JPH01165925A - Method for operating collision experimental apparatus of vehicle - Google Patents

Method for operating collision experimental apparatus of vehicle

Info

Publication number
JPH01165925A
JPH01165925A JP62324539A JP32453987A JPH01165925A JP H01165925 A JPH01165925 A JP H01165925A JP 62324539 A JP62324539 A JP 62324539A JP 32453987 A JP32453987 A JP 32453987A JP H01165925 A JPH01165925 A JP H01165925A
Authority
JP
Japan
Prior art keywords
vehicle
speed
rope
acceleration
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62324539A
Other languages
Japanese (ja)
Other versions
JPH0553374B2 (en
Inventor
Takeshi Honda
武之 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Sales Co Ltd
Original Assignee
Nissan Motor Sales Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Sales Co Ltd filed Critical Nissan Motor Sales Co Ltd
Priority to JP62324539A priority Critical patent/JPH01165925A/en
Publication of JPH01165925A publication Critical patent/JPH01165925A/en
Publication of JPH0553374B2 publication Critical patent/JPH0553374B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To perform test running at a highly accurate collision speed, by calculating the optimum acceleration curve by estimating the running resistance value of the whole of a system and the damped vibration phenomenon of a traction rope and operating an electromotor according to said curve. CONSTITUTION:The wt. of a vehicle to the tested is performed and acceleration is started on the basis of a preset rising curve and a predetermined current value. At this time, moving body passage detectors are provided at a point (tp1) wherein the sped of the vehicle C to be tested at the starting point and a current value are extremely low and at two points (tp2, tp3) in a relatively low speed region where a rising curve SL is finished and acceleration is performed on the basis of a constant current value and the speeds of a take-up drum at the point of time when the passage at the respective points is detected are set to V1-V3. In the take-up drum, the take-up length of a traction rope is measured. By this method, the take-up length of the traction rope during a period when the vehicle C runs between two points tp1, tp2 is measured. In general, when the running resistance of a car is set F and the speed thereof is set to V, a formula F=A+B.V+CV<2> (A-C are a constant) is formed. Therefore F is a quadratic equation of V and a function can be determined.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は牽引ロープの巻取りドラムを駆動電動機により
駆動し、牽引ロープを牽引することにより被試験車輌を
加速し、所定の速度に達した時点で被試験車輌と牽引ロ
ープとの継合を断ち、被試験車輌を惰行により対象物に
衝突させる車輌の衝突実験装置の運転方法に関する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention accelerates the vehicle under test by driving the winding drum of the tow rope by a drive motor and pulling the tow rope to reach a predetermined speed. The present invention relates to a method of operating a vehicle collision test apparatus in which the connection between the vehicle under test and a traction rope is cut at a certain point, and the vehicle under test is caused to coast and collide with an object.

「従来の技術」 一般に、車輌の衝突実験装置あるいは方法において使用
される牽引ロープは、重量の有る被試験車輌を加速・高
速走行さけるものであるから、当然それ相応の強度を有
するものであり、その剛性もかなり高いものにはなって
いる。しかし、高速度の衝突実験装置あるいは方法にお
いて牽引ロープの長さを考えると、間ループ式(牽引側
のロープのみのもの)にあっても被試験車輌の走行路長
に余裕を含めて数百メートルどなり、閉ループ式(被試
験車輌の後側にもロープが在るもの)にあっては、この
往復となって部子メートルを越えるのが通常である。
``Prior Art'' In general, the traction ropes used in vehicle collision test equipment or methods are used to avoid acceleration and high-speed running of heavy test vehicles, so they naturally have a corresponding strength. Its rigidity is also quite high. However, when considering the length of the towing rope in a high-speed collision test device or method, even if it is an intermediate loop type (only the rope on the towing side), the length of the towing rope must be several hundred, including the length of the test vehicle's running path. In the case of closed-loop type ropes (with a rope also on the rear side of the vehicle being tested), this round trip usually exceeds 1 meter.

従って、牽引ロープに対して被試験車輌を牽引・加速す
る為に必要どなる張力を与えた時の牽引ロープの伸びは
非常に大きなものとなり、数十メートルにも及ぶ場合が
ある。それ故に、牽引ロープの巻取り長ざと被試験車輌
の走行距離とは常に等しい訳では無く、牽引ロープの巻
取り長さをもって車輌の位置を推定する、あるいは牽引
ロープの巻取り速度をもって車輌の速度と見なすことに
は無理がある。
Therefore, when the necessary tension is applied to the tow rope to tow and accelerate the vehicle under test, the elongation of the tow rope becomes extremely large, sometimes reaching tens of meters. Therefore, the winding length of the tow rope is not always equal to the distance traveled by the tested vehicle, and the vehicle position can be estimated by the winding length of the tow rope, or the speed of the vehicle can be estimated by the winding speed of the tow rope. It is unreasonable to assume that.

それでは牽引ロープの剛性を高めれば良いかと言うと、
牽引ロー、ブの剛性を高めれば高める程牽引ロープが太
くなり、巻取りドラムの外径や巻取りピッチが大きくな
り、牽引ロープの方向変更の為のシーブ等の径も大きく
採らざるを得ない。したがって、必然的に機械寸法が大
きくなり、機械そのものの経済性を損なうばかりか、加
速慣性量の増加により電動機出力の大幅な増大を招く等
、非常に冗長且つ不経済な装置となる。
So, should I increase the rigidity of the tow rope?
The higher the rigidity of the towing rope, the thicker the towing rope becomes, the larger the outer diameter of the winding drum and the winding pitch, and the larger the diameter of the sheave, etc. for changing the direction of the towing rope. . Therefore, the size of the machine inevitably increases, which not only impairs the economic efficiency of the machine itself, but also causes a significant increase in motor output due to an increase in the amount of acceleration inertia, resulting in a very redundant and uneconomical device.

一方、被試験車輌は犬なる慣性量を有している為、水系
は力学的には長大なバネの先に重錘を取付【プた様なも
のと考えられ、弾性と慣性体とが相互に影響をし合って
振動を起こ1゛ことになる。この結果、加速度の変化時
には車輌は非常に低い周波数で脈動しながら走行するの
で、その速度を所望の値に精度良く合わせることが非常
に困難どなる。これを解決する為に、この様t〒加速度
の変化時(加速開始時及び定速移行時)には必要な張力
変化を一気にかけずに傾斜関数あるいは緩和曲線的に張
力を変化させる方法を初めとし、さらには切り離し時点
に至るまで常時ロープに一定最以上の張力をかりた状態
として弛みを防止する方法などが採用されてきた。
On the other hand, since the vehicle under test has a large amount of inertia, the water system can be thought of dynamically as being like a weight attached to the end of a long spring, and the elastic and inertial bodies interact with each other. They influence each other and cause vibration. As a result, when the acceleration changes, the vehicle runs while pulsating at a very low frequency, making it extremely difficult to accurately adjust the speed to a desired value. In order to solve this problem, we have developed a method that changes the tension according to a slope function or transition curve when the acceleration changes (at the start of acceleration and when moving to a constant speed) instead of applying the necessary tension changes all at once. Furthermore, methods have been adopted in which the rope is kept under a certain maximum tension at all times up to the point of separation to prevent it from loosening.

ところで、この種の運転方法の従来の実施例としては、
たとえば特公昭55−48252号に提案されている。
By the way, as a conventional example of this type of driving method,
For example, it is proposed in Japanese Patent Publication No. 55-48252.

この実施例は特許請求の範囲の欄で[(前1B8)・・
・・・・、速度制御系には速度検出量を積分することに
より被試験機の走行距離を求め、・・・・・・(後略)
」と述べている。ここでは、被試験車輌の時々刻々の現
在位置を考えて、その位置に相応して速度指令値を速度
制御系に入力している様であるが、その基本となる走行
距離を求めるのに巻取るロープの速度検出量の積分によ
っている。
This embodiment is described in the scope of claims [(former 1B8)...
..., the speed control system calculates the traveling distance of the test machine by integrating the speed detection amount, ...... (the rest omitted)
"It has said. Here, it seems that the current position of the test vehicle at any given moment is considered and a speed command value is input into the speed control system in accordance with that position, but it takes a lot of time to calculate the basic traveling distance. This is done by integrating the detected amount of rope speed.

しかしながら、前述した様に張力を与えればロープは伸
びるので、ロープの巻取り量と実際の被試験車輌の走行
距離とは一致せず、速度の積分値では更に一致しないこ
とが予想される。また特許請求の範囲の欄の後段でロー
プの最低張力量は得られる特性を掛持する張力指令関数
発生器云々と言っており、「ロープの最低張力量Jとは
、ロープが弛まないことを前提としている様であるが、
ロープの伸びというものを考慮すれば、−旦最大張力を
与えて伸びきったロープを厳密な意味合いに於いて弛ま
せない為には張力を緩めることが出来ないとも考えられ
、非常に大なる張力の状態で被試験車輌を切り離すとい
う、機械的にはかなり無理な方法とならざるを得ない。
However, as mentioned above, the rope stretches when tension is applied, so the amount of rope winding does not match the actual distance traveled by the test vehicle, and it is expected that the integral value of the speed will not match even more. Also, in the latter part of the claims column, the minimum tension amount of the rope is referred to as a tension command function generator that multiplies the characteristics obtained, and ``the minimum tension amount J of the rope means that the rope does not slacken. Although it seems to be the premise,
Considering the elongation of a rope, it is thought that once the maximum tension has been applied to the rope, it is impossible to loosen the tension in order to prevent it from loosening in a strict sense. Mechanically, it would have to be a very difficult method to separate the vehicle under test in this state.

また他の実施例として特開昭57−116237号や特
開昭62−12833号に提案されているが、前者は前
記実施例と同様に、牽引[l−プの巻取り速度の積分値
を被試験車輌の走行距離と等価と考えている様であり、
牽引ロープの伸びが考慮されていないし、後者は速度パ
ターン演算装置における入力変数としての距離を巻取り
ドラムにより計測しており、巻取りドラムの牽引ロープ
の巻取り量と被試験車輌の走行距離とは常時一致してい
る訳ではないということは考えられていない。
Other embodiments have been proposed in JP-A-57-116237 and JP-A-62-12833; They seem to think that it is equivalent to the mileage of the vehicle under test.
The elongation of the towing rope is not taken into account, and the latter measures the distance as an input variable in the speed pattern calculation device using a winding drum, and the amount of winding of the towing rope on the winding drum and the distance traveled by the test vehicle are calculated. It is not considered that these do not always match.

さらに、牽引ロープの弾性があるため、離脱点で駆動電
動機の加速度がゼロになっても被試験車輌の加速度がゼ
ロにはならず、その為にはロープの過渡状態が安定する
だりの十分な定速走行区間を設けるか、またはロープの
動的挙動を考慮し、それを十分上回る緩かな定速移行カ
ーブとしなりればならない。
Furthermore, due to the elasticity of the tow rope, even if the acceleration of the drive motor becomes zero at the breakaway point, the acceleration of the vehicle under test will not become zero. Either a constant-speed running section must be provided, or the dynamic behavior of the rope must be taken into account, and the constant-speed transition curve must be sufficiently gentler than that.

以上、これらの方法は前述したように牽引ロープの伸び
等を考慮していないので、加速終了時におけるロープの
動的挙動による速度変動を排除することが非常に困難で
あると言う欠点を有していIこ 。
As mentioned above, these methods do not take into account the elongation of the towing rope, so they have the disadvantage that it is extremely difficult to eliminate speed fluctuations due to the dynamic behavior of the rope at the end of acceleration. I'm here.

[本発明が解決しようとする問題点] 本発明は以上のような従来の方法の右する欠点に鑑み、
まず従来技術に於いて看過されていた被試験車輌の加速
度変化時、苦い換えれば牽引ロープ張力の変化時におけ
る牽引ロープの伸縮運動に着目した所にある。すなわち
、あくまでも被試験車輌の牽引ロープからの切り離しは
、車輌及び機械装置にとって無理の無い、被試験車輌の
加速度が零の付近で行なうことを前提として、最大加速
時におけるロープの伸びが加速より定速への移行時に収
縮し、巻取りドラムの速度と被試験車輌の速度とが一致
せず、この為に被試験車輌の速度を所定の目標値に精度
良く合わせることが出来ない、という問題の解決を計る
為、牽引ロープの伸縮運動に着目している。
[Problems to be Solved by the Present Invention] In view of the drawbacks of the conventional methods as described above, the present invention solves the following problems:
First, we focused on the expansion and contraction movement of the towing rope when the acceleration of the vehicle under test changes, or in other words, when the tension of the towing rope changes, which was overlooked in the prior art. In other words, it is assumed that the test vehicle is separated from the tow rope when the test vehicle's acceleration is near zero, which is reasonable for the vehicle and mechanical equipment, and that the elongation of the rope at maximum acceleration is more constant than the acceleration. The problem is that the speed of the winding drum does not match the speed of the vehicle under test, and therefore the speed of the vehicle under test cannot be accurately adjusted to a predetermined target value. In order to find a solution, we are focusing on the expansion and contraction movement of the towing rope.

つまり、牽引ロープを弾性体と考え、これの伸び量及び
応答時間を考慮して加速より定速へ移行する加速度逓減
曲線を設定し、所定の目標速度に至ると時を同じくして
ロープの収縮運動を安定さ−uようとするものである。
In other words, considering the tow rope as an elastic body, we set an acceleration decreasing curve that shifts from acceleration to constant speed, taking into account the amount of stretch and response time of the rope, and when a predetermined target speed is reached, the rope contracts at the same time. It is intended to make the movement stable.

次に実際に実験を開始した後に系仝休の走行抵抗を求め
、これによりその後の加速曲線を修正するという、学習
機能を持たせたことにある。高速度の実験装置どもなれ
ば、目標速度刊近にお(づる被試験車輌の走行抵抗値は
かなり大きなものとなり、被試験車輌の種類によってそ
の値も種々の傾向を採る。一方に於いて、車輌の衝突実
験方法は事前に試験走行を行なうことが困難である故、
走行前に被試験車輌の走行抵抗値を精度良く設定するこ
とが出来ない。この問題を解決する為に、本発明では実
際の実験が開始された後にその系全体の走行抵抗を測定
し、これによりその後の走行抵抗値を推定して、所望の
速度に於いて被試験車輌の速度を安定させる為の、理想
的な加速曲線を得ようとするものである。
Next, after actually starting the experiment, the system has a learning function that calculates the running resistance of the system and corrects the subsequent acceleration curve based on this. With high-speed experimental equipment, the running resistance value of the test vehicle that approaches the target speed becomes quite large, and the value takes various trends depending on the type of test vehicle.On the other hand, The vehicle crash test method is difficult to conduct a test drive in advance, so
It is not possible to accurately set the running resistance value of the vehicle under test before driving. In order to solve this problem, the present invention measures the running resistance of the entire system after the actual experiment has started, estimates the subsequent running resistance value from this, and then measures the running resistance of the test vehicle at a desired speed. The objective is to obtain an ideal acceleration curve to stabilize the speed of the vehicle.

以上により、本発明は事前に試験走行を行なうことなく
直ちに被試験車輌を所定位置において目標速度で切り離
し、対象物に高精度の衝突速度で衝突さぜることができ
る車輌の衝突実験装置の運転方法を得るにある。
As described above, the present invention provides an operation system for a vehicle collision test that is capable of immediately separating a test vehicle at a predetermined position at a target speed without conducting a test run in advance, and causing the vehicle to collide with an object at a highly accurate collision speed. There's a way to get there.

「問題点を解決するための手段」 本発明の車輌の衝突実験装置の運転方法は、牽引ロープ
の巻取りドラムを駆動電動機で駆動し、被試験車輌が所
定の速度に達した時点で牽引ロープとの継合を断ち、被
試験車輌を惰行により対象物に衝突させる車輌の衝突実
験装置の運転方法において、少なくとも前記被試験車輌
の出発点あるいは出発点近くの被試験車輌の速度が極く
低い点tl)1の加速走行路と、比較的低速域の点tp
2の加速走行路とに移動物の通過検出器を設【プ、これ
らの検出点tp1、tp2にお(プる前記駆動電動機の
駆動力を計測あるいは演算により求めると共に、検出点
間における巻取りドラムによる牽引ロープの巻取り長さ
の計測を行い、これにより系全体の走行抵抗値と牽引ロ
ープの減衰振動現象の推定を行って最適な加速曲線を求
め、以後この曲線に従って電動機の運転を行うことを特
徴とする。
``Means for Solving the Problems'' In the operating method of the vehicle collision test apparatus of the present invention, the winding drum of the tow rope is driven by a drive motor, and when the vehicle under test reaches a predetermined speed, the tow rope is In a method of operating a vehicle collision test device in which the vehicle under test coasts and collides with an object, the speed of the vehicle under test at least at the starting point of the vehicle under test or near the starting point is extremely low. Acceleration travel path at point tl) 1 and point tp in a relatively low speed range
A moving object passage detector is installed on the acceleration traveling path of No. 2, and the driving force of the drive motor is measured or calculated at these detection points tp1 and tp2, and the winding force between the detection points is determined. Measure the winding length of the towing rope on the drum, estimate the running resistance of the entire system and the damped vibration phenomenon of the towing rope, find the optimal acceleration curve, and then operate the motor according to this curve. It is characterized by

「本発明の実施例」 次に、第1図および第2図を参照しながら本発明の一実
施例につぎ説明する。
"Embodiment of the Present Invention" Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

まず、本発明は牽引[]−ブの巻取りドラムを駆−9= 動電動機で駆動し、被試験車輌が所定の速度に達した時
点で牽引ロープとの継合を断ち、被試験車輌をその惰行
により対象物に衝突させる車輌の衝突実験装置の運転方
法を前提とする。
First, the present invention drives the winding drum of the traction rope with a drive motor, and when the vehicle under test reaches a predetermined speed, it is disconnected from the traction rope and the vehicle under test is moved. The premise is a method of operating a collision test device in which a vehicle collides with an object by coasting.

しかして、第1図は牽引ロープを巻取る巻取りドラム側
の駆動電動機の速度制御を行い、一定加速度により被試
験車輌の加速を行う方法の「時刻(横軸×)〜駆動電動
機及び被試験車輌速度(縦軸Y)]曲線である。この第
1図は従来の一実施例で、実線■mが駆動電動機、点線
VCが被試験車輌C速度を表している。
Figure 1 shows a method of accelerating the vehicle under test with a constant acceleration by controlling the speed of the drive motor on the winding drum side that winds up the tow rope. Vehicle speed (vertical axis Y)] curve. FIG. 1 shows a conventional example, where the solid line m represents the drive motor and the dotted line VC represents the speed of the vehicle under test C.

なお、tcは牽引ロープと被試験車輌Cとの係合を断つ
時刻である。この場合において、駆動電動機の加速開始
によりロープがある量だけ引き伸ばされ、被試験車輌の
速度がガれて立ち上がり、その後はロープの伸びが安定
し、被試験車輌の速度と巻取りドラムの速度とは一旦は
ぼ同じ値となる。しかし、速度が上昇するに伴って系全
体の走行抵抗値が上昇し、巻取りドラムの加速度を一定
に保っていても、牽引ロープの伸びが再び増Jノllを
始め、被試験車輌Cの速度は巻取りドラムの速度に比較
して徐々に低下してくる。
Note that tc is the time at which the engagement between the tow rope and the vehicle under test C is severed. In this case, when the drive motor starts accelerating, the rope is stretched by a certain amount, and the speed of the vehicle under test falters and then rises.After that, the rope elongation becomes stable, and the speed of the vehicle under test and the speed of the winding drum are will once have approximately the same value. However, as the speed increases, the running resistance of the entire system increases, and even if the acceleration of the winding drum is kept constant, the elongation of the towing rope increases again and the test vehicle C starts to elongate. The speed gradually decreases compared to the speed of the winding drum.

従って、巻取りドラムの速度が目標とする所定の切り離
し速度に近づき、何等かの目算に基づく加速度逓減曲線
により、巻取りドラムの速度を所定の速度に合わせたと
しても、その時の被試験車輌の速度やロープの弾性によ
るその後の被試験車輌の挙動が不明であり、切り離し点
における被試験車輌の速度を目標値に精度良く合わせる
こと(図面で言えばtcの時刻に実線■mと点線VCを
一致させること。)は困難であった。
Therefore, even if the speed of the winding drum approaches the predetermined target separation speed and the speed of the winding drum is adjusted to the predetermined speed according to an acceleration reduction curve based on some calculation, the speed of the vehicle under test at that time The subsequent behavior of the vehicle under test due to the speed and elasticity of the rope is unknown, and the speed of the vehicle under test at the separation point must be accurately adjusted to the target value (in the drawing, the solid line m and dotted line VC are drawn at time tc). ) was difficult.

第2図は本発明の一実施例における同曲線であり、同じ
く実線Vmが駆動電動機、点線Vcが被試験車輌Cの速
度を表している。横軸く時刻)Xにおけるtpl、tp
2、tp3は加速走行路上の被試験車輌自体あるいは牽
引台車等移動物の通過検出器通過時刻である。以下、大
型の衝突実験装置として一般的である、駆動電動機が直
流分巻電動機である場合を取り上げ、その方法を実際に
試験を行なう順序に従って説明を行う。
FIG. 2 shows the same curve in one embodiment of the present invention, in which the solid line Vm represents the drive motor and the dotted line Vc represents the speed of the vehicle under test C. horizontal axis (time) tpl, tp at X
2, tp3 is the time when the test vehicle itself or a moving object such as a towing truck passes the passage detector on the acceleration road. Hereinafter, we will discuss the case where the drive motor is a DC shunt motor, which is common in large-scale crash test equipment, and explain the method in accordance with the order in which the test is actually performed.

まず、被試験車輌Cの重量の設定を行い、これにJ:り
予め設定されている立ち上がり曲線(電流値立ち上げ曲
線)及び所定電流値にて加速を開始する。この時、出発
点ないしはその近くの被試験車輌の速度及び電流値が極
く低い点(tpl点)と、立ち上がり曲線S1−が終了
し一定電流値で加速をd3こなっている比較的低速域に
おりる2点くし02点及びt p 3点)に、車輌又は
牽引台車〈ドーリ−)等移動物の通過検出器を設け、こ
れら各点に於いて通過検出が行われた時点の巻取りドラ
ムの速度をVl、V2、V3とする。
First, the weight of the vehicle under test C is set, and acceleration is started using a preset rise curve (current value rise curve) and a predetermined current value. At this time, there is a point at or near the starting point where the speed and current value of the tested vehicle are extremely low (tpl point), and a relatively low speed area where the rising curve S1- ends and acceleration is performed at a constant current value d3. A passing detector for a moving object such as a vehicle or a tow truck (dolly) is installed at the 2-point comb (point 02 and point 3), and winding is performed at the time when the passing of a moving object such as a vehicle or a towing dolly is detected at each of these points. Let the drum speeds be Vl, V2, and V3.

一方、巻取りドラムに於いては牽引ロープの巻取り長さ
の測定を行う。これには速度検出信号を利用Jることが
可能であり、速度信号がアナログの場合はこれを積分す
ることによって、速度検出器がパルス発信器の場合は距
離パルスをカラン1〜することによって、容易に牽引ロ
ープの巻取り長さを測定することが出来る。これにより
被試験車輌が前記tp1、tp2点間を走行する間の牽
引ロープの巻取り長さの計測をおこなう。
On the other hand, the winding length of the tow rope is measured on the winding drum. For this, it is possible to use the speed detection signal, and if the speed signal is analog, by integrating it, or if the speed detector is a pulse transmitter, by converting the distance pulse, The length of the tow rope can be easily measured. As a result, the winding length of the towing rope while the tested vehicle travels between the points tp1 and tp2 is measured.

一般に自動車の走行抵抗をF、速度を■とすると、Fと
Vとの間ニハ近似的にF = A + B −v −+
−C・V2 (A、B、Cは定数)なる式が成り立つこ
とが良く知られている。当該系に於いてはこの被試験車
輌の走行抵抗の他に、ドラムやシーブ、ガイドローラ等
の転勤抵抗、牽引ロープの引きずり抵抗、ドーリ−の走
行抵抗等が含まれてくるが、これらは何れも上記の■に
関する定数、−次関数、二次関数の和の形で表現出来る
と考えられるので、それらを含めた系全体の走行抵抗を
あらためてF=A十B −V十C・■2と表ずことが出
来る。
In general, if the running resistance of a car is F and the speed is ■, then approximately between F and V, F = A + B −v −+
It is well known that the following formula holds true: -C·V2 (A, B, and C are constants). In addition to the running resistance of the vehicle under test, this system also includes transfer resistance of drums, sheaves, guide rollers, etc., drag resistance of towing ropes, running resistance of dolly, etc. can also be expressed in the form of the sum of the constant, -order function, and quadratic function related to ■ above, so the running resistance of the entire system including these can be rewritten as F=A0B −V0C・■2 I can express myself.

従って、このFは■の二次式である故、3種類の■に於
けるFの値を得ることにより、この関数を定めることが
可能であることが解る。
Therefore, since this F is a quadratic expression of ■, it is understood that this function can be determined by obtaining the values of F in three types of ■.

この3種類のVに於けるFの値の計測は、上記tp1、
tl)2、tp3点の通過検出が行われた時点のドラム
の速度V1、■2、V3に於いて、その時の駆動電動機
のトルクを計測する(動力計あるいはトルクメータ等)
、あるいはロープの張力を測定する(テンションローラ
等)、機構を設けることにより可能となるのは当然であ
るが、駆動電動機の電流値から演算により駆動力を近似
的に求め、この値から慣性体を加速するための駆動力を
減算する方法が最も簡便である。
Measurement of the value of F at these three types of V is as follows: tp1,
tl) Measure the torque of the drive motor at that time (dynamometer, torque meter, etc.) at drum speeds V1, ■2, and V3 at the time when the passing of points 2 and tp is detected.
Alternatively, it is naturally possible to measure the tension of the rope (tension roller, etc.) by providing a mechanism, but the driving force can be calculated approximately from the current value of the drive motor, and from this value the inertial body The simplest method is to subtract the driving force for accelerating.

前記tpl点に於いては速度及び駆動力が非常に低いこ
と、to2点及びtp3点に於いては一定電流(はぼ一
定駆動力と見なし得る)領域であり、牽引駆動力の変化
による牽引ロープの伸び量の変化は無いと見なし得る為
、何れの点に於いても牽引ロープの巻取り速度と被試験
車輌の速度とは同一であると考えられ、敢て被試験車輌
の速度を計測しなくても、巻取りドラムの速度をもって
これに置き換えることが可能である。依って、Vl、V
2、V3に於いてその時の各Fを求め、これにより系全
体の走行抵抗を演算により求めることが出来る。又、演
算に要する時間が確保しにくい場合には、演算時間を短
縮する為に、予め数種類の二次曲線を設定しておき、V
l、V2、V3にお(プるFの値によりこれらの内の何
れかを選択あるいは修正の上洛用する等の便宜的な方法
を採= 14− 用することも出来る。
At the tpl point, the speed and driving force are very low, and at the to2 and tp3 points, the current is constant (which can be considered as a constant driving force), and the traction rope changes due to changes in the traction driving force. Since it can be assumed that there is no change in the amount of extension of Even if there is no winding drum, it can be replaced by the speed of the winding drum. Therefore, Vl, V
2. At V3, calculate each F at that time, and from this, the running resistance of the entire system can be calculated. In addition, if it is difficult to secure the time required for calculation, set several types of quadratic curves in advance to shorten the calculation time, and
It is also possible to use a convenient method such as selecting or modifying any one of these depending on the value of F for L, V2, and V3.

衝突実験方法に於いて被試験車輌車輌の「時刻〜速度」
曲線を定める場合、従来技術に於いては前述したように
加速度を基準として設定する方法が一般的である。
In the collision test method, the “time to speed” of the test vehicle
When defining a curve, in the prior art, it is common to set the curve based on acceleration as described above.

しかし、本考案に於いては従来の常識に反し、加速度を
基準とせずに駆動電動機のトルク、即ち、牽引ロープの
張力を一定にする様に加速を行なう。
However, in the present invention, contrary to conventional wisdom, acceleration is performed so as to keep the torque of the drive motor, that is, the tension of the traction rope constant, without using acceleration as a reference.

これは、本発明が牽引ロープの伸縮運動に着目している
ので、牽引ロープの伸び量を一定に保つ為に、敢て加速
度を制御する方法を採らず、駆動電動機のトルクを一定
とする制御方法を採用するものである。
This is because the present invention focuses on the expansion and contraction movement of the tow rope, so in order to keep the amount of stretch of the tow rope constant, the method of controlling the acceleration is not intentionally adopted, but the torque of the drive motor is controlled to be constant. method.

以上の手法により系全体の走行抵抗曲線を推定し、一方
、車輌Cがtpl、tp2点間を走行する間の牽引ロー
プの巻取り長さを測定し、この間の実際の距離と比較す
ることにより、駆動電動機が規定のトルクを出すに至る
までの牽引ロープの伸び楢を知ることが出来るので、牽
引ロープのバネ定数及びダンピング定数(これらは既知
、あるいは事前の実験により得られる。)を予め設定し
ておくことにより、加速域より定速域に移行する際の本
減衰振動系の臨界減衰条件を求め、最適加速度逓減曲線
を設定することが可能となる。
By estimating the running resistance curve of the entire system using the above method, on the other hand, by measuring the winding length of the towing rope while the vehicle C runs between the two points tpl and tp, and comparing it with the actual distance during this time. Since it is possible to know the extension of the towing rope until the drive motor produces the specified torque, the spring constant and damping constant of the towing rope (these are known or can be obtained through prior experiments) can be set in advance. By doing so, it becomes possible to determine the critical damping condition for the damped vibration system when transitioning from the acceleration range to the constant speed range, and to set the optimum acceleration reduction curve.

1本発明の効果」 従来技術に於いては、「従来の技術」の項で引用した各
提案を見ても解るとうり、牽引ロープの巻取り長さと被
試験車輌の走行距離、あるいは牽引ロープの巻取り速度
と被試験車輌の走行速度、どが同一視されており、牽引
ロープという弾性体を使用している本振動系のダイナミ
ックな挙動が考慮されていなかった。
1. Effects of the present invention" In the prior art, as can be seen from the proposals cited in the "Prior Art" section, there are The winding speed of the test vehicle was equated with the running speed of the test vehicle, and the dynamic behavior of the vibration system, which uses an elastic body called a towing rope, was not taken into consideration.

本発明は前述した様に、牽引ロープをダンピング効果を
有するバネと考え、この特性を考慮すると同時に、牽引
途中における牽引ロープの伸び量と系全体の走行抵抗値
を実物で測定し、これらの結果により加速度逓減曲線を
求める方法を採っているので、従来技術における衝突実
験装置あるいは方法に関して、被試験車輌と牽引ロープ
との係合を断つ地点に於いて、牽引ロープの収縮運動に
より被試験車輌の速度が巻取りドラムの速度と一致せず
、切り離された被試験車輌の速度が所定の目標速度に合
わない、という問題点の解決に大いに寄与するものであ
る。
As mentioned above, the present invention considers the towing rope as a spring with a damping effect, takes this characteristic into consideration, and at the same time measures the amount of elongation of the towing rope during towing and the running resistance value of the entire system, and evaluates these results. Since this method uses a method to obtain an acceleration reduction curve using conventional crash test equipment or methods, at the point where the engagement between the test vehicle and the tow rope is severed, the contracting motion of the tow rope causes the test vehicle to This greatly contributes to solving the problem that the speed does not match the speed of the winding drum and the speed of the separated test vehicle does not match a predetermined target speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一実施例に於(プる被試験車輌車輌の[
時刻(横軸×)〜速度(縦軸Y)」曲線、第2図は本発
明の一実施例に於(プる第1図と同様の曲線である。 C・・・被試験車輌車輌、 tpl、tp2、tp3・・・検出時点、tc・・・牽
引ロープと被試験車輌車輌との係合断つ時刻。 特許出願人     日産自動車販売株式会社代  理
  人        弁理士  三  浦  光  
康@1図 第2Wg
Figure 1 shows a conventional example of a vehicle under test.
2 is a curve similar to that in FIG. 1 in an embodiment of the present invention. tpl, tp2, tp3...Time of detection, tc...Time of disconnection between the tow rope and the test vehicle.Patent applicant: Nissan Motor Sales Co., Ltd. Representative: Hikaru Miura, patent attorney
Yasushi @ Figure 2 Wg

Claims (1)

【特許請求の範囲】[Claims] 1)牽引ロープの巻取りドラムを駆動電動機で駆動し、
被試験車輌が所定の速度に達した時点で牽引ロープとの
継合を断ち、被試験車輌を惰行により対象物に衝突させ
る車輌の衝突実験装置の運転方法において、少なくとも
前記被試験車輌の出発点あるいは出発点近くの被試験車
輌の速度が極く低い点tp1の加速走行路と、比較的低
速域の点tp2の加速走行路とに移動物の通過検出器を
設け、これらの検出点tp1、tp2における前記駆動
電動機の駆動力を計測あるいは演算により求めると共に
、検出点間における巻取りドラムによる牽引ロープの巻
取り長さの計測を行い、これにより系全体の走行抵抗値
と牽引ロープの減衰振動現象の推定を行って最適な加速
曲線を求め、以後この曲線に従って電動機の運転を行う
ことを特徴とする車輌の衝突実験装置の運転方法。
1) Drive the winding drum of the tow rope with a drive motor,
A method of operating a vehicle collision test device in which the test vehicle is disconnected from a tow rope when it reaches a predetermined speed, and the test vehicle coasts to collide with an object, at least at the starting point of the test vehicle. Alternatively, moving object passage detectors are provided on the acceleration travel path at a point tp1 where the speed of the test vehicle near the starting point is extremely low, and on the acceleration travel path at a point tp2 in a relatively low speed range, and these detection points tp1, The driving force of the drive motor at tp2 is determined by measurement or calculation, and the winding length of the traction rope by the winding drum between the detection points is measured, thereby determining the running resistance value of the entire system and the damped vibration of the traction rope. 1. A method of operating a vehicle collision experiment apparatus, characterized in that an optimum acceleration curve is determined by estimating a phenomenon, and thereafter an electric motor is operated according to this curve.
JP62324539A 1987-12-22 1987-12-22 Method for operating collision experimental apparatus of vehicle Granted JPH01165925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324539A JPH01165925A (en) 1987-12-22 1987-12-22 Method for operating collision experimental apparatus of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324539A JPH01165925A (en) 1987-12-22 1987-12-22 Method for operating collision experimental apparatus of vehicle

Publications (2)

Publication Number Publication Date
JPH01165925A true JPH01165925A (en) 1989-06-29
JPH0553374B2 JPH0553374B2 (en) 1993-08-09

Family

ID=18166930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324539A Granted JPH01165925A (en) 1987-12-22 1987-12-22 Method for operating collision experimental apparatus of vehicle

Country Status (1)

Country Link
JP (1) JPH01165925A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079874A (en) * 2011-10-04 2013-05-02 Sinfonia Technology Co Ltd Control parameter setup method for vehicle collision testing-device
JP2019035705A (en) * 2017-08-21 2019-03-07 国際計測器株式会社 Impact-testing apparatus
JP2020020817A (en) * 2017-08-21 2020-02-06 国際計測器株式会社 Impact testing device
US11199475B2 (en) 2017-02-28 2021-12-14 Kokusai Keisokuki Kabushiki Kaisha Collision simulation test apparatus and impact test apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079874A (en) * 2011-10-04 2013-05-02 Sinfonia Technology Co Ltd Control parameter setup method for vehicle collision testing-device
US11199475B2 (en) 2017-02-28 2021-12-14 Kokusai Keisokuki Kabushiki Kaisha Collision simulation test apparatus and impact test apparatus
US11609152B2 (en) 2017-02-28 2023-03-21 Kokusai Keisokuki Kabushiki Kaisha Collision simulation test apparatus and impact test apparatus
US11892371B2 (en) 2017-02-28 2024-02-06 Kokusai Keisokuki Kabushiki Kaisha Collision simulation test apparatus and impact test apparatus
JP2019035705A (en) * 2017-08-21 2019-03-07 国際計測器株式会社 Impact-testing apparatus
JP2020020817A (en) * 2017-08-21 2020-02-06 国際計測器株式会社 Impact testing device

Also Published As

Publication number Publication date
JPH0553374B2 (en) 1993-08-09

Similar Documents

Publication Publication Date Title
US4756432A (en) Crane control method
RU2697355C1 (en) Electric vehicle drive control device and electric vehicle drive control method
JP5673938B2 (en) Electric vehicle control device
KR101919725B1 (en) Vehicle control device and vehicle control method
JP4936552B2 (en) Slip rate estimation device and slip rate control device
JPH01165925A (en) Method for operating collision experimental apparatus of vehicle
CN105899454A (en) Determination of the moved mass of a door system
SE524771C2 (en) Device and method of collision testing
CN109383508A (en) A kind of intelligence slope traffic control method and its vehicle using the control method
de Bruijn et al. On the performance increase of wheel deceleration control through force sensing
CN115127834A (en) Automobile crash test control method and device
CN113799749B (en) Inbound control method and system
JP4818244B2 (en) Electric motor control device and re-adhesion control method
JP3019661B2 (en) Crane operation control method
SE518791C2 (en) A collision test device
US20160153866A1 (en) Method to control end speed of a vehicle in a crash test after a propulsion and coast down phase
JPH0735651A (en) Apparatus for testing crash of vehicle
JP2000358306A (en) Method and apparatus for controlling electric rolling stock while moving at constant speed
TWI792675B (en) Method of estimating and compensating interference torque of lifting system
JP2008289238A (en) Motor controller and readhesion control method
JPH05346373A (en) Operating method of equipment for collision experiment of vehicle
JP3476699B2 (en) Electric car control device
JPH0365629A (en) Method for operating experimental apparatus of collision of vehicle
JPH03163325A (en) Operating method of collision experiment apparatus for vehicle
KR102652609B1 (en) Apparatus and Method for Providing Speed Profile of Heavy Vehicle Suspected of being Overloaded