JPH01167644A - Activation analysis of trace oxygen and nitrogen impurities in high-purity material - Google Patents

Activation analysis of trace oxygen and nitrogen impurities in high-purity material

Info

Publication number
JPH01167644A
JPH01167644A JP62328207A JP32820787A JPH01167644A JP H01167644 A JPH01167644 A JP H01167644A JP 62328207 A JP62328207 A JP 62328207A JP 32820787 A JP32820787 A JP 32820787A JP H01167644 A JPH01167644 A JP H01167644A
Authority
JP
Japan
Prior art keywords
nitrogen
oxygen
gas
impurity
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62328207A
Other languages
Japanese (ja)
Inventor
Akio Suzuki
明夫 鈴木
Hiroshi Takaku
洋 高久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62328207A priority Critical patent/JPH01167644A/en
Publication of JPH01167644A publication Critical patent/JPH01167644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To improve analysis sensitivity by converting an oxygen impurity to <13>N and a nitrogen impurity to <11>C by proton irradiation, separating nitrogen and carbon and making determination of the oxygen impurity and the nitrogen impurity. CONSTITUTION:A measuring sample is activated by projecting the proton thereon. The following nuclide forming reaction takes place: <16>O+P <13>N+alpha, <14>N+P <11>C+alpha. The activated sample is heated to 1,400 deg.C to oxidize the carbon and to gasify the nitrogen. The trace gas for analysis gasified in a heating furnace 1 is carried by a carrier gas and is introduced into a lime packed column 3 where C is absorbed and separated. The remaining gas passes a disoxidizing column 4 where the oxygen is removed and thereafter, the gas is carried to a molecular sieve 5 where the nitrogen is captured. The determination of the oxygen impurity and the nitrogen impurity is executed. The analysis sensitivity is thereby improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はシリコンやアルミニウム・ガリウム・ひ素など
、高い純度が要求される材料の酸素および窒素微量不純
物の放射化分析方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for activation analysis of oxygen and nitrogen trace impurities in materials that require high purity, such as silicon, aluminum, gallium, and arsenic.

[従来技術] 科学技術の進歩に伴い、材料にも極めて純度の高いもの
が開発されつつある0例えば、半導体材料であるシリコ
ンやアルミニウム・ガリウム・ひ素等ではpI)b前後
の一不純物が問題になる。これらの材料の開発に欠くこ
とのできない分析技術として、放射化分析がある。即ち
、材料の純度を保証するには、極めて微量の不純物の量
を正確に測定することが重要であるが、超微量物質の定
量には、測定目的元素を放射化し、その放射線量から目
的元素量を求める放射化分析は感度が高く、又絶対量の
得られる方法として評価されている。この方法では、分
析対象試料に加速粒子線を照射し、目的元素を放射性核
種に転換させ、これ含種々の手法を用いて分離し、その
放射線量を測定することがよく行われる。
[Prior art] With the advancement of science and technology, materials with extremely high purity are being developed. For example, in semiconductor materials such as silicon, aluminum, gallium, arsenic, etc., one impurity around pI) b is a problem. Become. Activation analysis is an indispensable analytical technique for the development of these materials. In other words, in order to guarantee the purity of materials, it is important to accurately measure the amount of extremely small amounts of impurities, but in order to quantify extremely small amounts of substances, the target element to be measured is activated, and the target element is determined from the radiation dose. Activation analysis, which determines the amount, is highly sensitive and is evaluated as a method for obtaining absolute amounts. In this method, the sample to be analyzed is often irradiated with an accelerated particle beam to convert the target element into a radionuclide, which is then separated using various techniques and its radiation dose measured.

しかしながら、この一連の手順の中で、分離技術として
、従来、化学的手法が用いられていたが、この手法は極
めて複雑であり熟練を要するものであった。
However, in this series of procedures, chemical methods have conventionally been used as separation techniques, but these methods are extremely complicated and require skill.

例えば、上記した半導体材料に含まれる酸素は、最も注
目しなければならない不純物であるが、この酸素につい
て見ると、16QはsH8の照射によって18Fの放射
性核種に変換される。そして、この18pを分離するに
は、先ず、試料を、弗酸を担体として含む塩酸・硝酸の
加熱溶液で溶解する。次に、これに硼酸を加え加温状態
を保ちながら、更に塩化カリを加えて稀釈した後、これ
を冷却すると硼弗化カリ(KBF4)の沈殿が得られる
。溶液を濾過して、この沈殿を分離し、再び、臭化カリ
を含む硝酸水溶液に溶解し、硝酸銀を加えて加温し、生
成した沈殿を濾過して妨害元素を除去する。この時点で
、Fは濾液に溶解しているので、再び、濾液に硼酸と硝
酸加え、加温状態を保った後塩化カリを加え、冷却して
KBF4の沈殿を得る(例えば、J of Radio
anal、 Chem。
For example, oxygen contained in the semiconductor material described above is an impurity that requires the most attention, and when looking at this oxygen, 16Q is converted into a radionuclide of 18F by irradiation with sH8. To separate this 18p, first, a sample is dissolved in a heated solution of hydrochloric acid and nitric acid containing hydrofluoric acid as a carrier. Next, boric acid is added to the mixture while keeping the mixture heated, and potassium chloride is further added to dilute the mixture. When the mixture is cooled, a precipitate of potassium borofluoride (KBF4) is obtained. The solution is filtered to separate the precipitate, which is again dissolved in an aqueous nitric acid solution containing potassium bromide, silver nitrate is added and heated, and the precipitate formed is filtered to remove interfering elements. At this point, F is dissolved in the filtrate, so boric acid and nitric acid are added to the filtrate again, and after keeping it warm, potassium chloride is added and cooled to obtain a precipitate of KBF4 (for example, J of Radio
anal, Chem.

Vo72.No、1−2.1982. p527−53
5> 、得られた沈殿を洗浄し測定に供することになる
が、この一連の分離作業の所要時間は、−時間を超える
ものであり、lapの半減期(70分)に等しい、他の
不純物CやNなども、同様に化学的操作を駆使して分離
され、例えば、Cは二酸化炭素に酸化された後、水酸化
リチウムに吸収され、炭酸リチウムの沈殿として分離さ
れ、Nは塩酸に吸収された後背ソーダでアンモニアに変
えられ、アンモニウム・テトラフェニル・ボロンとして
沈殿分離される。
Vo72. No. 1-2.1982. p527-53
5> The obtained precipitate is washed and subjected to measurement, but the time required for this series of separation operations is more than - hours, and other impurities, which are equal to the half-life of lap (70 minutes), are C, N, etc. are similarly separated using chemical operations. For example, C is oxidized to carbon dioxide, then absorbed into lithium hydroxide, and separated as a precipitate of lithium carbonate, and N is absorbed into hydrochloric acid. It is converted into ammonia with soda, and is precipitated and separated as ammonium, tetraphenyl, and boron.

[発明が解決しようとする問題点] このように、測定元素を分離するために、従来の方法で
は複雑な手法を用いなければならず、熟練と時間とを必
要とするものであった。このため、測定情報が遅れるこ
とはもとより、半減期の短いものでは測定感度が低下す
るような問題があった。
[Problems to be Solved by the Invention] As described above, in order to separate the elements to be measured, the conventional method requires the use of complicated techniques, requiring skill and time. For this reason, not only is there a delay in the measurement information, but there are also problems such as a decrease in measurement sensitivity in the case of short half-lives.

この発明はこのような問題を解決するために行われたち
ので、簡便に短時間で高純度材料中の酸素および窒素微
量不純物の放射化分析を行うことを目的とするものであ
る。
The present invention was made to solve these problems, and therefore aims to easily and quickly perform activation analysis of trace impurities of oxygen and nitrogen in high-purity materials.

[問題点を解決するための手段] この目的を達成するための発明は、次の工程によって達
成される。
[Means for Solving the Problems] The invention for achieving this object is achieved by the following steps.

(い)測定試料にプロトンを照射し放射化する第一の工
程、 (ろ)放射化された試料を1400℃に加熱し炭素を酸
化し窒素をガス化する第二の工程、(は)ライムを充填
したカラムにガスを通過させる第三の工程、 (に)酸素除去カラムを通す第四の工程、(は)冷却さ
れたモレキュラーシーブにガスを通す第五の工程。
(b) The first step is to irradiate the measurement sample with protons to make it radioactive. (b) The second step is to heat the activated sample to 1400°C to oxidize carbon and gasify nitrogen. (b) Lime The third step is passing the gas through a column packed with oxygen, the fourth step is passing the gas through an oxygen removal column, and the fifth step is passing the gas through a cooled molecular sieve.

[作用コ   − プロトンを照射すると、次のような核種生成反応が起こ
る。
[Action co- When irradiated with protons, the following nuclide production reaction occurs.

160 + p→13N+α ・・・ (1)14N 
+p→口C+α ・・・ (2)14N + p+41
5Q+γ  ・・・  (3)亀2C+  p  → 
℃+  d    ・・・   (4)プロトン照射で
は、160はISNに変換するので、3H,照射の場合
のように18pを分離する必要はなくなる。(3)の反
応は放射化断面積が非常に小さく、変換するものの量は
無視することができる。12Cの放射化断面積も小さく
(4)の反応も無視することができる。従って高純度シ
リコン基盤のような他に11Nまたはticに核変換さ
れる核種の不純物がない場合には13NおよびIICを
定量することにより酸素と窒素の微量不純物を定量する
ことができる。
160 + p → 13N + α ... (1) 14N
+p→mouth C+α... (2) 14N + p+41
5Q+γ... (3) Turtle2C+ p →
C+d... (4) In proton irradiation, 160 is converted to ISN, so there is no need to separate 18p as in the case of 3H irradiation. In reaction (3), the activation cross section is very small, and the amount of converted material can be ignored. The activation cross section of 12C is also small and reaction (4) can be ignored. Therefore, when there are no other nuclide impurities that are transmuted into 11N or tic, such as in a high-purity silicon substrate, trace impurities of oxygen and nitrogen can be determined by quantifying 13N and IIC.

この放射化された試料を14’OO℃前後に加熱し、H
eガスをキャリヤーとして酸素を混じて通じてやると、
ticとt2Cは酸化されて炭酸ガスとなり、13Nは
窒素ガスとなる。これらの混合ガスを、ライムに接触さ
せると、炭酸ガスは反応し炭酸カルシウムとなってライ
ムに吸収され分離される。残るのは、窒素ガスと未反応
の酸素ガス及びヘリウムキャリヤーであるが、これを、
酸素除去カラムに通して脱酸素後、合成ゼオライトで作
られた孔径5 のモレキュラーシーブに、液体窒素で冷
却しながら通すと、窒素ガスだけが捕集され分離される
This activated sample was heated to around 14'OO℃ and H
When e-gas is used as a carrier and mixed with oxygen,
tic and t2C are oxidized to carbon dioxide gas, and 13N becomes nitrogen gas. When these mixed gases are brought into contact with lime, the carbon dioxide gas reacts and becomes calcium carbonate, which is absorbed by the lime and separated. What remains is nitrogen gas, unreacted oxygen gas, and helium carrier, which are
After being passed through an oxygen removal column to remove oxygen, it is passed through a molecular sieve made of synthetic zeolite with a pore size of 5 mm while being cooled with liquid nitrogen, and only nitrogen gas is collected and separated.

[発明の実施例コ シリコンにプロトンを照射し、13NとIICとを分離
し、分離したものの放射線強度を測定することによって
、この試料中に含まれる0及びNを測定した。
[Example of the Invention 0 and N contained in this sample were measured by irradiating cosilicon with protons, separating 13N and IIC, and measuring the radiation intensity of the separated product.

供試材には、酸素含有量45sppb、窒素13.5p
pbを含む板状のシリコンに、サイクロトロンを用いて
、10μA、11MeVでプロトンを30分間照射し、
これを、エツチング洗浄したものを2g用いた。
The sample material had an oxygen content of 45 spppb and a nitrogen content of 13.5 p.
A plate-shaped silicon containing PB was irradiated with protons at 10 μA and 11 MeV for 30 minutes using a cyclotron.
2 g of this was used after etching and cleaning.

実施した分離方法を第1図を用いて説明する。The separation method carried out will be explained using FIG. 1.

1は加熱炉、2は供試材、3はライム充填カラム、4は
脱酸素カラム、5はモレキュラーシーブ、6は冷却槽で
ある。加熱炉1でガス化された微量の分析目的ガスは、
キャリヤーガスによって運ばれ、ライム充填カラム3に
導かれ、ここでCが吸収分離される。残りのガスは脱酸
素カラム4を通り、ここで酸素が除去された後モレキュ
ラーシーブ5に運ばれ、ここで窒素が捕集される一連の
分離系となっている。ライム充填カラム3は口径8 a
m、長さ60龍の石英ガラス管に粒状ライムを詰めたも
のであり、脱酸素カラム4は、径25龍、長さ450 
+*aの石英ガラス管に還元剤の充填されたもので、残
存酸素2ppbまで除去できる市販品である。モレキュ
ラーシーブ5は市販のガスクロ用5 を、冷却槽6の中
にいれ液体窒素で冷却しながら用いた。 先ず、分離系
内を予め十分に洗浄しHeガスで置換した0次に、キャ
リヤガスとしてHeガスを80m1/分程度の流量で流
しながら、加熱炉1の温度を1400℃に昇温し、He
ガスに酸素を1100pp混じ、35分間加熱し続けた
。35分間は、不純物の全量ガス化に十分な時間である
。加熱終了後、ライム充填カラム3及びモレキュラーシ
ーブ5の放射線量と測定し、不純物含有率に換算してみ
た。この分離操作を5回繰り返した結果及び含有率換算
値を第1表に示す。
1 is a heating furnace, 2 is a test material, 3 is a lime-filled column, 4 is a deoxidizing column, 5 is a molecular sieve, and 6 is a cooling tank. The trace amount of analysis target gas gasified in the heating furnace 1 is
Carried by a carrier gas, it is led to a lime-filled column 3, where C is absorbed and separated. The remaining gas passes through a deoxygenation column 4, where oxygen is removed and then transported to a molecular sieve 5, where nitrogen is collected, forming a series of separation systems. Lime packed column 3 has a diameter of 8a
A quartz glass tube with a diameter of 25 mm and a length of 450 m is filled with granular lime.
+*a quartz glass tube filled with a reducing agent, and is a commercially available product that can remove up to 2 ppb of residual oxygen. A commercially available molecular sieve 5 for gas chromatography was used while being placed in a cooling tank 6 and cooled with liquid nitrogen. First, the inside of the separation system was thoroughly cleaned in advance and replaced with He gas. Next, while flowing He gas as a carrier gas at a flow rate of about 80 m1/min, the temperature of the heating furnace 1 was raised to 1400°C, and the He gas was replaced with He gas.
The gas was mixed with 1100 pp of oxygen, and heating was continued for 35 minutes. 35 minutes is sufficient time to gasify the entire amount of impurities. After the heating was completed, the radiation dose of the lime-filled column 3 and molecular sieve 5 was measured and converted into impurity content. Table 1 shows the results of repeating this separation operation five times and the converted content values.

第1表 第1表に見られるように、繰り返しの精度は非常に良好
であり、又、酸素、窒素の含有率も基準値と比べると良
く一致している。高純度シリコンに含まれる不純物とし
ては、酸素、炭素の量が多く、次いで窒素等である。前
記したように、プロトン照射では、14Nのts□への
変換及び12(の11Cへの変換は量的には無視できる
ので、得られた結果が基準値と一致していることは、こ
の分離方法が精度も良く信頼できることを物語るもので
ある。
As seen in Table 1, the repeat accuracy was very good, and the oxygen and nitrogen contents also matched well when compared with the reference values. The impurities contained in high-purity silicon include oxygen and carbon, followed by nitrogen. As mentioned above, in proton irradiation, the conversion of 14N into ts This shows that the method is accurate and reliable.

[発明の効果] 以上述べてきたように、この発明ではプロトン照射によ
り酸素不純物を13Nに、窒素不純物を11Cに変換し
、簡便な分離方法により窒素と炭素を分離した後これら
を定量することにより酸素不純物と窒素不純物の定量を
行っているので、特別な熟練技術を必要とせず、又分離
のために時間を掛ける必要もない。このようにこの発明
の分析怒度の向上及びより迅速な情報取得に対する寄与
の効果は大きい。
[Effect of the invention] As described above, in this invention, oxygen impurities are converted to 13N and nitrogen impurities to 11C by proton irradiation, nitrogen and carbon are separated by a simple separation method, and then these are quantified. Since oxygen impurities and nitrogen impurities are quantified, no special skill is required, and there is no need to spend time on separation. As described above, the contribution of the present invention to improving analytical anger and speeding up information acquisition is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例を説明するための分離工程図。 1・・・加熱炉、2・・・供試材、3・・・ライム充填
カラム、4・・・脱酸素カラム、5・・・モレキュラー
シーブ。
FIG. 1 is a separation process diagram for explaining an example. DESCRIPTION OF SYMBOLS 1... Heating furnace, 2... Test material, 3... Lime packed column, 4... Oxygen removal column, 5... Molecular sieve.

Claims (1)

【特許請求の範囲】  次の工程からなる高純度材料中の窒素および酸素微量
不純物の放射化分析方法 (い)測定試料にプロトンを照射し放射化する第一の工
程、 (ろ)放射化された試料を約1400℃に加熱し炭素を
酸化し窒素をガス化する第二の工程、 (は)ライムを充填したカラムにガスを通過させる第三
の工程、 (に)酸素除去カラムを通す第四の工程、 (ほ)冷却されたモレキュラーシーブにガスを通す第五
の工程。
[Claims] A method for activation analysis of trace impurities of nitrogen and oxygen in a high-purity material comprising the following steps: (a) a first step of irradiating a measurement sample with protons to activate it; The second step is to heat the sample to approximately 1,400°C to oxidize carbon and gasify nitrogen. (a) The third step is to pass the gas through a lime-filled column. (The second step is to pass the gas through an oxygen removal column.) Step 4: (H) Step 5: pass the gas through the cooled molecular sieve.
JP62328207A 1987-12-24 1987-12-24 Activation analysis of trace oxygen and nitrogen impurities in high-purity material Pending JPH01167644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328207A JPH01167644A (en) 1987-12-24 1987-12-24 Activation analysis of trace oxygen and nitrogen impurities in high-purity material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328207A JPH01167644A (en) 1987-12-24 1987-12-24 Activation analysis of trace oxygen and nitrogen impurities in high-purity material

Publications (1)

Publication Number Publication Date
JPH01167644A true JPH01167644A (en) 1989-07-03

Family

ID=18207646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328207A Pending JPH01167644A (en) 1987-12-24 1987-12-24 Activation analysis of trace oxygen and nitrogen impurities in high-purity material

Country Status (1)

Country Link
JP (1) JPH01167644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706823B2 (en) * 2009-08-27 2015-04-22 新日鐵住金株式会社 SiC single crystal wafer and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706823B2 (en) * 2009-08-27 2015-04-22 新日鐵住金株式会社 SiC single crystal wafer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Morrison et al. Multielement neutron activation analysis of rock using chemical group separations and high resolution gamma spectrometry
Karin et al. Removal of trace elemental impurities from polyethylene by nitric acid
Thompson et al. Gamma spectrometric and radiochemical analysis for impurities in ultrapure silicon
Picer et al. Determination of thorium and uranium in biological materials
Ma et al. Organic elemental analysis
JPH01167644A (en) Activation analysis of trace oxygen and nitrogen impurities in high-purity material
Zeman et al. A new principle of activation analysis separations-II: Substo chiometric determination of traces of zinc and copper in germanium dioxide
Gordon et al. Concentration of Microgram Amounts of Rare Earths in Thorium
EP1407259A2 (en) Analytical technique
US3546079A (en) Method for determining continuously small concentrations of gaseous halogenated compounds and of hydrogen halides in air and in other gases
US3829551A (en) Atmosphere purification of xenon,radon &amp; radon daughter elements
Beyer et al. Physicochemical and radiochemical aspects of separation of radioiodine from TeO2-targets
RU2054718C1 (en) Method for producing flaw-detection gamma-radiation source
Ma et al. Organic microchemistry
JP3529479B2 (en) Method and apparatus for purifying fluorine resin
Aruscavage Determination of lead in rocks by radiometric isotope dilution and substoichiometric extraction
Ruzicka et al. Substoichiometry in radiochemical analysis
Gobrecht et al. Radiochemical determination of oxygen traces in selenium
RU2344504C1 (en) Method of obtaining silver radioisotopes without carrier
Del Fiore et al. Precise determination of uranium in rocks and minerals by neutron activation analysis using 133I fission product
Kubota Determination of trace impurities in high purity lutetium oxide by neutron activation with aid of cation-exchange separation
Fedoroff et al. Simultaneous determination of nitrogen and carbon in silicon by photon activation
Samczyński et al. The use of Retardion 11A8 amphoteric ion exchange resin for the the separation and determination of cadmium and zinc in geological and environmental materials by neutron activation analysis
JP2571577B2 (en) Determination of boron and nitrogen
Hosaka et al. Radiation Chemistry of Dicarboxylic Acids in the Solid State. I. Radiolysis of Malonic Acid in the Solid State