JPH01166590A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH01166590A
JPH01166590A JP32410787A JP32410787A JPH01166590A JP H01166590 A JPH01166590 A JP H01166590A JP 32410787 A JP32410787 A JP 32410787A JP 32410787 A JP32410787 A JP 32410787A JP H01166590 A JPH01166590 A JP H01166590A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
edge side
laser
light absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32410787A
Other languages
Japanese (ja)
Inventor
Shinichi Nakatsuka
慎一 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32410787A priority Critical patent/JPH01166590A/en
Publication of JPH01166590A publication Critical patent/JPH01166590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To acquire a layer having a small light absorption index and a good junction reverse characteristics and to reduce optical loss and leak current of a window layer of a semiconductor laser by using an high concentration impurity added layer previously formed at a stage of crystal growth as a diffusion layer. CONSTITUTION:After an n-Ga0.5Al0.5 clad layer 2, a quantum well structure active layer 3, a p-Ga0.5Al0.5As clad layer 4, and an n-GaAs light absorbing layer 5 are caused to grow on an n-GaAs substrate 1 of a semiconductor laser, the layer 5 is selectively removed to form a striped pattern. The layer 4 in an area near a laser edge side is made thin a desired thickness by applying another photolithography and burying growth is carried out to form three layers of a p-Ga0.5Al0.5As layer 6, a p-Ga0.5Al0.5As layer 7 and a p-GaAs cap layer 8. Annealing at a desired temperature within a crystal growth furnace is conducted, and a crosswise and lengthwise cross sectional structure of laser stripe is formed. In this way, it becomes possible to control edge side deterioration caused by rising of a edge side structure due to light absorption of the edge side.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体を用いて形成する半導体レーザ
の製造方法にかかる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor laser formed using a compound semiconductor.

〔従来の技術〕[Conventional technology]

従来の半導体レーザは、第6図に示すごとく数AのGa
AsとGaA Q Asの積層した量子井戸祷造の活性
層およびこれをはさんで設けた禁制帯幅の広い導電性の
異なるGaA Q Asを基本構造とし、不純物拡散な
どにより量子井戸活性層を混晶化させ。
A conventional semiconductor laser uses several A of Ga as shown in FIG.
The basic structure is a stacked quantum well-structured active layer of As and GaA Q As, and GaA Q As with a wide forbidden band and different conductivity sandwiched between these layers, and the quantum well active layer is mixed by impurity diffusion etc. Let it crystallize.

混晶化による活性層の屈折率や吸収係数の変化を利用し
て導波路の形成や、レーザ端面の透明化を行うものであ
った。
The changes in the refractive index and absorption coefficient of the active layer due to mixed crystal formation were used to form waveguides and to make the laser end face transparent.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の半導体レーザにおいては、不純物拡散の濃度
が制御できず非常に高い不純物濃度の層ができるため、
窓層の光損失やリーク電流が起ることや不純物拡散の深
さの制御性に限界が有り生産性が悪いなどの問題があっ
た。
In the conventional semiconductor laser described above, the concentration of impurity diffusion cannot be controlled and a layer with a very high impurity concentration is created.
There have been problems such as optical loss and leakage current in the window layer, and limited controllability of the depth of impurity diffusion, resulting in poor productivity.

本発明の目的は上記問題点が解決することにある。An object of the present invention is to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題を解決するため本発明では結晶成長の段階で予
め形成しておいた不純物高濃度添加層を拡散源として利
用して従来技術と同様の結果を生む半導体レーザの構造
及び作製方法を発明した。
In order to solve the above problems, the present invention has invented a structure and manufacturing method for a semiconductor laser that produces the same results as the conventional technology by using a highly doped layer of impurities, which has been formed in advance at the crystal growth stage, as a diffusion source. .

〔作用〕[Effect]

本発明によれば、不純物濃度の制御が容易な工ピタキシ
ャル成長層を拡散源に利用できるので、10 ”cm−
”程度の光吸収が小さく接合逆特性が良好な層を得るこ
とができる。このため上記従来構造の欠点が大幅に改善
された。
According to the present invention, since the epitaxially grown layer whose impurity concentration can be easily controlled can be used as a diffusion source,
It is possible to obtain a layer with low light absorption and good junction reverse characteristics. Therefore, the drawbacks of the above-mentioned conventional structure are greatly improved.

〔実施例〕〔Example〕

以下図に従い本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

実施例1 本発明の実施例1図および第2図に従い説明する0本構
造は、n−GaAs基板(1)(Siドープ、n=2X
10”δcm″″M)上にMOCVD法に゛よりn−G
 ao、aA Qo、bA sクラッド層(2)(Se
ドープ、n = 1.5  X 1018c+a−”)
 *’ ffk子井戸構造活性層(3)  [G a 
A sウェル層(9): 60A GaAQAsバリア
層(10) : 30λコ、p−G a o、sA Q
 o、aA sクラッド層(4)(Mgドープ、p =
 I X 10”cm−”) 、 n−G’a A s
光吸収層(−5)(Seドープ、 n = 4 X 1
0 ”cm−”)を成長した後1通常のホトリソグラフ
技術を用いてストライプ状にぬけた5iOzパターンを
形成しりアクティブイオンエッチによりn −G a 
A s光吸収層(5)を選択的に除去し、再度のホトリ
ソグラフによりレーザ端面付近のp − G a O,FIA Q O,FIA sクラッド層(
4)を約0.2pmとし、p −G a o、sA Q
 o、sA s層(6)(Znドープ、p=5X101
gcm−3)、p−G a o、FIA Q o、sA
 s層(7)(Znドープ、P=1×101’cn+−
’) 、p −G a A sキャップ層(8)(Zn
ドープ、p = 5 X 10 ”cs+−”)の3層
よりなる埋込成長を行ない、さらに、結晶成長炉中で9
00℃、3分のアニールをおこなたものである。
Example 1 Example 1 of the present invention The structure described according to FIGS. 1 and 2 is based on an n-GaAs substrate (1) (Si doped, n=2X
10"δcm""M) by MOCVD method.
ao, aA Qo, bAs cladding layer (2) (Se
Doped, n = 1.5 x 1018c+a-”)
*' ffk well structure active layer (3) [G a
As well layer (9): 60A GaAQAs barrier layer (10): 30λ, p-G ao, sA Q
o, aAs cladding layer (4) (Mg doped, p =
I x 10"cm-"), n-G'a As
Light absorption layer (-5) (Se doped, n = 4 x 1
After growing 0 "cm-"), a striped 5iOz pattern was formed using normal photolithography technology, and active ion etching was performed to form n-Ga.
The As light absorption layer (5) was selectively removed and the p-GaO, FIAQO, FIAs cladding layers (
4) is approximately 0.2 pm, and p −G a o, sA Q
o, sA s layer (6) (Zn doped, p=5X101
gcm-3), p-G ao, FIA Q o, sA
s layer (7) (Zn doped, P=1×101'cn+-
'), p-G a As cap layer (8) (Zn
Doped, p = 5 x 10 "cs+-") three-layer buried growth was performed, and further, 9 layers were grown in a crystal growth furnace.
Annealing was performed at 00°C for 3 minutes.

このような工程を経て形成されたレーザストライプの横
方向及び縦方向の断面構造はそれぞれ第1図及び第2図
のようになった。この構造の基本的導波機構はいわゆる
自己整合型レーザと同様であるが、レーザ端面において
Z’n拡散層が活性層を通過しているため、この部分の
量子井戸構造が破壊され、禁制帯幅が広くなリレーザ光
にたいし端面が透明となる。このため、端面の光吸収に
よる端面構造の上昇が原因となって起る端面劣化現象が
抑制され、信頼性の良好な高出力半導体レーザが形成で
きる。
The horizontal and vertical cross-sectional structures of the laser stripes formed through these steps are shown in FIGS. 1 and 2, respectively. The basic waveguide mechanism of this structure is similar to that of a so-called self-aligned laser, but since the Z'n diffusion layer passes through the active layer at the laser end facet, the quantum well structure in this part is destroyed and the forbidden band The end face becomes transparent to wide relay laser light. Therefore, the phenomenon of end face deterioration caused by the elevation of the end face structure due to light absorption at the end face is suppressed, and a highly reliable high power semiconductor laser can be formed.

実施例2 本発明の実施例2を第3図および第4図により説明する
++n−GaAs基板(1)上にMOCVD法によりn
 −G a o、sA Q o、sA sクラッド層(
2)、量子井戸構造活性層(3) 、 p −G a 
o、aA Q o、aA sクラッド層(4)、n−G
aAs光吸収層(5)を成長した後、通常のホトリソグ
ラフ技術を用いてストライプ状の5insパターンを形
成しりアクティブイオンエッチによりn −G a A
 s光吸収層(5)を選択的に除去し、さらに再度のホ
トリソグラフ工程をへてp−G a o、sA It 
o、sA sクラッド層(4)をレンズ状の構造(11
)がストライプに沿って繰り返す第3図のような形状で
約0.3μmエツチングした0次にp + −G a 
o、lIA Q o、sA s層(6) 、p −G 
a o*BA Q o、sA s層(7) 、p −G
 a A sキャップ層(8)の3層よりなる埋込成長
を行い、第4図のように構造とした。各層のドーパント
及びキャリア濃度は実施例1と同様にした0次に、この
構造をMOCVD装置内でAs圧をかけながら900℃
で60分熱処理を加えた。この結果p−G a o、s
A Q o、aA s M(6)中のZnが再拡散し量
子井戸構造活性層(3)を混晶化する。混晶化した量子
井戸と混晶化しない量子井戸の屈折率の違いによりレン
ズが形成される。
Example 2 Example 2 of the present invention will be explained with reference to FIGS.
-G ao, sA Q o, sA s cladding layer (
2), quantum well structure active layer (3), p-G a
o, aA Q o, aA s cladding layer (4), n-G
After growing the aAs light absorption layer (5), a striped 5ins pattern is formed using normal photolithography technology, and n-G a A is formed by active ion etching.
The s-light absorption layer (5) is selectively removed, and the photolithography process is carried out again to form p-G ao, sA It
o, sA s cladding layer (4) with lens-like structure (11
) repeats along the stripe, as shown in Figure 3, and is etched by approximately 0.3 μm.
o, lIA Q o, sA s layer (6), p -G
a o * BA Q o, sA s layer (7), p -G
Buried growth consisting of three layers of aAs cap layer (8) was performed to form a structure as shown in FIG. The dopant and carrier concentrations of each layer were the same as in Example 1. Next, this structure was heated at 900°C while applying As pressure in an MOCVD apparatus.
A heat treatment was applied for 60 minutes. As a result, p-G ao,s
A Q o, aA s Zn in M (6) is re-diffused to mix the quantum well structure active layer (3). A lens is formed due to the difference in refractive index between the mixed crystal quantum well and the unmixed quantum well.

しかも、実施例の場合にはレンズ部分の活性層に光吸収
が無くホールバーニングが起きたときに、レンズ部分と
レンズ以外の部分の屈折率差がより大きくなりホールバ
ーニング防止効果が強化されるためレンズの曲率をより
小さくでき、通常のレーザ特性としても有利になる。レ
ンズの曲率半径をR215μmレンズの距離をd=10
μmとしたところストライプ幅10μmの°素子で光出
力200mWまで安定な横基本モードで発振する半導体
レーザが得られた。
Moreover, in the case of the example, when there is no light absorption in the active layer of the lens part and hole burning occurs, the difference in refractive index between the lens part and the part other than the lens becomes larger and the effect of preventing hole burning is strengthened. The curvature of the lens can be made smaller, which is advantageous in terms of normal laser characteristics. The radius of curvature of the lens is R215μm, the distance of the lens is d=10
When the stripe width is 10 μm, a semiconductor laser that oscillates in a stable transverse fundamental mode up to an optical output of 200 mW was obtained using a device with a stripe width of 10 μm.

実施例3 本発明の実施例3を第3図および第5図により説明する
。n −G a A s基板(1)上にMOCVD法に
よりn −G a o、6A Q o、aA sクラッ
ド層(2)、量子井戸構造活性層(3)、p −Gao
、aA 11 o、nAsクラッド層(4) 、n−G
aAs光吸収層(5)を成長した後、通常のホトリソグ
ラフ技術を用いて並行して設けた2本のストライプ状の
5iOzパターンを形成しりアクティブイオンエッチに
よストライプのみp −G a o、IIA Q o、
ISA sクラッド層(4)を約0.3μmエツチング
した。次にp +  G a o、aA Q O,RA
 8層(6) 、p −Gao、5AQo、r+AsM
(7) 、P  GaAsキャップ層゛(8)の3層よ
りなる埋込成長を行い、第3図のような構造とした。各
層のドーパント及びキャリア濃度は実施例1と同様にし
た。次に、この構造をMOCVD装置内でAs圧をかけ
ながら900℃で60分熱処理を加えた。この結果p 
−G a O,FIA Q O,FIA 8層(6)中
のZnが再拡散し量子井戸構造活性層(3)を混晶化す
る。この結果第5図に示すように、混晶化した量子井戸
と混晶化しない量子井戸の禁制帯幅の違いにより2本の
ストライプの発光波長が異なるため同一基板上に波長の
異なるレーザを集積することができた。
Example 3 Example 3 of the present invention will be explained with reference to FIGS. 3 and 5. n-Gao, 6A Qo, aAs cladding layer (2), quantum well structure active layer (3), p-Gao were formed on the n-GaAs substrate (1) by MOCVD method.
, aA 11 o, nAs cladding layer (4), n-G
After growing the aAs light absorption layer (5), two striped 5iOz patterns were formed in parallel using normal photolithography, and only the stripes were etched by active ion etching. Q o,
The ISA cladding layer (4) was etched by about 0.3 μm. Then p + G a o, aA Q O, RA
8 layers (6), p-Gao, 5AQo, r+AsM
(7) and a P GaAs cap layer (8) were buried and grown to form a structure as shown in FIG. The dopant and carrier concentrations in each layer were the same as in Example 1. Next, this structure was heat-treated at 900° C. for 60 minutes while applying As pressure in an MOCVD apparatus. This result p
-G a O, FIA Q O, FIA Zn in the 8 layer (6) is re-diffused to mix the quantum well structure active layer (3). As a result, as shown in Figure 5, the emission wavelengths of the two stripes are different due to the difference in the forbidden band width of the mixed crystal quantum well and the unmixed quantum well, so lasers with different wavelengths are integrated on the same substrate. We were able to.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、窓層の光損失やリーク電流の少ない、
特性の良好なしかも生産性の高い半導体レーザを提供で
きる。
According to the present invention, the window layer has low optical loss and leakage current.
A semiconductor laser with good characteristics and high productivity can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の半導体レーザの断面構造図
、第2図は本発明の実施例1の半導体レーザのストライ
プ方向の断面構造図、第3図はレンズ状の構造図、第4
図は本発明の実施例2の半導体レーザの断面構造図、第
5図は本発明の実施例3の半導体レーザの断面構造図、
第6図は従来の半導体レーザの構造図である。 1− n −Gr+As基板、2− n −Gao、a
A Q o、nAsクラッド層、3・・・量子井戸構造
活性層、4・・・p−G a o、aA Q o、aA
 sクラッド層、5− n −GaAs光吸収層、6−
p+ Gao、5AQo、aAs層、7 ・p−G a
 o、IIA Q o、aA s層、s−p  GaA
s層、9− G a A sウェル層、  10− G
ao、sA Q o、zAsバリア層、11・・・レン
ズ状の構造、12・・・Zn拡散領域、13・・・レー
ザストライプ、14・・・p−富  1  図 第 Z 図 第 3  図 罵  4  図 第  5  図 遁  〆  図
1 is a cross-sectional structural diagram of a semiconductor laser according to Example 1 of the present invention, FIG. 2 is a cross-sectional structural diagram in the stripe direction of the semiconductor laser according to Example 1 of the present invention, FIG. 3 is a structural diagram of a lens-like structure, and FIG. 4
The figure is a cross-sectional structural diagram of a semiconductor laser according to a second embodiment of the present invention, and FIG. 5 is a cross-sectional structural diagram of a semiconductor laser according to a third embodiment of the present invention.
FIG. 6 is a structural diagram of a conventional semiconductor laser. 1- n -Gr+As substrate, 2- n -Gao, a
A Q o, nAs cladding layer, 3... quantum well structure active layer, 4... p-G a o, aA Q o, aA
s cladding layer, 5- n-GaAs light absorption layer, 6-
p+ Gao, 5AQo, aAs layer, 7 ・p-G a
o, IIA Q o, aA s layer, sp GaA
s layer, 9-GaAs well layer, 10-G
ao, sA Q o, zAs barrier layer, 11... Lens-like structure, 12... Zn diffusion region, 13... Laser stripe, 14... p-rich 1 Figure Z Figure 3 4 Figure 5 Figure 5 Final figure

Claims (1)

【特許請求の範囲】[Claims] 1、厚さが数百Å以下の異なる組成の半導体層を1周期
以上積層した超格子層を少なくとも有し、該超格子の少
なくとも一部に近接して容易に拡散する不純物を添加し
た層を設け、該不純物添加層からの不純物の拡散による
超格子の混晶化を利用して、超格子層に所望の屈折率又
は禁制帯幅の分布をあたえることを特徴とする半導体レ
ーザの製造方法。
1. It has at least a superlattice layer formed by laminating one or more periods of semiconductor layers of different compositions with a thickness of several hundred Å or less, and a layer doped with impurities that easily diffuses near at least a part of the superlattice. A method for manufacturing a semiconductor laser, characterized in that the superlattice layer is provided with a desired refractive index or forbidden band width distribution by utilizing mixed crystal formation of the superlattice due to the diffusion of impurities from the impurity doped layer.
JP32410787A 1987-12-23 1987-12-23 Manufacture of semiconductor laser Pending JPH01166590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32410787A JPH01166590A (en) 1987-12-23 1987-12-23 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32410787A JPH01166590A (en) 1987-12-23 1987-12-23 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01166590A true JPH01166590A (en) 1989-06-30

Family

ID=18162239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32410787A Pending JPH01166590A (en) 1987-12-23 1987-12-23 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01166590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184990A (en) * 1989-01-11 1990-07-19 Omron Tateisi Electron Co Paper money processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184990A (en) * 1989-01-11 1990-07-19 Omron Tateisi Electron Co Paper money processor

Similar Documents

Publication Publication Date Title
DE60129227T2 (en) SEMICONDUCTOR LASER ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
JPH0750448A (en) Semiconductor laser and manufacture thereof
JPH07112091B2 (en) Method of manufacturing embedded semiconductor laser
JPH01166590A (en) Manufacture of semiconductor laser
JPS61285781A (en) Semiconductor laser
JPH02109387A (en) Semiconductor laser element and manufacture thereof
JPS622585A (en) Semiconductor laser
JPS637691A (en) Semiconductor laser device
JPS635588A (en) Semiconductor laser
JPH05129721A (en) Semiconductor laser and manufacture thereof
JPH03104292A (en) Semiconductor laser
JPH10321945A (en) Semiconductor laser device and its manufacture
JPS59163883A (en) Semiconductor laser device and manufacture thereof
JPH05145182A (en) Manufacture of semiconductor laser device with end plane window construction
JPH01243490A (en) Manufacture of semiconductor crystal and two beam array semiconductor laser device
JP2000124553A (en) Semiconductor laser device and manufacture thereof
JPS62245691A (en) Manufacure of semiconductor laser
JPS596586A (en) Semiconductor laser
JPH0138391B2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPH0371685A (en) Semiconductor laser element and manufacture thereof
JPS6143495A (en) Semiconductor laser device
JPH02240988A (en) Semiconductor laser
JPS62216389A (en) Manufacture of semiconductor light emitting device
JPH04370993A (en) Semiconductor laser device