yield from starting substituted azacycloheptane is 36%
It was hot. Examples 4 to 9 Table 1 shows the results of the same reaction as in Example 3, changing the ratio of 2-(5-aminopentyl)-1-azacycloheptane to Raney nickel and xylene. In Table 1, the reaction rate and yield are values determined by gas chromatography analysis of the reaction mixture.

【表】【table】

【表】 実施例 10〜11 2―(5―アミノペンチル)―1―アザシクロ
ヘプタンに対してキシレン中の金属触媒の種類を
変えて実施例3と同様に反応したときの結果を第
2表に示す。
[Table] Examples 10 to 11 Table 2 shows the results when 2-(5-aminopentyl)-1-azacycloheptane was reacted in the same manner as in Example 3 by changing the type of metal catalyst in xylene. Shown below.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記式で示される2―(ω―アミノアルキ
ル)―1―アザシクロアルカンに、周期律表第
族金属の少なくとも一種を含む金属触媒の存在下
で分子内脱アンモニア閉環反応を行なわせること
を特徴とする、下記式で示される1―アザビシ
クロアルカンの製造方法。 (m,nはそれぞれ3,4,5の整数) (m,nはそれぞれ3,4,5の整数) 2 分子内脱アンモニア閉環反応を不活性溶媒中
で行なうことを特徴とする、特許請求の範囲第1
項記載の1―アザビシクロアルカンの製造方法。
[Scope of Claims] 1 A 2-(ω-aminoalkyl)-1-azacycloalkane represented by the following formula is subjected to intramolecular deammonia ring closure in the presence of a metal catalyst containing at least one metal of Group Group of the Periodic Table. A method for producing 1-azabicycloalkane represented by the following formula, which comprises carrying out a reaction. (m and n are integers of 3, 4, and 5, respectively) (m, n are integers of 3, 4, and 5, respectively) 2. Claim 1, characterized in that the intramolecular deammonia ring-closing reaction is carried out in an inert solvent.
The method for producing 1-azabicycloalkane described in Section 1.
JP55154663A 1980-11-05 1980-11-05 Preparation of 1-azabicyclo(m.n.0)alkane Granted JPS5780383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55154663A JPS5780383A (en) 1980-11-05 1980-11-05 Preparation of 1-azabicyclo(m.n.0)alkane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55154663A JPS5780383A (en) 1980-11-05 1980-11-05 Preparation of 1-azabicyclo(m.n.0)alkane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9873285A Division JPS6117559A (en) 1985-05-09 1985-05-09 Triamine and its preparation

Publications (2)

Publication Number Publication Date
JPS5780383A JPS5780383A (en) 1982-05-19
JPH0116836B2 true JPH0116836B2 (en) 1989-03-27

Family

ID=15589162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55154663A Granted JPS5780383A (en) 1980-11-05 1980-11-05 Preparation of 1-azabicyclo(m.n.0)alkane

Country Status (1)

Country Link
JP (1) JPS5780383A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347118A (en) * 1976-10-13 1978-04-27 Tanaka Katsuo Connection method of complex panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347118A (en) * 1976-10-13 1978-04-27 Tanaka Katsuo Connection method of complex panel

Also Published As

Publication number Publication date
JPS5780383A (en) 1982-05-19

Similar Documents

Publication Publication Date Title
KR101855611B1 (en) Process for the preparation of (r,s)-nicotine
Seyferth et al. Trimethylsilyl-substituted diazoalkanes: I. Trimethylsilyldiazomethane
JPH031305B2 (en)
CN112028809B (en) Preparation method of 3-amino-4-phenylseleno maleimide compound
Knoth, Jr et al. 1, 1, 3, 3-Tetramethyl-13-disilacyclobutane
Benkeser et al. The True Identity of the Solvated Free Radical “Triphenylsilicyl Ethylammine.” The Multiple Addition of Lithium to an Aromatic System in Ethylamine
CN111978237A (en) Preparation method of 3-morpholinyl-4-arylseleno maleimide compound
Ma et al. Gram scale synthesis of 7-methoxy-O-methylmukonal, clausine-O, clausine-K, clausine-H, 7-methoxymukonal, and methyl 2-hydroxy-7-methoxy-9 H-carbazole-3-carboxylate
JPH0116836B2 (en)
JPH0246590B2 (en)
Leonard et al. Rearrangement of α-Aminoketones During Clemmensen Reduction. XI. The Reduction of Atom-bridged Bicyclic α-Aminoketones1, 2
Meyer et al. Photolysis of 1, 1-Dimethyl-trans-decalin-10-carbonyl Azide. An Analog of the A/B/E Rings of Some Diterpenoid Alkaloids1a
JPS5838244A (en) Nuclear substituted cinnamoylanthranilate and its preparation
JPS6013020B2 (en) Process for producing 2-amino-1-alcohol
JPS6117559A (en) Triamine and its preparation
Allan Synthesis of Analogues of GABA. II. 4-Alkyl-4-aminobut-2-enoic Acids and a New Synthesis of Some Vinyl α-Amino Acids
JP4112651B2 (en) Process for producing cis-hexahydroisoindoline
CA1216862A (en) Process for producing aminobenzylamine
JP2762106B2 (en) Method for producing 3-hydroxypyrrolidine
JPH03236372A (en) Preparation of n-substituted pyrrolidone-2- one
JP2736916B2 (en) Manufacturing method of cibeton
JPS63297363A (en) Production of 3-methylindoles
JPS62223181A (en) Production of tetrahydrophthalimide derivative
JP2871919B2 (en) N-[(halogenopyridyl) methyl] aminoacetonitrile and process for producing the same
McIntosh et al. Enamines and iminium salts from amido-acids