JPH01165813A - Cylindrical fabric body for knotted pile - Google Patents

Cylindrical fabric body for knotted pile

Info

Publication number
JPH01165813A
JPH01165813A JP32338487A JP32338487A JPH01165813A JP H01165813 A JPH01165813 A JP H01165813A JP 32338487 A JP32338487 A JP 32338487A JP 32338487 A JP32338487 A JP 32338487A JP H01165813 A JPH01165813 A JP H01165813A
Authority
JP
Japan
Prior art keywords
pile
cylindrical fabric
diameter
fabric body
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32338487A
Other languages
Japanese (ja)
Inventor
Yoshiomi Hotta
堀田 義臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP32338487A priority Critical patent/JPH01165813A/en
Publication of JPH01165813A publication Critical patent/JPH01165813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To attain improvement of work and economic efficiency for pile creation as well as to attain increase of pile's bearing power, by preparing a portion of expandable diameter made of a fabric having a prescribed breaking elongation in the circumferential direction, in a cylindrical fabric body, into which hydraulic slurry is injected for creation of a pile-shaped substance under the ground. CONSTITUTION:A cylindrical fabric body 1 for knotted pile is made, consisting a portion of expandable diameter B, made of a fabric having a 80% or more or breaking elongation in the circumferential direction, and a portion of non- expandable diameter A. At work execution the cylindrical fabric body 1 is inserted, with its tip 7 clasped by a special jig, into a drilled hole 6. At the upper end of the ground side of the cylindrical fabric body 1, a packer 3 for grounding of hydraulic slurry is installed and, at the same time, the tip of the cylindrical fabric body is secured with a fixing jig 4. Then, cementitious hydraulic slurry 5 such as cement milk, mortar or concrete is pressure-injected with a group pump. With this arrangement, the portion of expandable diameter B can be expanded transversely, forming a pile-shaped substance having the portion of expanded diameter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、土木建築分野で軟弱地盤の改良に用いる埋込
みタイプのフレキシブルな基礎杭造成用筒状布帛体に関
し、さらに詳しくは、水硬性スラリーの加圧注入によっ
て杭の長平方向の任意の部位を注入圧で膨張拡径させ、
杭の摩耗支持力を飛躍的に向上させるとともに杭材料費
の大幅コスト合理化を可能にした節杭用筒状布帛体に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cylindrical fabric body for constructing embedded type flexible foundation piles used for improving soft ground in the field of civil engineering and construction, and more specifically relates to a cylindrical fabric body for constructing hydraulic slurry. By pressurized injection, any part in the longitudinal direction of the pile is expanded and expanded in diameter by the injection pressure.
This invention relates to a cylindrical fabric for knotted piles that dramatically improves the abrasion bearing capacity of piles and enables significant rationalization of pile material costs.

〔従来の技術〕[Conventional technology]

軟弱地盤中に埋設した杭の摩擦支持力を向上させる方法
としては、既製杭埋込み工法分野では杭の外周面上に同
心円状の突起部を一体成形した異径既製コンクリート杭
を掘削大中に埋込む方法、杭の外周面上に板羽根をラセ
ン状に取付けた既製羽根付き鋼管杭をねじ込む方法、ま
た土中内杭造成工法分野では掘削大中で型枠を用いて杭
の外周面上に同心円状の突起部を有するコンクリート杭
を造成する方法、さらには例えば特開昭57−2471
8号公報にて提案されている如く、可撓性スリーブを用
いて現場打ちにより、異形断面(凹凸状)を有する杭を
造成する方法等が試みられてい゛る。
As a method to improve the frictional bearing capacity of piles buried in soft ground, in the field of prefabricated pile embedding methods, prefabricated concrete piles of different diameters with concentric protrusions integrally formed on the outer circumferential surface of the pile are buried in excavation. There is also a method of screwing in a steel pipe pile with ready-made blades, which has plate blades attached in a helical pattern on the outer circumferential surface of the pile. A method for constructing a concrete pile having concentric protrusions, and furthermore, for example, JP-A-57-2471
As proposed in Publication No. 8, methods have been attempted in which piles with irregular cross sections (irregularities) are constructed by casting on site using flexible sleeves.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来提案されているこれらの方法には以
下に述べる如く種々の問題があり、必ずしも合理的なも
のとはいい難い。すなわち、異径既製コンクリート杭の
場合には、杭自体の製造コストや施工現場迄の運搬コス
トが高くつく上、沈設用掘削穴の孔径増大化に伴う施工
コストのアップおよび工期延長、さら北は地盤密着力の
減損によって本来の目的である摩擦支持力を充分に引き
出せないなどの機能的欠陥があり、また既製羽根付き鋼
管杭の場合には杭材料費コストの大幅高に加え、腐食等
の本質的問題がある。
However, these conventionally proposed methods have various problems as described below, and are not necessarily rational. In other words, in the case of ready-made concrete piles of different diameters, the manufacturing cost of the pile itself and the cost of transporting it to the construction site are high, and the construction cost and construction period are increased due to the increase in the diameter of the excavated hole for sinking. There are functional defects such as the inability to fully draw out the original purpose of frictional bearing capacity due to loss of ground adhesion, and in the case of ready-made winged steel pipe piles, in addition to significantly higher pile material costs, there are problems such as corrosion. There is a fundamental problem.

また掘削大中で型枠を用いてコンクリート抗を造成する
場合は前者と同様、杭の造成コストが大幅に高くつく上
、地盤との密着力の減損によって摩擦支持力が充分に期
待できないなどの欠陥がある。さらに可撓性スリーブと
鋼管との組合せによる場合には、可撓性スリーブ内に水
硬性スラリーを充填させるため、二重式注入管等が必要
であるばかりでなく、注入工程が非常に複雑かつ繁雑で
あり、実用性に欠けていた。その上、水硬性スラリー硬
化体と鋼管との付着力が弱いため、杭として°一体化さ
れたものが得に<(、造成された基礎杭の支持力は小さ
いものとなりやすいなど、これまでの杭または杭材料に
は幾多の問題点があった。
Similarly to the former case, when constructing concrete pits using formwork during excavation, the cost of constructing the piles is significantly higher, and there are also problems such as insufficient frictional bearing capacity due to loss of adhesion to the ground. There is a flaw. Furthermore, when a flexible sleeve and steel pipe are used in combination, not only is a double injection pipe required to fill the flexible sleeve with hydraulic slurry, but the injection process is extremely complicated and complicated. It was complicated and lacked practicality. In addition, because the adhesion between the hydraulic slurry hardened body and the steel pipe is weak, it is better to use integrated piles (). There have been a number of problems with piles or pile materials.

本発明の目的は、容易な施工性、杭材料費および施工費
の低減、任意パターンの膨張拡径、および摩擦支持力の
向上を可能にする節杭用筒状布帛体を提供することにあ
る。
An object of the present invention is to provide a cylindrical fabric for knotted piles that enables easy construction, reduction of pile material costs and construction costs, expansion and diameter expansion in arbitrary patterns, and improvement of frictional support. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、熱可塑性合成繊維の未延伸糸または低延
伸糸等に代表される低配向性繊維材料の低応力下での良
好な伸長性機能に着眼し、これを筒状布帛体の拡径部に
用いることにより、前記目的が達成されることを見出し
、本発明に到達したものである。
The present inventors focused on the good extensibility function under low stress of low-oriented fiber materials, such as undrawn yarns or low-drawn yarns of thermoplastic synthetic fibers, and applied this to the The inventors have discovered that the above object can be achieved by using it in the enlarged diameter section, and have arrived at the present invention.

すなわち本発明は、内部に水硬性スラリーを加圧注入し
て硬化させ、土中に杭状物を造成する、先端部が閉塞さ
れた状態の筒状布帛体において、該筒状布帛体が非拡径
部と拡径部とよりなり、かつ拡径部を形成する繊維の少
なくとも円周方向が破断伸度80%以上の繊維からなる
ことを特徴とする。
That is, the present invention provides a cylindrical fabric body with a closed tip, which is used to inject a hydraulic slurry under pressure into the interior and harden it to create a pile-like object in the soil. It is characterized in that it consists of an enlarged diameter part and an enlarged diameter part, and the fibers forming the enlarged diameter part are made of fibers having a breaking elongation of 80% or more at least in the circumferential direction.

本発明によれば、任意のパターンの膨張拡径部を有する
、摩擦支持力の高い節杭を、容易な施工法で低コストで
土中に形成することができる。
According to the present invention, a knotted pile having an arbitrary pattern of expanded diameter portions and having a high frictional bearing capacity can be formed in the soil using an easy construction method and at low cost.

本発明でいう水硬性スラリーとは、流動化状態にあるセ
メント混和物をいい、代表的なものとしてはセメントミ
ルク、モルタル、コンクリートなどを挙げることができ
る。セメントと混和する水および添加材料の混和比率は
、硬化物の必要材料強度、注入時の操作性、材料コスト
、布帛の耐摩耗強度、布帛の透水性等を総合的に勘案し
て決めることが望ましい。
The hydraulic slurry as used in the present invention refers to a cement mixture in a fluidized state, and typical examples thereof include cement milk, mortar, and concrete. The mixing ratio of water and additive materials to be mixed with cement can be determined by comprehensively considering the required material strength of the cured product, operability during injection, material cost, abrasion resistance strength of the fabric, water permeability of the fabric, etc. desirable.

本発明でいう先端部が閉塞された状態とは、第4図の符
号7に示す如く、部位的には地盤中で造成される杭の高
深度側端部、すなわち反注入口側端部を指し、閉塞され
た状態とは反注入口側端部より注入物が漏失するのを阻
止する目的で節杭用筒状布帛体1の当該先端部を坊主結
び等による結束または各種治具による閉鎖、または織組
織による閉鎖等が施された状態をいう。側端部の閉塞方
法としては地上部側からの水硬性スラリーの注入内圧に
よって該閉塞部分が破壊することがなければ如何なる方
法でもよいが、筒状布帛体の製造コストを考慮すれば、
閉塞機能付与に伴う布帛体のロスを最小限に止め得る組
織閉塞法をとるのが賢明である。
In the present invention, the state in which the tip is closed refers to the end on the deep side of the pile built in the ground, that is, the end on the side opposite to the injection port, as shown by reference numeral 7 in Fig. 4. The closed state refers to the state in which the tip of the cylindrical fabric body 1 for knot piles is tied with a shaved knot or the like or closed with various jigs in order to prevent the injected material from leaking from the end opposite to the injection port. , or a state in which closure with a woven structure, etc. is applied. Any method may be used to close the side end portions as long as the closed portions are not destroyed by the internal pressure of injection of hydraulic slurry from the above-ground side, but considering the manufacturing cost of the cylindrical fabric body,
It is wise to use a tissue occlusion method that can minimize the loss of fabric associated with the provision of occlusion function.

本発明の節杭用筒状布帛体とは、完全展張状態において
長手方向の全ての部分にわたりその横断面が円型断面構
造を示すとともに、部分的に直径の大なる部位を含有す
る円筒状布帛体のことであり、注入材注入前の初期形状
はストレートまたはストレートに近似した円筒状態を示
すものである。
The cylindrical fabric for knot piles of the present invention is a cylindrical fabric whose cross section exhibits a circular cross-sectional structure over the entire length in the fully stretched state, and which partially includes a portion with a large diameter. The initial shape before injection of the injection material is a straight or approximately straight cylindrical shape.

円筒構造を得るための手段としては、第6図に示すよう
にシームレスタイプの風道構造、第7図に示すような一
重部分と風道部分とからなる耳付き風通構造、第8図に
一例を示すようなシート状物の両端部を重ね合わせて縫
製、接着、融着等の縫着加工により円筒構造としたもの
など、筒状布帛体中に充填する注入材の注入圧力に耐え
得るものであればいずれを選択しても良いが、高い耐圧
力を最も合理的に得る観点から、局部的な応力集中の起
きないシームレスタイプの風道構造を採ることがより好
ましい。また布帛体の形態としては識物、編物、ネット
状物等が考えられるが、中でも本発明に求められる耐圧
性、杭硬化体の形態安定性注入材の漏失防止の観点から
、実質的に織物が最適であるが、編物、ネット状物等に
ついても組織構造や密度、さらには積層等の組合せによ
って適用することができる。
Means for obtaining a cylindrical structure include a seamless type air duct structure as shown in Fig. 6, a vent structure with ears consisting of a single layer and an air duct part as shown in Fig. 7, and a selvedge air duct structure as shown in Fig. For example, a cylindrical structure made by overlapping both ends of a sheet and sewing, gluing, fusing, etc., can withstand the injection pressure of the injection material filled into the cylindrical fabric. Any type may be selected, but from the viewpoint of obtaining high pressure resistance most rationally, it is more preferable to adopt a seamless type air channel structure that does not cause local stress concentration. In addition, the form of the fabric body may be a piece of paper, a knitted fabric, a net-like article, etc. Among them, from the viewpoint of the pressure resistance required in the present invention, the shape stability of the pile hardening body, and the prevention of leakage of the injection material, it is preferable to use a fabric. is most suitable, but it can also be applied to knitted fabrics, net-like fabrics, etc. depending on the combination of tissue structure, density, and lamination.

本発明でいう非拡径部とは、例えば第1図のaに示すよ
うに、上載圧縮荷重に耐える役割を果たすべき最小径部
分で、その直径は注入材の組成とともに杭硬化物の圧縮
強度を決定するものである。
The non-expanded diameter portion in the present invention is the minimum diameter portion that should withstand the overlying compressive load, as shown in Fig. 1a, for example, and its diameter is determined by the composition of the injection material as well as the compressive strength of the hardened pile material. This is what determines the

この非拡径部は、地上における筒状布帛体の内圧が0.
1kg−f/cJ以上、3.0 kg−f lct&未
満の状態において筒状布帛体の初期口径に対して30%
以上膨張拡径することのないものが好ましい。当該部に
使用する繊維素材としては、比較的低伸度の素材がよく
、好ましい水準としては破断伸度が20%未満程度であ
ることが望ましい。この観点から適当な素材としては、
高強力型6−ナイロン、6ローナイロン等のポリアミド
系繊維、ポリエステル繊維、アラミド繊維、高強度ポリ
エチレンやポリプロピレンなどのポリオレフィン系繊維
、炭素繊維など、数多くの繊維を挙げることができるが
、いずれを選択するかについてはコスト、必要な耐圧強
度等から決めればよい。これらの素材は単独または複合
のいずれであってもよい。また、使用素材の繊度および
組織、密度については、必要耐圧強度、透水性、コスト
等を総合的に勘案して決めるのが好ましい。初期口径に
対して30%未満の伸長率であることが望ましいのは、
スラリー注入時の注入性から最小直径が必然的に決まる
ことと、30%以上の膨張拡径は注入材コストを大幅に
圧迫する上に、拡径とともに耐圧性能が低下するなどの
ためである。
In this non-expanded diameter part, the internal pressure of the cylindrical fabric on the ground is 0.
30% of the initial diameter of the cylindrical fabric in a state of 1 kg-f/cJ or more and less than 3.0 kg-f lct&
It is preferable to use a material that does not expand or expand in diameter. The fiber material used for this part is preferably a material with relatively low elongation, and preferably has a breaking elongation of less than 20%. From this point of view, suitable materials include:
There are many fibers to choose from, including polyamide fibers such as high-strength 6-nylon and 6-row nylon, polyester fibers, aramid fibers, polyolefin fibers such as high-strength polyethylene and polypropylene, and carbon fibers. Whether to do so may be determined based on cost, required pressure resistance, etc. These materials may be used alone or in combination. Further, the fineness, texture, and density of the material used are preferably determined by comprehensively taking into consideration the required compressive strength, water permeability, cost, etc. It is desirable that the elongation rate is less than 30% with respect to the initial diameter.
This is because the minimum diameter is inevitably determined by the injectability during slurry injection, and expanding the diameter by 30% or more will significantly increase the cost of the injection material, and the pressure resistance will decrease as the diameter increases.

本発明でいう拡径部とは、例えば第1図のBに示すよう
に、非拡径部の表面摩擦力とともに上戴物を沈下させる
ことなく支持する役割を果たす部分で、注入内圧によっ
て膨張拡径し、球根部の断面積アップによって杭の支持
力を飛躍的に向上させる働きを備えた部位である。該拡
径部は展張状態において非拡径部と同心円を成すもので
あればその形状については特に限定するものではなく、
個所数についても少なくとも1個所以上設ければよい。
The enlarged diameter part in the present invention is a part that plays a role of supporting the upper body without sinking along with the surface friction force of the non-expanded diameter part, and is expanded by the injection internal pressure. This part has the function of dramatically increasing the supporting capacity of the pile by expanding the diameter and increasing the cross-sectional area of the bulb. The shape of the expanded diameter portion is not particularly limited as long as it forms a concentric circle with the non-expanded diameter portion in the expanded state.
As for the number of locations, it is only necessary to provide at least one location.

ここで、非拡径部、拡径部の両部位とも、注入材注入前
の筒状体初期直径は同一または拡径部が僅かに大きい程
度のいわゆるストレート形状、またはストレート形状に
極めて近似したものであることが望ましい。このように
すると掘削穴中への筒状布帛体の沈設が容易で施工作業
性が著しく向上するとともに、掘削穴径の減径化に伴う
掘削コストの低減、所要布帛量低減化に伴う布帛コスト
の合理化等の効果が得られる。
Here, both the non-expanded diameter part and the expanded diameter part have the same initial diameter before the injection material is injected, or the expanded diameter part is slightly larger in a so-called straight shape, or is extremely similar to a straight shape. It is desirable that In this way, it is easy to sink the cylindrical fabric into the excavated hole, significantly improving construction workability, and reducing the drilling cost due to the reduction in the diameter of the excavated hole, and the fabric cost due to the reduction in the amount of fabric required. Effects such as rationalization can be obtained.

次に支持力、耐圧縮強度、注入材コストを左右する非拡
径部と拡径部との完全展張状態時の直径比率の設定につ
いては、非拡径部は上載圧縮荷重に耐え得る最小径とす
ることが注入材および布帛体コストの点から好ましい。
Next, regarding the setting of the diameter ratio in the fully expanded state of the non-expanded diameter part and the enlarged diameter part, which affects the bearing capacity, compressive strength, and injection material cost, the non-expanded diameter part has the minimum diameter that can withstand the overlying compressive load. This is preferable from the viewpoint of injection material and fabric cost.

一方、拡径部は支持力を増加させる点から拡径能力が大
きい方が好ましいが、地盤中で完全展張させる観点から
地上において0.1kg−f/cd以上3.0kg−f
/cd未満の内圧に耐え得ることが望ましい。従って、
これらと注入杭材料の剪断強度限界とを勘案して直径構
成を決めるのが望ましいが、本発明者の豊富な実験によ
れば、拡径部の拡径倍率については最大5倍以下程度が
、また実用的には3倍以下程度が好ましいことが認めら
れた。なお、第9図に一例を示すように複数個の拡径部
を設ける場合には、部位によって拡径倍率の異なるもの
を用いてもよ(、また部位内で拡径倍率が異なってもよ
い。さらに、筒状布帛体の全体長さ寸法や非拡径部、拡
径部の個々の長さ、また両部位の配置パターン、個所数
等については地盤構造データに基づいて最も好適な設計
とするのがよい。
On the other hand, it is preferable for the expanded diameter part to have a larger diameter expansion capacity in order to increase the supporting force, but from the viewpoint of fully expanding in the ground, it is 0.1 kg-f/cd or more than 3.0 kg-f on the ground.
It is desirable to be able to withstand internal pressures of less than /cd. Therefore,
It is desirable to decide the diameter configuration by taking these and the shear strength limit of the poured pile material into consideration, but according to the inventor's extensive experiments, the diameter expansion ratio of the diameter expansion part should be about 5 times or less at maximum. Furthermore, it has been found that approximately 3 times or less is preferable in practical terms. In addition, when a plurality of diameter enlarged parts are provided as shown in an example in FIG. Furthermore, the overall length of the cylindrical fabric, the individual lengths of the non-diameter portion and the expanded diameter portion, the arrangement pattern of both portions, the number of locations, etc. are determined based on the ground structure data to determine the most suitable design. It is better to do so.

前記非拡径部と拡径部との複合一体化の手段としては、
第2図に示すように織成時に円筒状態の布帛中の円周方
向の糸のみを変更する方法、第3図に示すように長平方
向、円周方向ともそれぞれ異なる糸で構成された布帛ま
たは円周方向のみ異なる糸で構成された布帛を縫製また
は接着等によって縫着する方法などがあるが、所要機能
を満たすものであれば他の方法でもよい。また、両部位
の構成については布帛の積層の有無についてもこれを問
うものではない。さらにまた、拡径部の円周方向を形成
する繊維材料としては規定破断伸度を満たすものであれ
ば1種類または2種類以上の素材の複合使用であっても
よい。
As a means for compositely integrating the non-diameter expanded portion and the expanded diameter portion,
As shown in Fig. 2, only the threads in the circumferential direction of the cylindrical fabric are changed during weaving, as shown in Fig. 3; There is a method of sewing or gluing fabrics made of threads that differ only in the circumferential direction, but other methods may be used as long as they satisfy the required functions. Further, regarding the configuration of both parts, there is no question as to whether or not the fabrics are laminated. Furthermore, the fiber material forming the circumferential direction of the enlarged diameter portion may be one type or a combination of two or more types as long as it satisfies the specified elongation at break.

本発明でいう円周方向とは、杭の反長平方向すなわち断
面形状が円型に展張された時に直径すなわち外周長を制
御する方向のことであり、例えば第6図のCに相当する
。シームレス円筒織物を例にとれば緯糸方向に相当する
ものである。ここで少なくとも円周方向を形成する繊維
と規定しているのは、ストレート形状の筒状体の一部を
膨張拡径するためには最低、外周長の高伸長挙動が不可
欠であるのに対し、長手方向については必ずしも高い伸
長性を要しないが、高い伸長性があれば円滑、かつ安定
な拡径を行なう上でより好ましいためである。
The circumferential direction in the present invention refers to the opposite elongated direction of the pile, that is, the direction in which the diameter or outer circumference is controlled when the cross-sectional shape is expanded into a circular shape, and corresponds to C in FIG. 6, for example. Taking a seamless cylindrical fabric as an example, this corresponds to the weft direction. The fibers that form at least the circumferential direction are defined here because in order to expand and expand a part of a straight cylindrical body, at least a high elongation behavior in the outer circumference is essential. Although high extensibility is not necessarily required in the longitudinal direction, high extensibility is preferable for smooth and stable diameter expansion.

本発明の拡径部を形成する繊維の破断伸度は80%以上
、好ましくは100%以上であることが必要である。
It is necessary that the elongation at break of the fibers forming the expanded diameter portion of the present invention is 80% or more, preferably 100% or more.

破断伸度が80%以上であることが必要な理由は、80
%未満の場合には拡径倍率が最大1.8倍未満となり、
注入材コストと支持力との関係からコスト優位性が充分
に引き出せないためである。
The reason why the elongation at break needs to be 80% or more is that
If it is less than %, the maximum diameter expansion magnification will be less than 1.8 times,
This is because the cost advantage cannot be fully extracted from the relationship between the cost of the injection material and the supporting capacity.

本発明でいう80%以上の破断伸度を有する繊維とは、
素材組成などに限定されることなく、破断伸度が80%
以上を示す繊維材料の全てを指し、単一素材または2種
以上の異素材複合の如何を問わない。また構成繊維の繊
度、複合本数、さらには本発明のポイントである伸長性
発現機構が未加工原糸、各種捲縮加工糸、カバリングヤ
ーン、コアヤーン、組紐等その構成形態が何であるかに
ついても特に制限するものではなく、前記伸長性に加え
て必要な耐圧性能を満足させるものであればよい。本発
明者等の実験によれば、高強力型熱可塑性合成繊維の低
倍率延伸糸、高速紡糸原糸、高伸長性仮撚加工糸等を緯
糸または経緯糸に用いて構成することは両性能を満足さ
せる上で極めて有効な手段となり得る。ここに、熱可塑
性合成繊維の高強力型低倍率延伸糸としては、タイヤコ
ード原糸の製造用に一般に使用される高重合度のチップ
を用いて紡糸した後、1.5倍〜2.0倍程度の延伸倍
率で熱延伸または冷延伸して得られる6−ナイロンまた
は6ローナイロン等のポリアミド系繊維などが好適であ
り、これらの方法で得られた繊維は、比較的高強度で、
かつ概ね破断伸度100〜150%程度のレベルを有す
る。また、高伸長性仮撚加工糸としては高強力型の6〜
ナイロンまたは6ローナイロンの延伸糸に低撚数域の撚
りを予め付与した後、仮撚加工することによって得られ
るポリアミドtヲ縮加工糸などを挙げることができる。
In the present invention, the fiber having a breaking elongation of 80% or more means:
Breaking elongation is 80% regardless of material composition etc.
It refers to all of the above-mentioned fiber materials, regardless of whether they are a single material or a composite of two or more different materials. In addition, the fineness of the constituent fibers, the number of composite fibers, and even the composition form of the elongation mechanism, which is the key point of the present invention, such as unprocessed yarn, various crimped yarns, covering yarns, core yarns, braided cords, etc. The material is not limited as long as it satisfies the necessary pressure resistance in addition to the extensibility described above. According to the experiments conducted by the present inventors, it is possible to achieve both performance by using low-strength thermoplastic synthetic fibers such as low-magnification drawn yarns, high-speed spun yarns, high-extensibility false-twisted yarns, etc. for the weft or warp yarns. It can be an extremely effective means to satisfy the following. Here, the high-strength, low-magnification drawn yarn of thermoplastic synthetic fiber is 1.5 times to 2.0 Polyamide fibers such as 6-nylon or 6-row nylon obtained by hot drawing or cold drawing at a draw ratio of about
In addition, the elongation at break is approximately 100 to 150%. In addition, high-strength type 6~
Examples include polyamide t-crimped yarn obtained by pre-twisting a drawn yarn of nylon or 6-row nylon in a low twist range and then false twisting the yarn.

該方法によれば破断伸度80〜100%程度のレベルを
有する高性能の加工糸を得ることができる。
According to this method, a high-performance textured yarn having a breaking elongation of about 80 to 100% can be obtained.

次に、本発明になる筒状布帛体を用いた異径摩擦杭の土
中における造成パターンの一例について図面を用いて詳
細に説明する。
Next, an example of a construction pattern in soil of friction piles of different diameters using the cylindrical fabric according to the present invention will be described in detail with reference to the drawings.

第1図は、本発明の節杭用筒状布帛体の使用状態(完全
展張状態)を示す模式図、第2図および第3図は本発明
の節杭用筒状布帛体の非拡径部と拡径部との一体化方法
の例を示す模式図、第4図は本発明の節杭用筒状布帛体
を掘削穴に挿入した状態を示す模式図、第5図は完成さ
れた異径摩擦杭の土中における地盤との一体化状態を示
す縦断面図、第6図、第7図および第8図は、それぞれ
筒状布帛体の円筒化方法を示す模式図、第9図は本発明
の他の実施例の拡径パターンの一例を示す模式図である
FIG. 1 is a schematic diagram showing the usage state (fully expanded state) of the cylindrical fabric for knot piles of the present invention, and FIGS. 2 and 3 show the non-diameter expansion of the cylindrical fabric for knot piles of the present invention. Fig. 4 is a schematic diagram showing an example of a method of integrating the section and the enlarged diameter part, Fig. 4 is a schematic diagram showing the state in which the cylindrical fabric for knot piles of the present invention is inserted into an excavated hole, and Fig. 5 is a schematic diagram showing the completed section. 6, 7, and 8 are longitudinal cross-sectional views showing how the friction piles of different diameters are integrated with the ground in the soil, and FIG. FIG. 2 is a schematic diagram showing an example of a diameter expansion pattern according to another embodiment of the present invention.

本発明の節杭用筒状布帛体1は、第2図に示すように非
拡径部Aと拡径部Bとよりなり、拡径部Bの先端には先
端閉塞用非拡径部A゛が設けられている。拡径部Bを形
成する繊維は、前述のように少なくとも円周方向の破断
伸度が80%以上の繊維からなる。非拡径部Aと拡径部
Bの初期直径が路間−となるように形成されたストレー
ト形状または略ストレート形状の筒状布帛体1は、第4
図に示すように該筒状布帛体の初期直径を若干下用る孔
径で掘削されてなる掘削穴6の中に、閉塞された先端部
7を専用治具で把持して挿入沈設し、一方、該筒状布帛
体の地上部側上端部に水硬性スラリー注入用パッカー3
を取付けて固定する。−方、筒状布帛体の地下側先端部
は固定治具4によって穴底部9に固定する。次いで、パ
ラカーラ介してセメントミルク、モルタル、コンクリー
ト等の内から選択さたセメント系水硬性スラリー5を圧
送ポンプを用いて加圧注入する。該筒状布帛体は加圧注
入された水硬性スラリーによって周囲の土壁8を押し拡
げつつ展張を開始し、まず第1段階としてストレート状
態の初期直径を満たすべく円型断面に近似した形状に展
張される。さらに水硬性スラリーの注入を続けると少な
くとも円周方向が80%以上の破断伸度を有する高伸長
性繊維材料からなる拡径部Bが直径方向に膨張を開始し
、非拡径部Aの長手方向に非拡径部と同心円状に直径の
大なる突起部が一体成形される。次いで、注入完了とと
もに該筒状布帛体中の圧力を僅かに減圧し、注入用パッ
カーを取外して注入操作は終了するが、該筒状布帛体中
に充填された水硬性スラリーは間もなく硬化し、第5図
に示すように圧密された土壁10と完全一体化し、摩擦
支持力の極めて高い異径摩擦杭が土中に完成される。本
発明は、以上詳述した如く構成さているので容易かつ合
理的に異径摩擦杭を土中に造成することができるととも
に、低コストで高い摩擦支持力が得られるものである。
The cylindrical fabric body 1 for knot piles of the present invention, as shown in FIG.゛ is provided. The fibers forming the enlarged diameter portion B are made of fibers having a breaking elongation of at least 80% or more in the circumferential direction, as described above. The straight or substantially straight-shaped cylindrical fabric body 1 is formed such that the initial diameters of the non-expanded diameter portion A and the expanded diameter portion B are -.
As shown in the figure, the closed end portion 7 is grasped with a special jig and inserted into an excavated hole 6 which has been drilled with a diameter slightly smaller than the initial diameter of the cylindrical fabric. , a hydraulic slurry injection packer 3 is provided at the upper end of the above-ground side of the cylindrical fabric body.
Attach and secure. - On the other hand, the underground end of the cylindrical fabric is fixed to the hole bottom 9 by a fixing jig 4. Next, a cement-based hydraulic slurry 5 selected from among cement milk, mortar, concrete, etc. is injected under pressure through the Parakara using a pressure pump. The cylindrical fabric body begins to expand while pushing out the surrounding soil wall 8 by the hydraulic slurry injected under pressure, and in the first step, it is shaped into a shape approximating a circular cross section in order to fill the initial diameter of the straight state. Expanded. When the hydraulic slurry is further injected, the enlarged diameter part B made of a highly extensible fiber material having a breaking elongation of 80% or more in the circumferential direction starts to expand in the diametrical direction, and the non-expanded diameter part A starts to expand in the diametrical direction. A projection portion having a large diameter is integrally molded concentrically with the non-diameter expansion portion in the direction. Next, when the injection is completed, the pressure in the cylindrical fabric is slightly reduced, the injection packer is removed, and the injection operation is completed, but the hydraulic slurry filled in the cylindrical fabric will soon harden. As shown in FIG. 5, a friction pile of different diameters, which is completely integrated with the consolidated earth wall 10 and has an extremely high frictional bearing capacity, is completed in the soil. Since the present invention is constructed as described in detail above, it is possible to easily and rationally construct friction piles of different diameters in the soil, and at the same time, it is possible to obtain high frictional bearing capacity at low cost.

次に本発明を具体的実施例を用いて説明するが、本発明
はこれらに何ら限定されるものではない。
Next, the present invention will be explained using specific examples, but the present invention is not limited to these in any way.

実施例1 有杼織機を用いて、経糸に破断伸度18%、強度10.
5g/dの6ローナイロン1260d、4本合撚糸(8
0T/M)を、緯糸は非拡径部分が経糸と同一系、拡径
部分が高強力タイプの6ローナイロン未延伸糸を延伸倍
率1.70倍で延伸した見掛繊度3910d、破断伸度
138%、強度が5、3 g / dである低延伸糸(
80T/M)をそれぞれ配し、経×緯密度が15X15
本/吋、組織が平織、初期直径が30cmφ、全長が5
.5mで、かつ順に最先端部側0.5mが先端閉塞用の
非拡径部、次いで拡径部が1m、非拡径部が4mである
ストレート形状のシームレス筒状織物を織成した。
Example 1 Using a shuttle loom, the warp yarns had a breaking elongation of 18% and a strength of 10.
5g/d 6 row nylon 1260d, 4 plied twisted yarns (8
0T/M), the non-expanded diameter part of the weft is the same as the warp, and the expanded diameter part is a high-strength type 6-row nylon undrawn yarn, drawn at a draw ratio of 1.70 times.The apparent fineness is 3910d, and the elongation at break is 3910d. 138%, low drawn yarn with a strength of 5,3 g/d (
80T/M) respectively, and the warp x latitude density is 15 x 15
Book/inch, texture is plain weave, initial diameter is 30cmφ, total length is 5
.. A straight-shaped seamless cylindrical fabric was woven with a length of 5 m and a non-expanded diameter part for closing the tip at 0.5 m on the distal end side, followed by a 1 m expanded diameter part and a 4 m non-expanded diameter part.

次いで該筒状織物の最先端から0.5mの部分を用いて
先端部を坊主結びにて閉塞した。この先端部の閉塞され
た筒状織物を20cmφの孔径て掘削されたN値3の軟
弱地盤の掘削大中に、第4図に示した方法によって沈設
固定し、この筒状織物内にセメント/砂比率1:2の良
質モルタルを吐出能力801/分の圧送ポンプで加圧注
入し、該筒状織物中の内圧が5.0kg−f/cAに到
達した段階で注入操作を終了した。注入終了とともに内
圧をやや減圧にし、バッカーを取外して杭打設を全て完
了したが、筒状織物の沈設から打設完了までの所要時間
は約10分間と、極めて迅速に打設することができた。
Next, a 0.5 m portion from the leading edge of the cylindrical fabric was used to close the leading end with a shaved knot. This cylindrical fabric with its tip closed is fixed in the excavation of soft ground with an N value of 3, which has been excavated through a hole diameter of 20 cm, by the method shown in Fig. 4, and cement/ Good quality mortar with a sand ratio of 1:2 was injected under pressure using a pressure pump with a discharge capacity of 801/min, and the injection operation was terminated when the internal pressure in the cylindrical fabric reached 5.0 kg-f/cA. Once the injection was completed, the internal pressure was reduced slightly, the backer was removed, and all pile driving was completed.The time required from sinking the cylindrical fabric to completion of the pile driving was approximately 10 minutes, making the pile driving extremely quick. Ta.

その後、土壁と一体化された杭を28日間養生して、載
荷テストを行なったところ、22ton/本の極めて高
い摩擦支持力を得た。
Thereafter, when the piles integrated with the earthen wall were cured for 28 days and a loading test was conducted, an extremely high frictional bearing capacity of 22 tons/piece was obtained.

さらにその後、抗体を土中より引き抜いて形状を確認し
た結果、全長5mで先端部に断面形状が略円型である直
径66cmφの球根状突起を一体化した拡径倍率2.2
倍の兄事な異径摩擦杭が完成していた。また硬化体表面
に一体化された織物糸間隙からのモルタル漏出も認めら
れなかった。
After that, we pulled the antibody out of the soil and confirmed its shape, and found that it had a total length of 5m and a bulbous protrusion with a diameter of 66cmφ with a roughly circular cross-section at the tip, and a diameter expansion magnification of 2.2.
A friction pile with a different diameter, which is a big brother, has been completed. Furthermore, no leakage of mortar from the gaps between the fabric threads integrated on the surface of the cured product was observed.

支持力1ton当たりの注入モルタルコストは後述の比
較例1の30cmφストレーストレート形状を1とした
場合、実施例1の場合は0.70と極めて低価格であっ
た。これに加え、さらに杭1本当たりの支持力が比較例
1のストレートタイプに比べて2倍得られたことにより
、施工費コストおよび筒状布帛体コスト面で極めて有利
になることが明らかである。
The injection mortar cost per ton of supporting force was 0.70 in Example 1, which was extremely low, assuming that the 30 cmφ straight straight shape of Comparative Example 1, which will be described later, was 1. In addition to this, since the supporting force per pile was twice that of the straight type of Comparative Example 1, it is clear that this is extremely advantageous in terms of construction cost and tubular fabric cost.

比較例1 実施例1と同様の織機により、経糸および緯糸にそれぞ
れ破断伸度18%、強度10.5g/dの6ローナイロ
ン1260d、4本合撚糸(80T/M)を用い、経×
緯密度が15X15本/吋、組織が平織、初期直径が3
0cmφ、先端閉塞部0゜5mを含めた全長が5.5m
であるストレート形状のシームレス筒状織物を織成した
。次いで、実施例1と同様の要領で先端部を閉塞後、5
.0kg−f/ cnlの内圧到達で注入操作を終了し
、以下実施例1と同様の評価を行なったところ、杭1本
当たりの支持力は1lton/本と低く、支持力1t。
Comparative Example 1 Using the same loom as in Example 1, 6-row nylon 1260d with a breaking elongation of 18% and a strength of 10.5 g/d and 4 twisted yarns (80T/M) were used for the warp and weft, respectively, and the warp
Weft density is 15 x 15 pieces/inch, texture is plain weave, initial diameter is 3
0cmφ, total length including 0゜5m of tip closure part is 5.5m
A straight-shaped seamless tubular fabric was woven. Next, after closing the tip in the same manner as in Example 1,
.. The injection operation was completed when the internal pressure of 0 kg-f/cnl was reached, and the same evaluation as in Example 1 was conducted.

n当たりの注入モルタルコストも割高なものとなった。The injection mortar cost per n also became relatively high.

実施例2 拡径部の緯糸として、高強力66−ナイロンの未延伸糸
(見掛繊度6630d、破断伸度410%)を用いた以
外は実施例1と全く同様に織成したストレート形状のシ
ームレス筒状織物を用いて実施例1および比較例Iと同
様に内圧5.0kg−f/cd点到達までモルタル充愼
を行なったところ、所要打設時間は約12分と極めて迅
速に打設することができた。また載荷テストの結果は2
7tb結果、先端部に断面形状が略円型である直径83
■φの球根状突起を一体化した拡径倍率2.8倍の兄事
な異径摩擦杭が完成していた。また実施例1と同様に織
物糸間隙からのモルタル漏出も認められず、支持力1t
on当たりのモルタルコスト指数も0.75と実施例1
よりは僅かに高目になったものの、比較例1と対比する
と合理的なものであった。さらにまた杭1本当たり支持
力が極めて高いことから、実施例1よりも実用的な価値
は高いものといえる。
Example 2 A straight-shaped seamless tube woven in exactly the same manner as in Example 1 except that high-strength 66-nylon undrawn yarn (apparent fineness 6630 d, breaking elongation 410%) was used as the weft in the expanded diameter part. When filling the mortar with a woven fabric until the internal pressure reached the point of 5.0 kg-f/cd in the same manner as in Example 1 and Comparative Example I, the required pouring time was approximately 12 minutes, indicating extremely rapid pouring. was completed. Also, the result of the loading test is 2
As a result of 7tb, the cross-sectional shape at the tip is approximately circular and the diameter is 83.
■A superior friction pile of different diameters with a diameter expansion ratio of 2.8 times, which integrates a φ bulb-like protrusion, has been completed. Also, as in Example 1, no mortar leakage was observed from the gaps between the fabric yarns, and the supporting force was 1 t.
The mortar cost index per on was also 0.75 and Example 1
Although it was slightly higher than that of Comparative Example 1, it was reasonable when compared with Comparative Example 1. Furthermore, since the bearing capacity per pile is extremely high, it can be said that the practical value is higher than that of Example 1.

比較例2 拡径部の緯糸として高強力66−ナイロンの未延伸糸を
延伸倍率2.45倍で延伸した見掛繊度2720d、破
断伸度61%の半延伸糸(80T/M)を配した以外は
実施例1と同様に作製したストレート形状のシームレス
筒状織物を用いて実施例1.2および比較例1と同様な
モルタル注入評価を行なったところ、球根部最大直径4
5cmφ、拡径倍率1.5倍、杭1本当たりの支持力が
14tb コスト指数が0.95と、比較例1のストレートタイプ
よりはやや良好な傾向にはあるものの、杭1本当たりの
支持力の増加率が約25%と小さく、かつ注入モルタル
コスト指数の低減率も5%と小さいため、実用上満足で
きるものではなかった。
Comparative Example 2 A semi-drawn yarn (80T/M) with an apparent fineness of 2720 d and a breaking elongation of 61%, which was made by stretching an undrawn yarn of high tenacity 66-nylon at a stretching ratio of 2.45 times, was used as the weft of the enlarged diameter part. When the same mortar injection evaluation as in Example 1.2 and Comparative Example 1 was performed using a straight-shaped seamless cylindrical fabric produced in the same manner as in Example 1 except for this, the maximum diameter of the bulb part was 4.
5 cmφ, diameter expansion ratio 1.5 times, bearing capacity per pile is 14 tb, cost index is 0.95, which tends to be slightly better than the straight type of comparative example 1, but bearing capacity per pile The rate of increase in the mortar cost index was as small as about 25%, and the rate of decrease in the poured mortar cost index was also as small as 5%, which was not satisfactory in practical terms.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、拡径部は初期直径が小さく収納されて
おり、かつ注入内圧で膨張拡径するように構成されてい
るので、掘削穴径の縮小化、筒状布帛体の易沈設性、任
意部位の拡径、注入材のコスト低減化、高い摩擦支持力
が得られ、機能性、経済性ともに優れた異径摩擦杭が得
られる。本発明の筒状布帛体を用いれば既製異径コンク
リート杭を合理的に製造する手段としても有効利用が可
能であり、利用範囲は極めて広い。
According to the present invention, the expanded diameter portion is housed with a small initial diameter and is configured to expand and expand due to the injection internal pressure, thereby reducing the diameter of the excavation hole and making it easier to sink the cylindrical fabric. , it is possible to enlarge the diameter of any part, reduce the cost of the injection material, and obtain a high frictional bearing capacity, resulting in a friction pile with different diameters that is excellent in both functionality and economy. If the cylindrical fabric of the present invention is used, it can be effectively used as a means for rationally manufacturing ready-made concrete piles of different diameters, and the range of use is extremely wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の節杭用筒状布帛体の使用状態(完全展
張状態)を示す模式図、第2図および第3図は本発明の
節杭用筒状布帛体の非拡径部と拡径部との一体化方法の
例を示す模式図、第4図は本発明の節杭用筒状布帛体を
掘削穴に挿入した状態を示す模式図、第5図は完成され
た異径摩擦杭の土中における地盤との一体化状態を示す
縦断面図、第6図、第7図および第8図は、それぞれ筒
状布帛体の円筒化方法を示す模式図、第9図は本発明の
他の実施例の拡径パターンの一例を示す模式図である。 1・・・節杭用筒状布帛体、2・・・縫着部、3・・・
水硬性スラリー注入用パッカー、4・・・固定治具、5
・・・水硬性スラリー、6・・・掘削穴、7・・・閉塞
部、8・・・土壁、9・・・穴底部、IO・・・圧密土
壁、11・・・水硬性スラリーの硬化体、A・・・非拡
径部、Ao・・・先端閉塞用非拡径部、B・・・拡径部
、C・・・円周方向、P・・・土庄。 代理人 弁理士  川 北 武 長 第1図    第2図 1節杭円筒状布帛体 第3図 第4図 第5図 第6図 第8図 第7図 第9図
FIG. 1 is a schematic diagram showing the usage state (fully expanded state) of the cylindrical fabric for knot piles of the present invention, and FIGS. 2 and 3 are non-diameter enlarged portions of the cylindrical fabric for knot piles of the present invention. Fig. 4 is a schematic diagram showing an example of the method of integrating the cylindrical fabric for knot piles of the present invention with the enlarged diameter part, and Fig. 5 is a schematic diagram showing the state in which the cylindrical fabric for knot piles of the present invention is inserted into an excavated hole. 6, 7 and 8 are schematic diagrams illustrating the method of forming a cylindrical fabric body into a cylinder, and FIG. It is a schematic diagram which shows an example of the diameter expansion pattern of another Example of this invention. DESCRIPTION OF SYMBOLS 1... Tubular fabric body for knot piles, 2... Sewing part, 3...
Hydraulic slurry injection packer, 4...fixing jig, 5
... Hydraulic slurry, 6... Excavation hole, 7... Blocked part, 8... Earth wall, 9... Hole bottom, IO... Consolidated earth wall, 11... Hydraulic slurry A: Non-expanded diameter portion, Ao: Non-expanded diameter portion for tip closure, B: Expanded diameter portion, C: Circumferential direction, P: Tonosho. Agent Patent Attorney Takeshi Kawakita Fig. 1 Fig. 2 Fig. 1 section pile cylindrical fabric Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 8 Fig. 7 Fig. 9

Claims (1)

【特許請求の範囲】[Claims] (1)内部に水硬性スラリーを加圧注入して硬化させ、
土中に杭状物を造成する、先端部が閉塞された状態の筒
状布帛体において、該筒状布帛体が非拡径部と拡径部と
よりなり、かつ拡径部を形成する繊維の少なくとも円周
方向が破断伸度80%以上の繊維からなることを特徴と
する節杭用筒状布帛体。
(1) Inject hydraulic slurry under pressure and harden it,
A cylindrical fabric body with a closed tip for creating a pile-like object in soil, the cylindrical fabric body consisting of a non-expanded diameter portion and an expanded diameter portion, and fibers forming the expanded diameter portion. A cylindrical fabric for knot piles, characterized in that the fabric is made of fibers having a breaking elongation of 80% or more at least in the circumferential direction.
JP32338487A 1987-12-21 1987-12-21 Cylindrical fabric body for knotted pile Pending JPH01165813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32338487A JPH01165813A (en) 1987-12-21 1987-12-21 Cylindrical fabric body for knotted pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32338487A JPH01165813A (en) 1987-12-21 1987-12-21 Cylindrical fabric body for knotted pile

Publications (1)

Publication Number Publication Date
JPH01165813A true JPH01165813A (en) 1989-06-29

Family

ID=18154144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32338487A Pending JPH01165813A (en) 1987-12-21 1987-12-21 Cylindrical fabric body for knotted pile

Country Status (1)

Country Link
JP (1) JPH01165813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030645A (en) * 2000-07-14 2002-01-31 Ashimori Ind Co Ltd Tubular bag and bag having core
US20120107049A1 (en) * 2010-10-28 2012-05-03 Hyundai Engineering & Construction Co., Ltd. Tunnel reinforcement structure and tunnel construction method capable of controlling ground displacement using pressurization
JP2016053273A (en) * 2014-09-04 2016-04-14 公益財団法人鉄道総合技術研究所 Slope stabilizing method as countermeasure to earthquake and rain in soil structure with pressure insertion type bar reinforcement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030645A (en) * 2000-07-14 2002-01-31 Ashimori Ind Co Ltd Tubular bag and bag having core
JP4567154B2 (en) * 2000-07-14 2010-10-20 芦森工業株式会社 Bag with core
US20120107049A1 (en) * 2010-10-28 2012-05-03 Hyundai Engineering & Construction Co., Ltd. Tunnel reinforcement structure and tunnel construction method capable of controlling ground displacement using pressurization
US8690478B2 (en) * 2010-10-28 2014-04-08 Hyundai Engineering & Construction Co., Ltd. Tunnel reinforcement structure and tunnel construction method capable of controlling ground displacement using pressurization
JP2016053273A (en) * 2014-09-04 2016-04-14 公益財団法人鉄道総合技術研究所 Slope stabilizing method as countermeasure to earthquake and rain in soil structure with pressure insertion type bar reinforcement

Similar Documents

Publication Publication Date Title
CN201013018Y (en) Injection anchor bar of plasm capsule bag
CN107119680A (en) A kind of anchor pole or pile foundation variable diameters steel reinforcement cage and application
CN107542087A (en) A kind of pouch expansion variable diameters steel reinforcement cage and anchor pole or pile foundation
US3492823A (en) Method and apparatus for forming elongated hardened concrete bodies by pressure grouting
CN106065624A (en) It is applicable to pass through the permanent seal cooling prestress anchorage cable of broken rock and construction method thereof
CN104790392A (en) Construction device and method for reverse bamboo joint type anti-floating anchor rod
KR100437910B1 (en) grouting apparatus for earth anchor using compound packer and earth anchor construction method using the same
KR100766450B1 (en) The anchor construction method in soft ground of gaving used the foundation fixing anchor and this shich consisted of fixing supporter
JPH01165813A (en) Cylindrical fabric body for knotted pile
CN213508499U (en) Narrow and small space upward formula full length bonding anchor rope downthehole segmentation of formula ends thick liquid structure
CN112252339A (en) Upward full-length bonding anchor cable hole subsection grout stopping structure and method
CN216405430U (en) Pressure-bearing expansion body bag type anchor cable for soft soil geology
CN212534137U (en) Anchor cable suitable for conditions of cracks and karst cavities in side slope body
JP4686064B2 (en) Cast-in-place pile method and its structure
JP4530240B2 (en) Tunnel lining method
JP4208057B2 (en) Construction method of cast-in-place piles
CN201843120U (en) Radially reinforced geosynthetic tube container
CN210711902U (en) Core suction reinforced geotextile
JPH01226922A (en) Cylindrical cloth body for knot pile
JP4842627B2 (en) Civil engineering bag
CN104480954B (en) A kind of Concrete Filled mould bag
JP2647703B2 (en) Underground construction method of columnar hardened body
JP3653298B2 (en) Pile with bag
JPH01315522A (en) Piling body
JP4680438B2 (en) Cylindrical bag