JPH01166538A - Field programmable gate array - Google Patents

Field programmable gate array

Info

Publication number
JPH01166538A
JPH01166538A JP62326267A JP32626787A JPH01166538A JP H01166538 A JPH01166538 A JP H01166538A JP 62326267 A JP62326267 A JP 62326267A JP 32626787 A JP32626787 A JP 32626787A JP H01166538 A JPH01166538 A JP H01166538A
Authority
JP
Japan
Prior art keywords
junction
logic circuit
junctions
decoder
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62326267A
Other languages
Japanese (ja)
Inventor
Yuichi Hirao
友一 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62326267A priority Critical patent/JPH01166538A/en
Publication of JPH01166538A publication Critical patent/JPH01166538A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To easily perform a custom IC in a working site by selecting a P-N junction having an intrinsic address through a decoder, and supplying a writing current to set it to a conductive state. CONSTITUTION:Inverse AND elements are arranged longitudinally and laterally in a logic circuit 400. Address signals A1-Al from an exterior decode through an input buffer 100 address lines A0-Ai by a Y decoder 200, and selects one of P-N junctions in the circuit 400. An X decoder 300 decodes address lines Ai+l-Al, and further selects (n+1) pieces of the P-N junctions from the selected set of the P-N junctions. A writing current is supplied to (n+1) pieces of the P-N junctions by (n+1) pieces of writing signal lines P1-Pn, and an insulator breakdown occurs to set it to a conductive state. Accordingly, a custom IC can be easily obtained by a P-ROM writer even in a working site.

Description

【発明の詳細な説明】 (産業上の利用分¥f) 本発明は、カスタムICを容易に製作するのに用いられ
るゲート・アレイに関し、特に作業現場でもP−ROM
ライタ諮え有ればプログラムにより容易にカスタムIC
化できるゲート・アレイに関する。
Detailed Description of the Invention (Industrial Use ¥f) The present invention relates to a gate array that is used to easily manufacture custom ICs, and particularly to a P-ROM that can be used at a work site.
Custom IC can be easily created by programming if you consult the writer.
Regarding gate arrays that can be

(従来の技術) 従来、ゲート・アレイは、実現させる回路の設計が終了
し、その設計データ(例えば論理接続情報)が用意され
た時点から、レイアウト設計、マスクの作製等を行なわ
なくてはならないから、実際の製品(試供品)が出来上
がる迄に数週間を必要としていた。
(Prior art) Conventionally, for gate arrays, layout design, mask production, etc. must be performed from the moment the design of the circuit to be realized is completed and the design data (for example, logical connection information) is prepared. It took several weeks from then until the actual product (sample) was completed.

(発明が解決しようとする問題点) 上述したように、従来のゲート・アレイでは、所要のカ
スタムICの論理設計完了時点から試供品を得る迄に相
当な時間と費用が必要であり、ひいてはカスタムIC全
体の開発に長い期間と多くの費用とを要していた。
(Problems to be Solved by the Invention) As mentioned above, with conventional gate arrays, a considerable amount of time and expense is required from the time the logic design of the required custom IC is completed until the time when a sample is obtained. It took a long time and a lot of money to develop the entire IC.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、複数の反転論理素子がアレイ状に配列きれており、前
記反転論理素子を組み合わせて所要の論理回路のカスタ
ムICを実現するゲート・アレイであって、外部からの
信号を内部に引き込む入力バッファと、内部の信号を外
部へ送り出す出力バッファと、任意の論理回路を実現す
る論理回路部と、前記入力バッファを介して入力される
番地信号を解読するデコーダとを有し、該論理回路部は
、複数の反転論理積素子と、該反転論理積素子の出力と
入力とを接続するPN接合とからなり、前記PN接合は
予め割り付けられた固有の番地を有し、前記デコーダは
前記番地信号で示される番地の、PN接合を選択して選
択された当該PN接合に書き込み電流を導くことを特徴
とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides means in which a plurality of inverting logic elements are arranged in an array, and the inverting logic elements are combined to obtain the required information. A gate array that realizes a custom logic circuit IC, which includes an input buffer that draws in signals from the outside, an output buffer that sends internal signals to the outside, and a logic circuit section that realizes an arbitrary logic circuit. a decoder for decoding an address signal inputted through the input buffer, and the logic circuit section includes a plurality of inverting AND elements, and a PN junction connecting the outputs and inputs of the inverting AND elements. The PN junction has a unique address assigned in advance, and the decoder selects a PN junction at an address indicated by the address signal and guides a write current to the selected PN junction. shall be.

(実施例) 次に本発明の実施例を図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のICを示す全体ブロック図
である。入力バッファ100はこの実施例(IC)外部
からの信号を受け、レベル変換して、信号Is  It
 、 As−At 、 Pa−P、を夫々論理回路40
0、デコーダ200 、300へ導<、Yデコーダ20
0は、アドレス線A、−A、をデコードし、ワード線を
通じて論理回路部400内に有るPN接合の組(第2図
で示した横一列)を一つ選択する。Xデコーダ300は
、アドレス線A1゜□−Mをデコードし、上記に依り選
択きれたPN接合の組より更にn+1個のPN接合を選
択する(第2図に於いて、縦の列を選択する事に依る)
6次に選ばれたn+1個のPN接合に、P、−P、より
導かれる書き込み電流を流し、絶縁破壊を起こせせ、該
PN接合部を導通状態にする事に依りプログラムを行な
う、論理回路部400は、外部からの入力信号を入力バ
ッファ100を介して受け、論理演算を行ない、出力バ
ッファ500を通してIC外部へ出力する。
FIG. 1 is an overall block diagram showing an IC according to an embodiment of the present invention. The input buffer 100 receives a signal from outside this embodiment (IC), converts the level, and generates a signal Is It.
, As-At, Pa-P, respectively in the logic circuit 40
0, lead to decoder 200, 300<, Y decoder 20
0 decodes the address lines A, -A, and selects one set of PN junctions (one horizontal row shown in FIG. 2) in the logic circuit section 400 through the word line. The X decoder 300 decodes the address line A1゜□-M and further selects n+1 PN junctions from the set of PN junctions that have been selected as described above (in Fig. 2, the vertical columns are selected). Depends on the matter)
6. A logic circuit that performs programming by causing dielectric breakdown by passing a write current guided by P and -P through n+1 PN junctions selected in the sixth order and making the PN junctions conductive. The unit 400 receives an input signal from the outside via the input buffer 100, performs a logical operation, and outputs the signal to the outside of the IC via the output buffer 500.

次に論理回路部400に於ける論理機能(組合わせ回路
、順序回路)の実現のさせ方に於いて詳述する。論理回
路部400は複数の反転論理積(NAND)素子が縦横
に配列きれた形になっている。
Next, a detailed description will be given of how to realize the logic functions (combinational circuit, sequential circuit) in the logic circuit section 400. The logic circuit section 400 has a plurality of inverted AND (NAND) elements arranged vertically and horizontally.

第3図は論理回路部400の唯一つのNAND素子(4
10)に着目し、その論理回路400の一部および入力
バッファ100の一部、出力バッファ500の一部を示
す図である。図で示した様に一つのNAND素子の出力
はその上下左右の四つのNAND素子の三つの入力端子
(その内−つはNAND素子の出力をハイ・インピーダ
ンス状態とする為の制御信号入力)にPN接合を介して
接続されている。
FIG. 3 shows the only NAND element (4
10) and shows part of the logic circuit 400, part of the input buffer 100, and part of the output buffer 500. As shown in the figure, the output of one NAND element is sent to the three input terminals of the four NAND elements on the top, bottom, left and right (one of them is the control signal input for setting the output of the NAND element to a high impedance state). They are connected via a PN junction.

更に全てのNAND素子の制御信号入力以外の入力の内
−つはPN接合を介して接地されている。
Furthermore, the inputs of all NAND elements other than the control signal input are grounded via a PN junction.

”ここでもし、第3図に示す様に、入力バッファ100
及び出力バッファ500が論理回路部400内のNAN
D素子410の入力及びNAND素子420の出力にそ
れぞれ接続されており、なお且つ、第4図の回路を実現
しようと思った場合にはPNN接合01゜AO2に書き
込み電流を流し、導通状態にきせれば良い。
``Here, if the input buffer 100 is
and the output buffer 500 is a NAN in the logic circuit section 400.
They are connected to the input of the D element 410 and the output of the NAND element 420, respectively, and if you want to realize the circuit shown in FIG. It's fine if you can.

プログラムの仕方は既に述べたが、以下に第2図に依り
更に詳しく説明する。第2図で示されているPN接合の
一つ一つは、第3図に示したPN接合AOI 、 AO
2・・・の一つ一つに対応している。そしてPN接合n
+1個の組(1ワード)に一つの番地が付され、Yデコ
ーダ200に依る横一列の選択。
The method of programming has already been described, but it will be explained in more detail below with reference to FIG. Each of the PN junctions shown in Figure 2 corresponds to the PN junctions AOI and AO shown in Figure 3.
2... corresponds to each one. and PN junction n
+1 set (one word) is assigned one address, and the Y decoder 200 selects one horizontal row.

Xデコーダ300に依る縦n+1列の選択で一ワードの
PN接合の組が選ばれる。そして入力PMが“High
”であれば、n+1本の書き込み信号線?、 −P、に
依り、n+1個のPN接合に書き込み電流が導かれる。
The X-decoder 300 selects a set of PN junctions for one word in the n+1 columns. Then, the input PM is “High”
”, the write current is guided to the n+1 PN junctions by the n+1 write signal lines ?, -P.

なお、通常動作時(プログラム時以外)はPMを“Lo
w”状態にして置く、また、第1図に依れば、Xデコー
ダ300はn+1個のセレクタ31〇−31nにより構
成されているが、第2r!Aに於いては一つのセレクタ
310だけを示し、他は省略してある。
Note that during normal operation (other than programming), PM is set to “Lo”.
Also, according to FIG. 1, the X decoder 300 is composed of n+1 selectors 310-31n, but in the second r!A, only one selector 310 is set. shown, and the others are omitted.

(発明の効果) 以下に説明した様に、本発明によれば、任意の論理回路
をROMフード化するCADシステムきえあれば、作業
現場でもすぐにカスタムICを得る事ができ、開発期間
の短縮および費用の低減の効果を挙げることができる。
(Effects of the Invention) As explained below, according to the present invention, if a CAD system that converts any logic circuit into a ROM hood is available, a custom IC can be obtained immediately at the work site, shortening the development period. and cost reduction.

さらに、本発明は、従来の形のカスタムICを作る際の
ハード・ウェア・シミュレータとして使う事もできる。
Additionally, the present invention can be used as a hardware simulator in creating conventional types of custom ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体ブロック図、第2図は
その実施例におけるPN接合配列を示す図、第3図は第
1図実施例における論理回路部の一部を示す回路図、第
4図は第1図のゲートアレイにより実現されるカスタム
ICの回路例を示す回路図である。 100・・・入力バッファ、200・・・Y7’フータ
、300・・・Xデフーダ、310−31n・・・セレ
クタ、400・・・論理回路部、500・・・出力バッ
ファ、410−450・・・反転論理積(NAND)素
子、AOO−A15・・・PN接合、AND・・・論理
積(AND)回路。
FIG. 1 is an overall block diagram of an embodiment of the present invention, FIG. 2 is a diagram showing a PN junction arrangement in the embodiment, and FIG. 3 is a circuit diagram showing a part of the logic circuit section in the embodiment of FIG. , FIG. 4 is a circuit diagram showing an example of a circuit of a custom IC realized by the gate array of FIG. 1. 100... Input buffer, 200... Y7' footer, 300... - Inverted logical product (NAND) element, AOO-A15...PN junction, AND... logical product (AND) circuit.

Claims (1)

【特許請求の範囲】 複数の反転論理素子がアレイ状に配列されており、前記
反転論理素子を組み合わせて所要の論理回路のカスタム
ICを実現するゲート・アレイに於いて、 外部からの信号を内部に引き込む入力バッファと、内部
の信号を外部へ送り出す出力バッファと、任意の論理回
路を実現する論理回路部と、前記入力バッファを介して
入力される番地信号を解読するデコーダとを有し、 該論理回路部は、複数の反転論理積素子と、該反転論理
積素子の出力と入力とを接続するPN接合とからなり、 前記PN接合は予め割り付けられた固有の番地を有し、
前記デコーダは前記番地信号で示される番地の、PN接
合を選択して選択された当該PN接合に書き込み電流を
導くことを特徴とするフィールド・プログラマブル・ゲ
ート・アレイ。
[Claims] In a gate array in which a plurality of inverting logic elements are arranged in an array, and the inverting logic elements are combined to realize a custom IC with a desired logic circuit, a signal from the outside is internally transmitted. an input buffer that draws internal signals to the outside, an output buffer that sends internal signals to the outside, a logic circuit section that realizes an arbitrary logic circuit, and a decoder that decodes the address signal input via the input buffer, The logic circuit section includes a plurality of inverting AND elements and a PN junction that connects the output and input of the inverting AND element, the PN junction having a unique address assigned in advance,
A field programmable gate array, wherein the decoder selects a PN junction at an address indicated by the address signal and directs a write current to the selected PN junction.
JP62326267A 1987-12-22 1987-12-22 Field programmable gate array Pending JPH01166538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62326267A JPH01166538A (en) 1987-12-22 1987-12-22 Field programmable gate array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62326267A JPH01166538A (en) 1987-12-22 1987-12-22 Field programmable gate array

Publications (1)

Publication Number Publication Date
JPH01166538A true JPH01166538A (en) 1989-06-30

Family

ID=18185860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62326267A Pending JPH01166538A (en) 1987-12-22 1987-12-22 Field programmable gate array

Country Status (1)

Country Link
JP (1) JPH01166538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262933B1 (en) * 1999-01-29 2001-07-17 Altera Corporation High speed programmable address decoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262933B1 (en) * 1999-01-29 2001-07-17 Altera Corporation High speed programmable address decoder

Similar Documents

Publication Publication Date Title
US4433331A (en) Programmable logic array interconnection matrix
EP0410759B1 (en) Configurable logic array and method
US4506341A (en) Interlaced programmable logic array having shared elements
EP0099135A2 (en) Dynamic gate array whereby an assembly of gates is simulated by logic operations on variables selected according to the gates
US6209118B1 (en) Method for modifying an integrated circuit
US5247456A (en) Method and apparatus for forming layout pattern of semiconductor integrated circuit
EP0126322B1 (en) Testable array logic device
US5027012A (en) Programmable logic circuit using wired-or tristate gates
US5436576A (en) Switch matrices using reduced number of switching devices for signal routing
JPH0191525A (en) Programmable logic element
JPS6328129A (en) Writable logic array amd method of programming the array
JPS58205870A (en) Simulation apparatus of logic circuit
JPH01166538A (en) Field programmable gate array
US4006470A (en) Read-only memory
JPH1144741A (en) Programmable logic device, its testing method, and test data preparing method
US5572198A (en) Method and apparatus for routing in reduced switch matrices to provide one hundred percent coverage
US6188242B1 (en) Virtual programmable device and method of programming
JPH06162139A (en) Layout verificatioin system
JPH06511118A (en) Programmable logic device with multi-shared logic array
JP3217991B2 (en) Method for determining logic cell configuration in programmable array
US20040239366A1 (en) Repairable finite state machines
US5486766A (en) Method for testing switch matrices
JPS63151115A (en) Logic circuit device
JPS59119743A (en) Structural system of redundancy of integrated circuit
JPS61198762A (en) Semiconductor integrated circuit