JPH01164844A - Down shift control device for vehicle incorporating automatic transmission - Google Patents

Down shift control device for vehicle incorporating automatic transmission

Info

Publication number
JPH01164844A
JPH01164844A JP62320925A JP32092587A JPH01164844A JP H01164844 A JPH01164844 A JP H01164844A JP 62320925 A JP62320925 A JP 62320925A JP 32092587 A JP32092587 A JP 32092587A JP H01164844 A JPH01164844 A JP H01164844A
Authority
JP
Japan
Prior art keywords
speed change
steering angle
transmission section
automatic transmission
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320925A
Other languages
Japanese (ja)
Inventor
Atsushi Hanawa
篤 花輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62320925A priority Critical patent/JPH01164844A/en
Publication of JPH01164844A publication Critical patent/JPH01164844A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • F16H2059/663Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Abstract

PURPOSE:To aim at enhancing the power characteristic of a vehicle on a slope and at ensuring the safety on a turning road by changing over a counter speed change gear section so as to compensate differences in gear ratio between speed stages in a main speed change gear section when control is made depending upon an inclined angle and a steering angle. CONSTITUTION:An automatic transmission is disposed therein with a main speed change gear section having large differences in gear ratio between speed stages, and a counter speed change gear section in series with the main speed change gear section on a power transmission path, having small differences in gear ratio between speed stages. During normal running, the gear shift control is made for only the main speed change gear section in accordance with a speed change map containing vehicle speeds and engine loads. Further, depending upon an inclination angle of a running road and a steering angle, a down-shift means compulsorily carries out the down-shift of the transmission more strongly as the inclination angle or the steering angle is larger, including the speed change of the counter speed change gear section. Thereby it is possible to finely reconcile enhancing the power characteristic of the vehicle on a slope and ensuring the safety during a turning road.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、自動変速機搭載車両のダウンシフミル制御装
置に係り、特に、走行路の傾斜角及び操舵角を考虞した
自動変速機搭載車両のダウンシフト制御装置の改良に関
づる。
The present invention relates to a downshift mill control device for a vehicle equipped with an automatic transmission, and more particularly to an improvement of a downshift control device for a vehicle equipped with an automatic transmission, taking into consideration the inclination angle of a running road and the steering angle.

【従来の技術】[Conventional technology]

歯車変速機構と複数個の摩擦係合装置とを備え、油圧制
御装置を作動させることによって前記摩擦係合装置の係
合を選択的に切換え、予め定められた変速マツプに従っ
て変速を実行するように構成だ車両用自動変速機は既に
広く知られている。 上記変速マツプは、通常車速及びエンジン負荷に是づい
て決定されており、該車速及びエンジン負荷の検出によ
って特定の変速段が決定されるようになっている。 自動変速機の変速制御は、原則としてこの変速マツプに
基づいて行なわれるが、従来、更に走行路の傾斜角(坂
路)を検出し、傾斜角が所定値以上のときに最高速段(
オーバードライブ段)での走行を禁止するようにした技
術が開示されている(例えば特公昭61−15301>
。この技術に拠れば、現在の変速段がオーバードライブ
段以外の場合は該オーバードライブ段への変速が禁止さ
れ、現在の変速段がオーバードライブ段であった]1、
Yには上記変速マツプに依存した制御を一時的に解除し
て強制的なダウンシフトが行われることになる。従って
、それだけ動力性能を向上させることができる。 一方、自動変速機の変速制御を変速マツプに基づいて実
行覆るように1−ると、この変速制御は基本的に車両の
旋回走行時においても行なわれることになる。ところが
、該旋回走行時において変速が行なわれると、トルク変
動又は速度変動が生じC運転者に予期せぬ危惧感を与え
るだけでなく、特に急カーブ等でダウンシフトが行われ
た場合には、急な駆動力増強のために車両にサイドスリ
ップを発生させる等の不具合を招く虞がある。 従来、このような問題に対する技術として特公昭48−
9729号公報に開示された技術がある。 即ち、この技術は、車両の旋回走行時に変速を中止し、
運転者の予期せぬトルク変動を防止覆るようにしたもの
である。
A gear transmission mechanism and a plurality of frictional engagement devices are provided, and the engagement of the frictional engagement devices is selectively switched by operating a hydraulic control device to execute a gearshift according to a predetermined shift map. Automatic transmissions for vehicles are already widely known. The shift map is normally determined based on the vehicle speed and engine load, and a specific gear stage is determined by detecting the vehicle speed and engine load. Shift control of automatic transmissions is, in principle, performed based on this shift map, but conventionally, the slope angle of the road (slope) is also detected, and when the slope angle is greater than a predetermined value, the highest gear (
A technology has been disclosed that prohibits running in the overdrive stage (for example, Japanese Patent Publication No. 15301/1986).
. According to this technology, if the current gear position is other than the overdrive position, shifting to the overdrive position is prohibited, and the current gear position is the overdrive position]1.
At Y, the control dependent on the shift map is temporarily canceled and a forced downshift is performed. Therefore, the power performance can be improved accordingly. On the other hand, if the shift control of the automatic transmission is executed based on the shift map, this shift control will basically be performed even when the vehicle is turning. However, when a gear shift is performed during the turning, torque fluctuations or speed fluctuations occur, which not only gives the C driver an unexpected sense of fear, but also particularly when a downshift is performed at a sharp curve, etc. There is a risk that the sudden increase in driving force may cause problems such as side slipping of the vehicle. Conventionally, as a technique for solving such problems,
There is a technique disclosed in Japanese Patent No. 9729. In other words, this technology stops shifting when the vehicle is turning,
This is to prevent and cover unexpected torque fluctuations by the driver.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、上記特公昭61−15301に係る従来
技術に拠れば、走行路の傾斜角が所定値以上と検出され
たときに、最高速段での走行を禁止Jるだけであったた
め、充分な駆動力増強を図ることができないという問題
があった。 この問題に対しては、最高速段だけでなく、例えば自動
変速機が第2速段、第3速段、・・・にある場合でも、
積極的に第1速段、第2速段、・・・にダウンシフトす
るように構成することも考えられる。しかしながら、こ
のようにした場合、一般にダウンシフトの程度が強過ぎ
て、運転者に予期せぬ変速ショックを与えてしまうとい
う問題が発生ずる。 これを解避づるには変速段の数を増やして自動変速機の
各変速段のギヤ比の差を小さくすればよいが、変速段の
数の増大は構造が極めて複雑化するため、コスト上昇が
著しい。 更に、傾斜角による制御に、上述したような旋回路での
ダウンシフトを抑制するような制御を組合わせようとし
た場合、例えば山間路のように、傾斜角の急な道路は同
時に旋回路を形成している場合が多く、従って双方の制
御が簡単に相殺されて事実上傾斜角や操舵角を検出した
ダウンシフト制御が機能しなくなってしまったり、一方
の実行により使方が全く無視されたりすることがあると
いう問題があった。
However, according to the prior art related to the above-mentioned Japanese Patent Publication No. 61-15301, when the slope angle of the traveling road is detected to be greater than a predetermined value, traveling in the highest speed gear is only prohibited. The problem was that it was not possible to increase power. For this problem, not only the highest gear, but also when the automatic transmission is in the second gear, third gear, etc.
It is also conceivable to configure the system to actively downshift to first gear, second gear, and so on. However, in this case, the downshift is generally too strong, giving rise to the problem of unexpected shift shock to the driver. To solve this problem, it would be possible to increase the number of gears and reduce the difference in gear ratio between each gear in the automatic transmission, but increasing the number of gears would make the structure extremely complex, which would increase costs. is remarkable. Furthermore, when trying to combine control based on slope angle with control that suppresses downshifts on turning roads as described above, roads with steep slope angles, such as mountain roads, must be combined with control based on turning roads at the same time. Therefore, both controls can easily cancel each other out, effectively making the downshift control that detects the tilt angle and steering angle no longer function, or the execution of one of them can cause the usage to be completely ignored. The problem was that I had something to do.

【発明の目的】[Purpose of the invention]

本発明は、このような従来の問題に鑑みてなされたもの
であって、自動変速機の基本的な構成をあまり?!雑に
することなく、走行路の傾斜角及び操舵角に応じて非常
にきめ細かなダウンシフト制御を実行することのできる
自動変速機搭載車両のダウンシフト制御装置を提供する
ことを目的とす=4− る。
The present invention has been made in view of such conventional problems, and the basic structure of an automatic transmission has been modified. ! It is an object of the present invention to provide a downshift control device for a vehicle equipped with an automatic transmission that can perform extremely fine downshift control according to the inclination angle of the road and the steering angle without making things too complicated.=4 -

【問題点を解決するための手段】[Means to solve the problem]

本発明は、第1図にその要旨を示すように、変速段のギ
ヤ比の差の大きな主変速機部、及び該主変速機部と動力
伝達系上で直列に配置され、各変速段のギヤ比の差が前
記主変速機部のギヤ比の差より小さく設定された副変速
機部を備えた自動変速機と、車速を検出する手段と、エ
ンジン負荷を検出する手段と、少なくとも前記車速及び
エンジン負荷に依存して、前記自動変速機の主変速機部
の変速を実行する手段と、走行路の傾斜角を検出覆る手
段と、操舵角を検出する手段と、前記傾斜角及び操舵角
に依存して、副変速機部の変速を含めて傾斜角が大きい
とき程強く前記自動変速機のダウンシフトを実行させる
と共に、操舵角が大きいとき程強く前記自動変速機のダ
ウンシフトの実行を抑制づ−る手段と、を備えたことに
より上記目的を達成したものである。 (発明の作用及び効果] 本発明においては、自動変速機を、各変速段のギヤ比の
差の大きな主変速機部と、該主変速機部ど動力伝達系上
で直列に配置され、各変速段のギヤ比の差が面記主変速
機部のギヤ比の差より小さく設定された副変速機部とで
構成する。そして、通常走行時においては、車速及びエ
ンジン負荷によって構成される変速マツプに従って、主
変速機部のみが変速制御される。その上で、走行路の傾
斜角及び操舵角に依存して、副変速機部の変速を含めて
傾斜角が大きいとき程強く自動変速機のダウンシフ]へ
を実行させると共に、操舵角が大きいとき程強く自動変
速機のダウンシフトの実行を抑制するようにする。 即ち、本発明における自動変速機は、主変速機部と副変
速機部とに分かれており、通常の変速制御は主変速機部
のみによって行われる。従って、この主変速機部につい
ては、例えば従来と同様な変速(幾を用いることができ
る。自動変速機全体として見ても副変速機部が加わるだ
けなので構成はそれ稈複穎化しない。しかしながら、傾
斜角及び操舵角に依存した制御を行なう場合には、主変
速機部の各変速段のギヤ比の差を埋めるように副変速機
部を切換えることができるため、非常にきめ細かなダウ
ンシフト制御を行うことができるようになる。例えば、
主変速機部が4つの変速段を有し、副変速機部が高低2
つの変速段を有しているときは、実質的に8つの変速段
間でダウンシフトのきめ細かな制御を行うことが可能と
なる。 この結果、本発明によれば、運転者の手を何ら煩せるこ
となく、坂路での動力性能の向上と旋回路での安全性の
確保とをきめ細かく両立させることができるようになる
。 なお、本発明においては、傾斜角αに基づいた自動変速
機のダウンシフトの実行と、操舵角βに基づいた自動変
速機のダウンシフトの抑制とを具体的にどのように組合
わせるかを限定するものではない。例えば、後述する実
施例のように、傾斜角αに基づいた自動変速機のダウン
シフトの1実行」を基本とし、この実行の程度を操舵角
βに応じて変更するように構成することができる。又、
逆に、操舵角βに基づいた自動変速機のダウンシフト フト(変速マツプに基づいて主変速機部において基本的
に発生するべきダウンシフト)の「抑制」を基本とし、
この抑制の程度を傾斜角αに依存して変更するように構
成することもできる。又、当然に、これらの双方の概念
を折衷することも可能である。具体的な実施例において
、このいずれのタイプを選択するかについては、当該車
両が有すべき性格を考慮した上で決定するようにすれば
よい。
As summarized in FIG. 1, the present invention includes a main transmission section with a large difference in gear ratio between gears, and a main transmission section that is arranged in series with the main transmission section on a power transmission system, an automatic transmission comprising an auxiliary transmission section in which a difference in gear ratio is set to be smaller than a difference in gear ratio of the main transmission section; means for detecting vehicle speed; means for detecting engine load; and means for changing the speed of the main transmission section of the automatic transmission depending on the engine load, means for detecting and detecting the inclination angle of the traveling road, means for detecting the steering angle, and the inclination angle and the steering angle. When the tilt angle is large, the downshift of the automatic transmission is executed more strongly, including the shift of the sub-transmission part, and when the steering angle is large, the downshift of the automatic transmission is executed more strongly. The above object has been achieved by providing a suppressing means. (Operations and Effects of the Invention) In the present invention, an automatic transmission is arranged in series on a power transmission system with a main transmission section having a large difference in gear ratio between each gear stage, and and an auxiliary transmission section in which the difference in gear ratio between the gears is set to be smaller than the difference in gear ratio of the main transmission section.During normal driving, the gear shift section is configured based on the vehicle speed and engine load. According to the map, only the main transmission section is controlled to change gears.Depending on the inclination angle of the road and the steering angle, the automatic transmission is controlled more strongly when the inclination angle is large, including the shift of the auxiliary transmission section. The automatic transmission according to the present invention has a main transmission section and an auxiliary transmission section. Normal speed change control is performed only by the main transmission section.Therefore, for this main transmission section, for example, the same speed change mechanism as the conventional one can be used.Looking at the automatic transmission as a whole, However, when performing control dependent on the tilt angle and steering angle, the difference in gear ratio between each gear of the main transmission section must be adjusted. Since it is possible to switch the sub-transmission section to fill the gap, it becomes possible to perform extremely detailed downshift control.For example,
The main transmission section has four gear stages, and the sub-transmission section has two high and low gears.
When the vehicle has eight gears, it is possible to perform fine downshift control between substantially eight gears. As a result, according to the present invention, it is possible to finely balance improving power performance on slopes and ensuring safety on turning roads without any trouble for the driver. Note that in the present invention, there are limitations on how to specifically combine execution of the downshift of the automatic transmission based on the tilt angle α and suppression of the downshift of the automatic transmission based on the steering angle β. It's not something you do. For example, as in the embodiments described later, the configuration may be such that the automatic transmission downshifts are executed once based on the tilt angle α, and the extent of this execution is changed depending on the steering angle β. . or,
On the contrary, it is based on "suppression" of the downshift of the automatic transmission based on the steering angle β (downshift that should basically occur in the main transmission based on the shift map),
It is also possible to configure the degree of suppression to be changed depending on the inclination angle α. Naturally, it is also possible to compromise both of these concepts. In a specific embodiment, which type should be selected may be determined after considering the characteristics that the vehicle should have.

【実施例】【Example】

以下図面に基づいて本発明の実施例を詳細に説明する。 第2図に本発明が適用される車両用自動変速機の概略を
示す。この自動変速機は、4速の変速段を構成できる主
変速機部2と直結(1−1)と減速(L)を切換えるこ
とができる副変速機部4とを備える。 主変速機部2は、2つの遊星歯車装M21.22を備え
、この遊星歯車装置21.22をクラッチC1〜C4、
ブレーキB1、B2、一方向クラ−〇− ツチF1、F2によって制御し、前進4段、後進1段を
達成する周知のものである。 一方、副変速機部4は、主変速機部2と動力伝達系上で
直列に配置されている。この副変速機部4は、1個の遊
星歯車装置41を備え、この遊星歯車装置を、クラッチ
C5、ブレーキB3、及び一方向クラッチF3によって
制御し、直結と減速を切換える周知のものである。 主変速機部2における各変速段でのクラッチ、ブレーキ
、及び一方向クラッチの係合・開放制御の状態を第3図
(A)に、副変速機部4の直結及び減速でのクラッチ、
ブレーキ、一方向クラッチの係合・開放制御の状態を第
3図(B)に示す。 ここで、◎印は、エンジンブレーキを必要とするとぎに
のみ係合させることを示し、一方向クラッチのO印は、
駆動時にのみ作動する(係合して動力伝達を行う)こと
をそれぞれ示している。 主変速機部4は、従来と同様な方法で変速制御がなされ
る。即ち、コンピュータ6には、スロワ1−ル開度を検
出するスロットルセンサ61、車速−1n − (自動変速機の出力軸51の回転速度)を検出する車速
センサ62、ドライブ、リバース、パーキング等のシフ
1〜ポジシヨンを検出するためのシフトポジションセン
サ63等からの出力信号が入力されており、これらの(
fi号情報を基に、予め定められた変速マツプに従って
第1速段〜第4速段の変速が主変速機部用油圧制御手段
8を介して実行される。 又、コンピュータ6には、走行路の傾斜角αを検出する
傾斜角センサ67、及び操舵角βを検出する操舵角セン
ナ68からの信号が併せて入力されており、これらの信
号により主変速機部2及び副変速機部4の双方の変速制
御が主、副変速機部用油圧制御手段8.10を介して実
行される。 この実施例装置においては、副変速機部4は通常時は高
速側(H)に維持されており、傾斜角α、操舵角βに依
存して適宜低速側(L)に切換えられるようになってい
る。 第4図に、この実施例装置における制御フローを示す。 まず、ステップ102において、スロットル開度、車速
、シフトポジション等の検出が行われ、ステップ104
において従来と全く同様な方法で変速マツプに基づいて
主変速機部2の基本変速段が決定される。 その後、ステップ106に進み、傾斜角α、操舵角βの
検出が行われる。 ステップ108では、傾斜角αに関°する閾値a111
 、C(Q <a <b <C)の決定が行われる。即
ち、この制御フローにおいては、傾斜角αを閾値a、b
、cによって、強、中、弱、及び微の4つの領域に分類
し、傾斜角αが極めて小さいか平坦な時はステップ10
4において決定された基本変速段をそのまま用い(ステ
ップ112>、傾斜角aが大きくなるに従って、副変速
機部4のみを低速側にづる(ステップ114);主変速
機部2のみを1段だけ低速側にする(ステップ118)
:主変速機部2を1段だけ低速側にダウンシフトすると
共に副変速機部4を低速側にするくステップ120):
というようにステップ104で決定ざれた基本変速段を
補正するようにしている。 ステップ108においては、この領域を決定するための
閾値a、b、cを検出された操舵角βに応じて決定する
。この決定は、例えば第5図に示されるようなマツプに
従って行われる。即ち、操舵角βが大きくなる程閾値a
、b1cはそれぞれ大きくなるように補正される。その
結果、旋回半径が小さいとき程、即ちカーブが急な時程
、ダウンシフトが強く抑制されることになる。又、操舵
角βが所定値β1以上のときは、基本速度段をダウンシ
フトする補正は一切行われない。 ステップ110〜120は、傾斜角αの絶対値1α1に
応じて、上述したように基本変速段を補正するステップ
となっている。 傾斜角αの絶対値をとっていることからも明らかなよう
に、この制御フローに拠れば、上り坂及び下り坂の双方
において傾斜角αがきつくなるに従ってより強いダウン
シフトが実行されるようになっている。その結果、上、
り坂のときはより強い駆動力を得ることができ、下り坂
のときはより強いエンジンブレーキを得ることができる
ようになる。 このようにしてステップ110〜120で基本変速段が
補正された後、この補正された変速段となるように変速
が実行される(ステップ122)。 以上の制御を行なった結果、通常走行時においては主変
速機部2のみが変速マツプに従って決定された基本変速
段となるように制御され、傾斜角α、操舵角βが変化し
た情報が入力されて来たときに副変速機部4を含めたき
め細かな変速制御を実行することができるようになる。 従って、運転者の手を煩わせることなく、坂路における
強い駆動力の確保と旋回路における良好な安定性の維持
とをきめ細かく両立させることができるようになる。 なお、上記実施例においては、副変速機部4を傾斜角α
、操舵角βのみに依存して切換えるようにしていたが、
該副変速機部4の制御にあたっては、更に他の要素をも
考慮して制御することを妨げるものではない。 更に、第6図に示すように、上記実施例においては、傾
斜角αに基づいた自動変速機のダウンシフトの「実行」
を基本とし、この実行の程度を操舵角βに応じて変更し
ている(Aタイプ)。しかしながら、本発明は、例えば
操舵角βに基づく自動変速機のダウンシフト(変速マツ
プに基づいて主変速機部において基本的に発生するべき
ダウンシフト)の「抑制」を基本とし、この抑制の程度
を傾斜角αに依存して変更するように構成することも可
能である(Bタイプ)。又、当然に、これらの双方の概
念を組合わせることも可能である(Cタイプ〉。具体的
な実施例において、このいずれのタイプを選択するかに
ついては、当該車両が右ずべき性格を考慮した上で決定
するようにすればよい。
Embodiments of the present invention will be described in detail below based on the drawings. FIG. 2 schematically shows a vehicle automatic transmission to which the present invention is applied. This automatic transmission includes a main transmission section 2 that can configure four gears, and a sub-transmission section 4 that can switch between direct coupling (1-1) and deceleration (L). The main transmission section 2 includes two planetary gear systems M21.22, and the planetary gear systems 21.22 are connected to clutches C1 to C4,
This is a well-known system that is controlled by brakes B1 and B2, one-way brakes F1 and F2, and achieves four forward speeds and one reverse speed. On the other hand, the sub-transmission section 4 is arranged in series with the main transmission section 2 on the power transmission system. This auxiliary transmission unit 4 is a well-known device that includes one planetary gear device 41, controls this planetary gear device by a clutch C5, a brake B3, and a one-way clutch F3, and switches between direct coupling and deceleration. FIG. 3(A) shows the state of engagement/disengagement control of the clutches, brakes, and one-way clutches at each gear stage in the main transmission section 2.
The state of engagement/disengagement control of the brake and one-way clutch is shown in FIG. 3(B). Here, the ◎ mark indicates that the engine brake is engaged only when necessary, and the O mark for a one-way clutch indicates that the engine brake is engaged only when necessary.
Each indicates that it operates (engages and transmits power) only when driving. The main transmission section 4 is controlled to change gears in the same manner as in the prior art. That is, the computer 6 includes a throttle sensor 61 that detects the throttle opening, a vehicle speed sensor 62 that detects the vehicle speed -1n (rotational speed of the output shaft 51 of the automatic transmission), and sensors for drive, reverse, parking, etc. Output signals from shift position sensors 63, etc. for detecting shift 1 to positions are input, and these (
Based on the fi number information, shifts from the first gear to the fourth gear are executed via the main transmission section hydraulic control means 8 according to a predetermined shift map. The computer 6 also receives signals from an inclination angle sensor 67 that detects the inclination angle α of the road and a steering angle sensor 68 that detects the steering angle β. Shift control of both the sub-transmission section 2 and the sub-transmission section 4 is carried out via the main and sub-transmission section hydraulic control means 8.10. In this embodiment device, the sub-transmission section 4 is normally maintained at the high speed side (H), and can be switched to the low speed side (L) as appropriate depending on the inclination angle α and the steering angle β. ing. FIG. 4 shows the control flow in this embodiment device. First, in step 102, the throttle opening, vehicle speed, shift position, etc. are detected, and in step 104
In this step, the basic gear stage of the main transmission section 2 is determined based on the shift map in exactly the same manner as in the conventional method. Thereafter, the process proceeds to step 106, where the tilt angle α and steering angle β are detected. In step 108, a threshold value a111 related to the inclination angle α is
, C (Q < a < b < C). That is, in this control flow, the inclination angle α is set to the threshold values a and b.
, c into four regions: strong, medium, weak, and fine. If the inclination angle α is extremely small or flat, step 10 is performed.
The basic gear determined in step 4 is used as is (step 112>, and as the inclination angle a increases, only the sub-transmission section 4 is shifted to the lower speed side (step 114); only the main transmission section 2 is shifted to one gear). Set to low speed (step 118)
Step 120): Downshift the main transmission section 2 by one gear to the low speed side and set the auxiliary transmission section 4 to the low speed side.
In this way, the basic gear determined in step 104 is corrected. In step 108, threshold values a, b, and c for determining this area are determined according to the detected steering angle β. This determination is made, for example, according to a map as shown in FIG. In other words, the larger the steering angle β, the lower the threshold value a.
, b1c are each corrected to become larger. As a result, the smaller the turning radius, that is, the steeper the curve, the more strongly the downshift is suppressed. Furthermore, when the steering angle β is greater than or equal to the predetermined value β1, no correction is made to downshift the basic speed gear. Steps 110 to 120 are steps for correcting the basic gear stage as described above in accordance with the absolute value 1α1 of the inclination angle α. As is clear from the fact that the absolute value of the inclination angle α is taken, according to this control flow, as the inclination angle α becomes steeper both on uphill and downhill slopes, a stronger downshift is executed. It has become. As a result, above,
You can get stronger driving force when going uphill, and stronger engine braking when going downhill. After the basic gear position is corrected in steps 110 to 120 in this manner, a gear shift is performed to achieve the corrected gear position (step 122). As a result of the above control, during normal driving, only the main transmission section 2 is controlled to be in the basic gear determined according to the shift map, and information on changes in the tilt angle α and steering angle β is input. It becomes possible to execute detailed speed change control including the auxiliary transmission section 4 when the speed change is reached. Therefore, it becomes possible to precisely balance ensuring strong driving force on slopes and maintaining good stability on turning roads without bothering the driver. In the above embodiment, the sub-transmission section 4 is tilted at an angle of inclination α.
, the switching depended only on the steering angle β, but
When controlling the sub-transmission section 4, it is not prohibited to take other factors into consideration. Furthermore, as shown in FIG.
The degree of execution is changed according to the steering angle β (A type). However, the present invention is based on the "suppression" of the automatic transmission downshift based on the steering angle β (the downshift that should basically occur in the main transmission section based on the shift map), and the degree of this suppression is It is also possible to configure it so that it changes depending on the inclination angle α (Type B). Naturally, it is also possible to combine both of these concepts (C type).Which type should be selected in a specific example depends on the characteristics of the vehicle in question. You should make a decision after doing so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の要旨を示すブロック図、第2図は、本
発明の実施例が適用される車両用自動変速機の概略スケ
ルトン図、第3図(A)、(B)は、上記自動変速機の
主変速機部及び副変速機部における各クラッチ、ブレー
キ、及び一方向クラッチの係合・開放状態を示す線図、
第4図は、上記実施例装置で用いられている制御フロー
を示す流れ図、第5図は閾値a、b、cを決定するため
のマツプの例を示す線図、第6図は制御の他のタイプを
示す線図である。 2・・・主変速機部、 4・・・副変速機部、 6・・・コンピュータ、 61・・・スロットルセンサ、 62・・・車速センサ、 67・・・傾斜角センサ、 68・・・操舵角センサ。
FIG. 1 is a block diagram showing the gist of the present invention, FIG. 2 is a schematic skeleton diagram of a vehicle automatic transmission to which an embodiment of the present invention is applied, and FIGS. 3(A) and (B) are the above-mentioned A diagram showing the engagement and release states of each clutch, brake, and one-way clutch in the main transmission section and sub-transmission section of the automatic transmission,
FIG. 4 is a flowchart showing the control flow used in the device of the above embodiment, FIG. 5 is a diagram showing an example of a map for determining threshold values a, b, and c, and FIG. FIG. 2... Main transmission section, 4... Sub-transmission section, 6... Computer, 61... Throttle sensor, 62... Vehicle speed sensor, 67... Tilt angle sensor, 68... Steering angle sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)各変速段のギヤ比の差の大きな主変速機部、及び
該主変速機部と動力伝達系上で直列に配置され、各変速
段のギヤ比の差が前記主変速機部のギヤ比の差より小さ
く設定された副変速機部を備えた自動変速機と、 車速を検出する手段と、 エンジン負荷を検出する手段と、 少なくとも前記車速及びエンジン負荷に依存して、前記
自動変速機の主変速機部の変速を実行する手段と、 走行路の傾斜角を検出する手段と、 操舵角を検出する手段と、 前記傾斜角及び操舵角に依存して、副変速機部の変速を
含めて傾斜角が大きいとき程強く前記自動変速機のダウ
ンシフトを実行させると共に、操舵角が大きいとき程強
く前記自動変速機のダウンシフトの実行を抑制する手段
と、 を備えたことを特徴とする自動変速機搭載車両のダウン
シフト制御装置。
(1) A main transmission section with a large difference in the gear ratio of each gear stage, and a main transmission part arranged in series with the main transmission part on the power transmission system, where the difference in the gear ratio of each gear stage is large. an automatic transmission comprising an auxiliary transmission section set to be smaller than the difference in gear ratio; means for detecting vehicle speed; means for detecting engine load; means for changing the speed of the main transmission section of the aircraft; means for detecting the slope angle of the running road; means for detecting the steering angle; and means for changing the speed of the auxiliary transmission section depending on the slope angle and the steering angle. means for causing the automatic transmission to downshift more strongly as the tilt angle is larger, and for suppressing the downshifting of the automatic transmission more strongly as the steering angle is larger. A downshift control device for vehicles equipped with automatic transmissions.
JP62320925A 1987-12-18 1987-12-18 Down shift control device for vehicle incorporating automatic transmission Pending JPH01164844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320925A JPH01164844A (en) 1987-12-18 1987-12-18 Down shift control device for vehicle incorporating automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320925A JPH01164844A (en) 1987-12-18 1987-12-18 Down shift control device for vehicle incorporating automatic transmission

Publications (1)

Publication Number Publication Date
JPH01164844A true JPH01164844A (en) 1989-06-28

Family

ID=18126811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320925A Pending JPH01164844A (en) 1987-12-18 1987-12-18 Down shift control device for vehicle incorporating automatic transmission

Country Status (1)

Country Link
JP (1) JPH01164844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503948A2 (en) * 1991-03-13 1992-09-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control method for an automatic transmission for vehicles
EP0731295A2 (en) * 1991-03-13 1996-09-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control apparatus for an automatic transmission for vehicles
KR100410758B1 (en) * 2001-08-28 2003-12-18 현대자동차주식회사 Method for lift foot up under up shift control of automatic transmission in vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503948A2 (en) * 1991-03-13 1992-09-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control method for an automatic transmission for vehicles
EP0503948A3 (en) * 1991-03-13 1994-03-30 Mitsubishi Motors Corp
US5361207A (en) * 1991-03-13 1994-11-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control method for an automatic transmission for vehicles
EP0731295A2 (en) * 1991-03-13 1996-09-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control apparatus for an automatic transmission for vehicles
EP0801252A2 (en) * 1991-03-13 1997-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control apparatus for an automatic transmission for vehicles
EP0731295A3 (en) * 1991-03-13 1998-03-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control apparatus for an automatic transmission for vehicles
EP0801252A3 (en) * 1991-03-13 1998-03-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control apparatus for an automatic transmission for vehicles
KR100410758B1 (en) * 2001-08-28 2003-12-18 현대자동차주식회사 Method for lift foot up under up shift control of automatic transmission in vehicle

Similar Documents

Publication Publication Date Title
JP4125067B2 (en) Shift control device for automatic transmission for vehicle
US7900533B2 (en) Control device for automatic transmission
JPH0526344A (en) Control device for automatic transmission
JP5780104B2 (en) Vehicle control device
JP2007198413A (en) Apparatus for controlling automatic transmission having manual mode
AU2008289995A1 (en) Transmission Control Unit for Vehicles
JP2811912B2 (en) Control device for automatic transmission for vehicles
US5806642A (en) Control system for automatic transmission
US20210025492A1 (en) Continuously variable transmission control device and control method
JPS61244957A (en) Method of controlling gear shift of automatic speed reduction gear for vehicle
EP1310696B1 (en) Automatic-clutch control system of automatic clutch type transmission
US7490527B2 (en) Device for controlling an automatic gearbox
KR100534797B1 (en) Method of controlling shift of an automatic transmission for vehicles
JPH01164844A (en) Down shift control device for vehicle incorporating automatic transmission
JP3436992B2 (en) Transmission control device for automatic transmission
JP3446496B2 (en) Transmission control device for automatic transmission
JPH09323565A (en) Vehicle drive system control device
JP2003254426A (en) Shift control system for automatic transmission
JPS63207735A (en) Turning time control removing device for automatic transmission of vehicle
JP5859350B2 (en) Shift control device for automatic transmission
JPH06241304A (en) Throttle open speed/and automatic shift point switching controller by acceleration
JP3458708B2 (en) Transmission control device for automatic transmission
WO2021070268A1 (en) Constant speed running control method for vehicle and constant speed running control device for vehicle
JPS6235544B2 (en)
JP3458703B2 (en) Selective downshift control device for automatic transmission