JP2571577B2 - Determination of boron and nitrogen - Google Patents

Determination of boron and nitrogen

Info

Publication number
JP2571577B2
JP2571577B2 JP62131288A JP13128887A JP2571577B2 JP 2571577 B2 JP2571577 B2 JP 2571577B2 JP 62131288 A JP62131288 A JP 62131288A JP 13128887 A JP13128887 A JP 13128887A JP 2571577 B2 JP2571577 B2 JP 2571577B2
Authority
JP
Japan
Prior art keywords
carbon
boron
nitrogen
separation
radioactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62131288A
Other languages
Japanese (ja)
Other versions
JPS63298041A (en
Inventor
弘二 鹿野
洋樹 米沢
俊男 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62131288A priority Critical patent/JP2571577B2/en
Publication of JPS63298041A publication Critical patent/JPS63298041A/en
Application granted granted Critical
Publication of JP2571577B2 publication Critical patent/JP2571577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素−11の半減期20分に対して2半減期程度
内の迅速でかつ化学収率の補正を必要としない簡便な分
離操作でホウ素、窒素を高感度、高精度に定量分析する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a simple separation operation which is quick and does not require correction of chemical yield within about 2 half-lives for a carbon-11 half-life of 20 minutes. And high-sensitivity, high-precision quantitative analysis of boron and nitrogen.

〔従来の技術〕[Conventional technology]

従来より、例えばヒ化ガリウム中のホウ素は二次イオ
ン質量分析(SIMS)、スパークソース質量分析(SSM
S)、イオンマイクロアナライザー(IMA)、誘導結合型
プラズマ発光分光分析(ICP)で定量されてきた。この
ような、SIMS、SSMS、IMA及びICP分析法における検出限
界はそれぞれ3.3ppb(1×1015cm-3)、0.14ppb(4.2×
1013cm)、3.7ppb(1.3×1015cm-3)及び50ppb(1.5×1
016cm-3)であるが、放射化分析で標準試料中のホウ素
を検出する等、なんらかの方法で標準試料を評価しなけ
ればならず、また、検出限界が高いという欠点がある
〔黒沢ほか、応用物理、第54巻、第1074頁(1985)、J.
C.ブライス(J.C.Brice)ほかジヤーナル オブ マテ
リアルス サイエンス(J.Mater.Sci.)第2巻、第131
頁(1967)、A.M.フーバー(A.M.Huber)ほか、ジヤー
ナル オブ ラジオアナリチカルケミストリー(J.Radi
oanal.Chem.)第12巻、第75頁(1972)、黒沢ほか、電
子通信学会論文誌J67−C、第977頁(1984)〕。
Conventionally, for example, boron in gallium arsenide has been analyzed by secondary ion mass spectrometry (SIMS), spark source mass spectrometry (SSM
S), ion microanalyzer (IMA), and inductively coupled plasma emission spectroscopy (ICP). The detection limits in such SIMS, SSMS, IMA and ICP analysis methods are 3.3 ppb (1 × 10 15 cm −3 ) and 0.14 ppb (4.2 ×
10 13 cm), 3.7 ppb (1.3 × 10 15 cm −3 ) and 50 ppb (1.5 × 1
0 16 cm -3 ), but the standard sample must be evaluated by some method, such as detection of boron in the standard sample by activation analysis, and the detection limit is high [Kurosawa et al. , Applied Physics, vol. 54, p. 1074 (1985), J.
C. Blythe (JCBrice) et al. Journal of Materials Science (J. Mater. Sci.) Volume 2, 131
Page (1967), AM Huber, Journal of Radio Analytical Chemistry (J. Radi)
oanal.Chem.) 12, p. 75 (1972), Kurosawa et al., IEICE Transactions J67-C, p. 977 (1984)].

一方、例えば、ヒ化ガリウム中のNは、SIMS及びSSMS
で定量されているが、検出限界がそれぞれ0.2ppm(4.6
×1016cm-3)、0.1ppm(2.3×1016cm-3)と高く、高純
度ヒ化ガリウム中の窒素分析は困難である。
On the other hand, for example, N in gallium arsenide is SIMS and SSMS.
The detection limit was 0.2 ppm (4.6
× 10 16 cm -3 ) and 0.1 ppm (2.3 × 10 16 cm -3 ), making it difficult to analyze nitrogen in high-purity gallium arsenide.

これに対し、放射化分析をヒ化ガリウム中のホウ素の
定量に適用すれば、放射能測定のみで高感度の定量が可
能になる。重陽子とホウ素−10の核反応を利用した放射
化分析においては、放射化した試料になんら化学分離な
どの操作を加えず、放射能を測定する非破壊法によりホ
ウ素を定量した報告がある〔米沢ほか、第29回放射化学
討論会予稿集 第240頁〕。この場合の検出限界は110pp
b(3.3×1016cm-3)であり、より低濃度のホウ素の定量
は困難である。更に、核反応で生成した炭素−11(半減
期20.38分)をCuOカラムに通し、炭酸ガスとした後、ア
スカーライトに吸着させ、検出限界0.7ppb(2×1015cm
-3)でホウ素を定量した報告がある〔T.ノザキ(T.Noza
ki)ほか、ジヤパニーズ ジヤーナル オブ アプライ
ドフイジクス(J.J.Appl.Phys.)第24巻、第L801頁(19
84)〕。
On the other hand, if activation analysis is applied to the determination of boron in gallium arsenide, highly sensitive quantification can be achieved only by measuring radioactivity. In activation analysis using the nuclear reaction between deuteron and boron-10, there is a report that boron was quantified by a nondestructive method of measuring radioactivity without performing any operation such as chemical separation on the activated sample [ Yonezawa et al., Proceedings of the 29th Symposium on Radiation Chemistry, p. 240]. The detection limit in this case is 110pp
b (3.3 × 10 16 cm −3 ), making it difficult to quantify lower concentrations of boron. Furthermore, carbon-11 produced in nuclear reaction (half-life 20.38 min) through a CuO column, after the carbon dioxide is adsorbed on Asker light, the detection limit 0.7ppb (2 × 10 15 cm
-3 ), there is a report that quantified boron.
ki) et al., Japanese Journal of Applied Physics (JJAppl.Phys.), vol. 24, p. L801 (19
84)].

通常、定量放射性核種(炭素−11)の化学分離操作を
行う放射化分析では、非放射性の同位体を担体として加
え、放射性同位体と非放射性同位体の担体の化学種をそ
ろえた後化学分離を行い、当該元素を定量したのち、分
離操作に伴う定量核種の分離効率を従量法などの一般の
化学操作で正確に求める。しかし、上記吸着分離操作に
おいては、炭素−11の2版減期、40分以内で非放射性同
位体を担体として加え、炭素の化学種をそろえた後化学
分離することが難しいため、吸着分離操作に伴う定量放
射性核種(炭素−11)の分離収率を正確に求めること
は、困難であり、再現性がよく、信頼性のある分析結果
を得ることが難しい欠点があつた。ヒ化ガリウム中の窒
素を放射化分析で定量した報告はない。
Usually, in activation analysis in which chemical separation of quantitative radionuclides (carbon-11) is performed, a non-radioactive isotope is added as a carrier, and the radioisotope and non-radioactive isotope carrier species are combined, and then the chemical separation is performed. After quantifying the element, the separation efficiency of the quantitative nuclide associated with the separation operation is accurately determined by a general chemical operation such as a volumetric method. However, in the above-mentioned adsorption separation operation, it is difficult to add a non-radioactive isotope as a carrier within 40 minutes and to carry out chemical separation after aligning carbon species. It is difficult to accurately determine the separation yield of the quantitative radionuclide (carbon-11) associated with the above, and it is difficult to obtain a reliable and reproducible analysis result. There have been no reports of quantifying nitrogen in gallium arsenide by activation analysis.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上述べたように、SIMS、SSMS、IMA、ICP等の分析法
では標準試料の評価を行つた上で定量値を得なければな
らないこと、及び検出限界が高いこと、更に、重水素と
ホウ素−10の核反応を利用する荷電粒子放射化分析によ
るホウ素の定量では、非破壊法の場合、検出限界が高い
こと、化学分離操作を伴う場合、分離収率を正確に求め
ることが困難であるなどの欠点がある。
As described above, in analysis methods such as SIMS, SSMS, IMA, and ICP, it is necessary to obtain a quantitative value after evaluating a standard sample, and that the detection limit is high, and furthermore, deuterium and boron- In the determination of boron by charged particle activation analysis using 10 nuclear reactions, the detection limit is high in the case of the nondestructive method, and it is difficult to accurately determine the separation yield when a chemical separation operation is involved. There are disadvantages.

本発明は以上の点にかんがみてなされたものであり、
化学分離を行いながら、化学収率の補正を必要としない
簡便で、かつ、炭素−11の2半減期、40分以内の迅速な
化学分離を使用するホウ素、窒素の定量を高感度、高精
度で行うことのできる方法を提供することを目的とする
ものである。
The present invention has been made in view of the above points,
Highly sensitive and accurate quantification of boron and nitrogen using a simple chemical separation that does not require correction of the chemical yield while performing chemical separation, and uses a rapid chemical separation within 40 minutes with a carbon-11 half life of less than 40 minutes It is an object of the present invention to provide a method that can be carried out at

〔問題点を解決するための手段〕[Means for solving the problem]

本発明を概説すれば、本発明はホウ素、窒素の定量法
に関する発明であって、重陽子又は陽子を照射してホウ
素−10、窒素−14と核反応を生じさせ、形成した炭素−
11の放射能を測定するホウ素、窒素の定量法において、
当該炭素−11に担体となる炭素化合物を添加し、当該炭
素−11を前記炭素化合物中の炭素と共に強酸化剤を加え
て炭酸イオンとした後炭酸ガスとして分離し、該炭酸ガ
スをアルカリ性溶液に補集した後不足当量のアルカリ金
属またはアルカリ土類金属を加えて炭酸塩として沈殿さ
せ不足当量分離し、炭素−11の放射能を測定することを
特徴とする。
In general, the present invention relates to a method for quantifying boron and nitrogen, and irradiates a deuteron or a proton to cause a nuclear reaction with boron-10 and nitrogen-14, thereby forming a carbon-containing compound.
In the boron and nitrogen determination method to measure 11 radioactivity,
A carbon compound serving as a carrier is added to the carbon-11, the carbon-11 is added with a strong oxidizing agent together with the carbon in the carbon compound to form carbonate ions, and then separated as carbon dioxide, and the carbon dioxide is converted into an alkaline solution. After collection, a substoichiometric amount of an alkali metal or an alkaline earth metal is added to precipitate as a carbonate, the substoichiometric separation is performed, and the radioactivity of carbon-11 is measured.

本発明によれば、まず、分析試料に重陽子又は陽子を
照射して、分析試料中のホウ素−10又は窒素−14を炭素
−11にする。更に、本発明においては既知量の比較標準
試料を重陽子又は陽子で照射する。このような比較標準
試料は既知量のホウ素又は窒素を含むものであれば、基
本的にいかなるものでも良い。例えば酸化ホウ素又は窒
化ケイ素を比較標準試料として用いることができる。
According to the present invention, first, an analysis sample is irradiated with deuterons or protons to convert boron-10 or nitrogen-14 in the analysis sample into carbon-11. Further, in the present invention, a known amount of a comparative standard sample is irradiated with deuterons or protons. Such a comparative standard sample may be basically any one containing a known amount of boron or nitrogen. For example, boron oxide or silicon nitride can be used as a reference sample.

次に照射した分析試料に担体である炭素化合物を添加
したのち溶解し、分析試料溶液とする。この炭素担体は
基本的にいかなるものでも良い。例えば、炭酸カリウ
ム、無定形炭素など1種以上であることができる。上記
炭素担体が無定形炭素の場合は、前記溶液に強酸化剤を
添加するなどして、酸化し、炭酸イオンとする。次い
で、炭酸ガスとして炭素−11を揮発などによつて分離す
ると共に、炭素イオンとの溶解度積が小さいアルカリ金
属又はアルカリ土類金属塩を用いて炭酸塩として炭素の
一部一定量を不足当量分離する。この炭素の不足当量分
離に用いるアルカリ金属塩又はアルカリ土類金属塩とし
ては塩化カルシウム、塩化リチウムがある。
Next, a carbon compound as a carrier is added to the irradiated analysis sample and then dissolved to obtain an analysis sample solution. This carbon support may be basically any. For example, one or more of potassium carbonate, amorphous carbon and the like can be used. When the carbon support is amorphous carbon, the solution is oxidized by adding a strong oxidizing agent to the solution to form carbonate ions. Then, carbon-11 is separated as carbon dioxide by volatilization, etc., and a certain amount of carbon is separated as a carbonate by using an alkali metal or alkaline earth metal salt having a small solubility product with carbon ions, and a substoichiometric separation is performed. I do. Alkali metal salts or alkaline earth metal salts used for the substoichiometric separation of carbon include calcium chloride and lithium chloride.

得られた分析試料の炭素−11の放射能及び比較標準試
料中の炭素−11の放射能を比較することによつて、ホウ
素、窒素を高感度、高精度に定量できる。
By comparing the radioactivity of carbon-11 in the obtained analytical sample and the radioactivity of carbon-11 in the comparative standard sample, boron and nitrogen can be quantified with high sensitivity and high accuracy.

従来の方法と異なり、炭素−11の化学分離の際に、非
放射性同位体炭素−12を含む炭素化合物(担体)を添加
し、炭酸ガスとして前分離後、炭酸塩として精度良く一
部一定量を不足当量分離できるため、化学収率を別の操
作で求める必要がない。また、例えば、ヒ化ガリウムの
場合でも放射化後、当該化学分離を行つたのち、放射能
測定に至るまで40分以内での操作が可能であるため検出
限界を1ppbとすることができる等の利点がある。なお、
ホウ素と窒素が共存している場合には常法のように、重
陽子と陽子を用いて得たそれぞれの値から差引き値とし
て両方の値を求めることができる。
Unlike conventional methods, during the chemical separation of carbon-11, a carbon compound (carrier) containing the non-radioactive isotope carbon-12 is added, and after pre-separation as carbon dioxide gas, a certain amount of carbonate is accurately obtained as a carbonate. Need not be determined in a separate operation. In addition, for example, even in the case of gallium arsenide, after activation, after performing the chemical separation, the operation can be performed within 40 minutes until radioactivity measurement, so that the detection limit can be set to 1 ppb. There are advantages. In addition,
When boron and nitrogen coexist, both values can be obtained as a subtraction value from the respective values obtained using deuterons and protons as usual.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明する
が、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図は本発明による一実施例のヒ化ガリウム(GaA
s)中に含まれるホウ素、窒素を定量するための化学分
離操作を示す工程図である。
Embodiment 1 FIG. 1 shows a gallium arsenide (GaA) according to an embodiment of the present invention.
FIG. 4 is a process chart showing a chemical separation operation for quantifying boron and nitrogen contained in s).

操作1:GaAs試料と比較標準試料である酸化ホウ素又は窒
化ケイ素にそれぞれ電流値Ix、Is、照射時間tX、tsの条
件で重水素又は水素を照射する。これにより、GaAs試料
及び比較標準試料中のホウ素−10又は窒素−14から放射
性核種である炭素−11が生成する。
Operation 1: irradiated GaAs sample and comparing each current value Ix to boron oxide or silicon nitride, which is a standard sample, Is, the irradiation time t X, deuterium or hydrogen under the condition of t s. Thereby, carbon-11 as a radionuclide is generated from boron-10 or nitrogen-14 in the GaAs sample and the comparative standard sample.

操作2:表面汚染を除去するためエツチングしたのち、Ga
As試料を炭素担体である炭酸カリウムと共に、アンモニ
ア−過酸化水素混合液20mlに溶解させた。
Operation 2: After etching to remove surface contamination, Ga
The As sample was dissolved in 20 ml of an ammonia-hydrogen peroxide mixed solution together with potassium carbonate as a carbon carrier.

操作3:得られたGaAs試料溶液に濃硫酸5mlを加え、窒素
ガスを流すことにより炭素−11を炭酸ガスとして分離
し、水酸化ナトリウム溶液に吸収させた。
Operation 3: 5 ml of concentrated sulfuric acid was added to the obtained GaAs sample solution, and carbon-11 was separated as carbon dioxide gas by flowing nitrogen gas, and absorbed in sodium hydroxide solution.

操作4:上記吸収液に担体として加えた炭素の量に対し、
当量より少ない一定量(不足当量)の塩化バリウム溶液
を加える。溶液の酸性度を弱アルカリに調整し、炭酸バ
リウム(BaCO3)沈殿を熟成したのち、沈殿を吸引過
し、測定試料とした。なお、この操作を再度行つても良
い。
Step 4: for the amount of carbon added as a carrier to the absorption solution,
Add a fixed (bare equivalent) barium chloride solution less than the equivalent. After adjusting the acidity of the solution to a weak alkali and ripening the barium carbonate (BaCO 3 ) precipitate, the precipitate was suctioned off and used as a measurement sample. This operation may be performed again.

操作5:操作4で得た測定試料と操作1で得た比較標準試
料の放射能を1対の検出器、例えばBGO(Bi4Ge3O12)か
らなる同時計数装置により測定する。分析試料中のホウ
素又は窒素量をMX、照射条件の電流値、照射時間をIX
tX、分析試料への重水素及び水素の飛程をRX、不足当量
分離後の放射能をaX、不足当量分離率をYとし、比較標
準試料中のホウ素又は窒素量、照射条件の電流値、照射
時間、飛程、放射能をそれぞれMS、IS、tS、RS、aSとす
ると分析試料中のホウ素又は窒素量MXは下記の式で表わ
される。
Step 5: The radioactivity of the measurement sample obtained in step 4 and the comparative standard sample obtained in step 1 are measured by a pair of detectors, for example, a coincidence device comprising BGO (Bi 4 Ge 3 O 12 ). The amount of boron or nitrogen in the analysis sample is M X , the current value of the irradiation conditions, the irradiation time is I X ,
t X, the projected range of deuterium and hydrogen into the analysis sample R X, radioactivity a X after substoichiometric separated, the substoichiometric separation rate and Y, boron or nitrogen content in the reference standard sample, the irradiation conditions current, irradiation time, the projected range, the radioactivity of each M S, I S, t S , R S, boron or nitrogen content M X analytical sample with a a S is represented by the following formula.

MX=MS(IS/IX)(SS/SX)(RS/RX)(aX/aS)(1/Y) ここでSX及びSSは飽和係数であり、SX=1−exp(−
0.693tX/20.38)、SS=1−exp(−0.693tS/20.38)で
示される。
M X = M S (I S / I X ) (S S / S X ) (R S / R X ) (a X / a S ) (1 / Y) where S X and S S are saturation coefficients , S X = 1−exp (−
Represented by 0.693t X /20.38),S S = 1-exp (-0.693t S /20.38).

第2図は前記操作4の不足当量分離についての沈殿剤
である塩化バリウム溶液を一定量添加したときの炭素担
体(炭酸カリウム)の影響を示した図である。すなわ
ち、第2図は塩化バリウム溶液を0.6mmol加え、炭酸カ
リウムを0.15〜1.8mmol添加したときのBaCO3沈殿量(mm
ol縦軸)と添加した炭酸カリウム量(mmol横軸)との関
係を示すグラフである。第2図の傾斜部は塩化バリウム
溶液が炭素担体よりも過剰な領域、横軸に平行な領域は
炭素の不足当量分離領域を示している。第2図の横軸に
平行な領域を利用すれば、炭素が精度よく不足当量分離
されることがわかる。
FIG. 2 is a view showing the influence of a carbon carrier (potassium carbonate) when a fixed amount of a barium chloride solution as a precipitant is added in the substoichiometric separation in the operation 4. That is, FIG. 2 shows the amount of BaCO 3 precipitated (mm) when 0.6 mmol of a barium chloride solution was added and 0.15 to 1.8 mmol of potassium carbonate was added.
4 is a graph showing the relationship between the ol vertical axis) and the amount of added potassium carbonate (mmol horizontal axis). The inclined portion in FIG. 2 indicates a region where the barium chloride solution is in excess of the carbon carrier, and a region parallel to the horizontal axis indicates a substoichiometric separation region of carbon. It is understood that the use of a region parallel to the horizontal axis in FIG.

第1表は、炭素担体の炭酸カリウムに既知量の炭素−
11を加え、第1図の操作に従つて、炭素−11を分離した
ときの炭素吸収率と沈殿率を示している。
Table 1 shows that a known amount of carbon-
11 shows the carbon absorption rate and the sedimentation rate when carbon-11 was separated according to the operation shown in FIG.

第1表に示したように、吸収液塩基性度を高くするこ
とにより、吸収率は6.3%から55%以上になつた。ま
た、炭素の沈殿率は炭酸カリウム1.2mmolに対して50.5
%、24mmolに対して25.3%であり、加えられた0.6mmol
のバリウム溶液により得られるBaCO3の理論沈殿率50
%、25%とそれぞれ良く一致している。第1表の結果よ
り、初めに加えた炭素担体量と最後に添加する不足当量
の塩化バリウム添加量が決まれば、炭素−11の分離(沈
殿)率が定まり、化学収率を別の操作で求める必要のな
いことがわかる。この操作で必要とされる時間は約40分
であり、炭素−11の半減期20.38分に対し、2半減期で
の分離を可能とした。その結果、ヒ化ガリウム中のホウ
素、窒素に対し、検出限界1ppb(B 3×1014cm-3、N
2.3×1014cm-3)を可能にした。
As shown in Table 1, the absorption increased from 6.3% to 55% or more by increasing the basicity of the absorbent. Further, the precipitation rate of carbon was 50.5 for 1.2 mmol of potassium carbonate.
%, 25.3% for 24 mmol, 0.6 mmol added
Theoretical precipitation rate of BaCO 3 obtained by barium solution of 50
% And 25%, respectively. From the results in Table 1, if the amount of carbon carrier added at the beginning and the amount of barium chloride added at the last equivalent are determined, the separation (precipitation) rate of carbon-11 is determined, and the chemical yield is determined by another operation. It turns out that there is no need to ask. The time required for this operation was about 40 minutes, which enabled separation with a half-life of 20.38 minutes for carbon-11. As a result, the detection limit of boron and nitrogen in gallium arsenide was 1 ppb (B 3 × 10 14 cm -3 , N
2.3 × 10 14 cm -3 ).

第2表は液体封じ引上げ法(LEC法)で作製した炭素
ドープ、アンドープGaAs中のホウ素の定量結果である。
Table 2 shows the results of quantification of boron in carbon-doped and undoped GaAs produced by the liquid entrapment pulling method (LEC method).

本発明は化学収率の補正の必要がなく、ホウ素、窒素
を高感度、高精度に定量できる利点がある。
The present invention has the advantage that boron and nitrogen can be quantified with high sensitivity and high accuracy without the need to correct the chemical yield.

実施例2 NBS標準試料鉄鋼(SRM1265a)中のホウ素の
定量 ここでは実施例1の操作2において、鉄鋼を希硫酸と
過酸化水素で溶解し、炭素担体を加え、試料溶液とし
た。他の操作は実施例1と同じである。ホウ素の定量値
として1.32±0.02ppmを得、NBSの保証値1.3ppmと良く一
致した。
Example 2 Determination of boron in NBS standard sample steel (SRM1265a) Here, in operation 2 of Example 1, the steel was dissolved with dilute sulfuric acid and hydrogen peroxide, and a carbon carrier was added to obtain a sample solution. Other operations are the same as those in the first embodiment. The quantitative value of boron was 1.32 ± 0.02 ppm, which was in good agreement with the guaranteed value of NBS of 1.3 ppm.

実施例2で述べたように、本発明では操作2において
分析試料の溶解法を変えるだけで、他の半導体材料、高
純度材料等に含まれるホウ素、窒素を定量できる。
As described in Example 2, in the present invention, boron and nitrogen contained in other semiconductor materials, high-purity materials, and the like can be quantified only by changing the method of dissolving the analysis sample in operation 2.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によるホウ素、窒素の定
量法によれば、分析試料は実施例のGaAsに限定されな
い。また簡便な分離操作により、しかも、化学分離操作
に伴う収率補正を行うことなく、ホウ素、窒素を高感
度、高精度に定量できる利点がある。
As described above, according to the method for determining boron and nitrogen according to the present invention, the analysis sample is not limited to the GaAs of the example. Further, there is an advantage that boron and nitrogen can be quantified with high sensitivity and high accuracy by a simple separation operation and without performing the yield correction accompanying the chemical separation operation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるヒ化ガリウム中のホウ素、窒素の
定量法の一実施例の操作工程を示した工程図、第2図は
塩化バリウムによる炭素の不足当量分離において、炭酸
カリウム添加量と炭酸バリウムの沈殿量の関係を示した
グラフである。
FIG. 1 is a flow chart showing the operation steps of one embodiment of the method for quantifying boron and nitrogen in gallium arsenide according to the present invention, and FIG. It is the graph which showed the relationship of the precipitation amount of barium carbonate.

フロントページの続き (72)発明者 重松 俊男 茨城県那珂郡東海村大字白方字白根162 番地 日本電信電話株式会社茨城電気通 信研究所内 (56)参考文献 特開 昭61−66157(JP,A)Continuation of front page (72) Inventor Toshio Shigematsu 162 Shirane, Shikata, Tokai-mura, Naka-gun, Ibaraki Pref. )

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重陽子又は陽子を照射してホウ素−10、窒
素−14と核反応を生じさせ、形成した炭素−11の放射能
を測定するホウ素、窒素の定量法において、当該炭素−
11に担体となる炭素化合物を添加し、当該炭素−11を前
記炭素化合物中の炭素と共に強酸化剤を加えて炭酸イオ
ンとした後炭酸ガスとして分離し、該炭酸ガスをアルカ
リ性溶液に補集した後不足当量のアルカリ金属またはア
ルカリ土類金属を加えて炭酸塩として沈殿させ不足当量
分離し、炭素−11の放射能を測定することを特徴とする
ホウ素、窒素の定量法。
1. A method for determining the radioactivity of carbon-11 formed by irradiating deuterons or protons to cause a nuclear reaction with boron-10 and nitrogen-14, and determining the radioactivity of the formed carbon-11.
A carbon compound serving as a carrier was added to 11, and the carbon-11 was separated as carbon dioxide by adding a strong oxidizing agent together with the carbon in the carbon compound to form carbonate ions, and the carbon dioxide was collected in an alkaline solution. A method for quantifying boron and nitrogen, comprising adding a sub-equivalent of an alkali metal or an alkaline earth metal to precipitate as a carbonate, separating the sub-equivalent, and measuring the radioactivity of carbon-11.
JP62131288A 1987-05-29 1987-05-29 Determination of boron and nitrogen Expired - Fee Related JP2571577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62131288A JP2571577B2 (en) 1987-05-29 1987-05-29 Determination of boron and nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62131288A JP2571577B2 (en) 1987-05-29 1987-05-29 Determination of boron and nitrogen

Publications (2)

Publication Number Publication Date
JPS63298041A JPS63298041A (en) 1988-12-05
JP2571577B2 true JP2571577B2 (en) 1997-01-16

Family

ID=15054454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62131288A Expired - Fee Related JP2571577B2 (en) 1987-05-29 1987-05-29 Determination of boron and nitrogen

Country Status (1)

Country Link
JP (1) JP2571577B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166157A (en) * 1984-09-08 1986-04-04 Nippon Telegr & Teleph Corp <Ntt> Quantitative analysis of silicon

Also Published As

Publication number Publication date
JPS63298041A (en) 1988-12-05

Similar Documents

Publication Publication Date Title
Thompson et al. Gamma spectrometric and radiochemical analysis for impurities in ultrapure silicon
Steeb et al. Application of mass spectrometric isotope dilution methodology for 90 Sr age-dating with measurements by thermal-ionization and inductively coupled-plasma mass spectrometry
Szekely Determination of traces of copper in germanium by activation analysis
JP2571577B2 (en) Determination of boron and nitrogen
Lee et al. Electrodeposition of alpha-emitting nuclides from ammonium oxalate-ammonium sulfate electrolyte
Maenhaut et al. Determination of trace impurities in tin by neutron activation analysis: I. Determination of arsenic, selenium and antimony
Vandecasteele Activation analysis: present status in relation to other analytical techniques
Ballaux et al. Neutron activation analysis of high purity Selenium: Determination of Bromine
Sastri et al. Simultaneous determination of boron and lithium by charged particle activation analysis
Kudo et al. Determination of manganese, copper, zinc and cadmium in gallium arsenide by radioactivation analysis based on the quantitative isotope dilution principle
Matyskin On the solubility of radium sulfate and carbonate
Kim Determination of oxygen in gallium phosphide and silicon by helium-3 activation
Yonezawa et al. Determination of hafnium in zirconium and its alloys by stable isotope dilution-neutron activation analysis
JP2002037627A (en) Method of chemically separating molybdenum
Mortier et al. Determination of boron in aluminum and aluminum-magnesium alloy by charged particle activation analysis
Rebagay et al. Simultaneous determination of zirconium and hafnium in standard rocks by neutron activation analysis
JPH0445480B2 (en)
Paul Determination of phosphorus in steels by radiochemical neutron activation analysis
Vialatte et al. Determination of oxygen in aluminum by helium-3 activation
Fedoroff et al. Simultaneous determination of nitrogen and carbon in silicon by photon activation
Zaidi et al. Radiochemical neutron activation analysis of trace impurities in high purity aluminum
JPH0445446B2 (en)
Miller Substoichiometric Determation of Silver Traces in Palladium with Adsorptive Sampling
JPH07107517B2 (en) Determination of carbon in gallium arsenide
Yeh et al. Some Aspects on Preconcentration for Neutron Activation Analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees