JPH01164715A - Production of carbon dioxide - Google Patents

Production of carbon dioxide

Info

Publication number
JPH01164715A
JPH01164715A JP62322317A JP32231787A JPH01164715A JP H01164715 A JPH01164715 A JP H01164715A JP 62322317 A JP62322317 A JP 62322317A JP 32231787 A JP32231787 A JP 32231787A JP H01164715 A JPH01164715 A JP H01164715A
Authority
JP
Japan
Prior art keywords
air
combustion
blast
carbon dioxide
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62322317A
Other languages
Japanese (ja)
Inventor
Tsuneo Nagaoka
恒夫 永岡
Osamu Kojima
理 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62322317A priority Critical patent/JPH01164715A/en
Publication of JPH01164715A publication Critical patent/JPH01164715A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To avoid a decrease in the concn. of CO2 in an exhaust gas and to obtain CO2 having fixed compsn., by releasing the exhaust gas of a hot-blast stove decreased in the concn. of CO2, in the air without introducing to a stack pipe, when air blast and combustion in the hot-blast stove are switched. CONSTITUTION:When the combustion is switched over to the air blast in the air-blast stove HS-1, stack valves V1 and V2 are opened and other valves are shutted, and when the combustion process is finished the supply of combustion gas and air for combustion is stopped. And then, the valves V1 and V2 are shutted and the pressure of other air-blast stoves having atmospheric pressure at the time is increased to e.g., 2K, by opening blasting valve V4 and by letting flow from the air-blast stove HS-1 to other air-blast stove through a equalizing pipe 6. Then, by shutting the valve V4 and opening the valve V5, the pressure of other air-blast stove is increased to e.g., 4K and hot air blast 2 to a blast furnace is started. By this way, in switching between air blast and combustion in the hot-blast stove HS-1, the concn. of the product CO2 is kept constant without introducing the exhaust gas decreased in the concn. of CO2 to the stack pipe 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱風炉の燃焼排ガスから炭酸ガスを分離、回収
する炭酸ガス製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing carbon dioxide gas, which separates and recovers carbon dioxide gas from the combustion exhaust gas of a hot blast furnace.

[従来の技術] 近年の大型高炉においては、1本の高炉に通常4基の熱
風炉が配置され、交互に送風工程、燃焼工程、が繰り返
される。送風工程においては前工程である燃焼工程にお
いて蓄熱された熱風炉に空気が圧送され、ここで熱交換
されて熱風となって高炉に吹き込まれる。前記熱風の温
度が限度以下に低下すると燃焼工程に移行し、同時に他
の燃焼工程にある熱風炉が送風工程に移行される。前記
燃焼工程にある熱風炉の燃焼排ガスが煙道管にはいり、
その一部が分岐されて炭酸ガス製造装置に供給される。
[Prior Art] In recent large-scale blast furnaces, four hot blast furnaces are usually arranged in one blast furnace, and a blowing process and a combustion process are alternately repeated. In the blowing process, air is forced into the hot blast furnace where heat has been stored in the combustion process, which is the previous process, where heat is exchanged and the air is turned into hot air and blown into the blast furnace. When the temperature of the hot air falls below the limit, the combustion process is started, and at the same time, the hot blast furnace in another combustion process is moved to the blowing process. Combustion exhaust gas from the hot stove in the combustion process enters the flue pipe,
A part of it is branched and supplied to the carbon dioxide production device.

「発明が解決しようとする問題点] しかしながら、熱風炉内圧力は送風工程では高圧(例え
ば4 kg / ad )であり、燃焼工程ではほぼ大
気圧であるため、送風から燃焼に切り替えるときに熱風
炉の空気を煙道弁より排出する操作を行う。このとき、
煙道管に流れる排ガス中の炭酸ガスの濃度は減少する。
“Problems to be Solved by the Invention” However, the pressure inside the hot-air stove is high (for example, 4 kg/ad) during the blowing process, and approximately atmospheric pressure during the combustion process. Exhaust the air from the flue valve. At this time,
The concentration of carbon dioxide in the exhaust gas flowing into the flue pipe is reduced.

したがって、上記熱風炉の煙道管から炭酸ガス製造設備
に供給される燃焼排ガス中のC○2比率が低下し、製造
される炭酸ガスの濃度が変動する。
Therefore, the C2 ratio in the combustion exhaust gas supplied from the flue pipe of the hot air stove to the carbon dioxide production equipment decreases, and the concentration of the produced carbon dioxide fluctuates.

本発明はかかる事情に鑑みてなされたもので、熱風炉の
切り替え時における燃焼排ガスの炭酸ガス成分の低下を
避け、一定成分の製品ガスが得られる炭酸ガス製造方法
を提供しようとするものである。
The present invention has been made in view of the above circumstances, and aims to provide a method for producing carbon dioxide gas that avoids a decrease in the carbon dioxide component of combustion exhaust gas when switching between hot blast stoves and obtains a product gas with a constant composition. .

[問題点を解決するための手段及び作用]本発明による
炭酸ガス製造方法は、熱風炉の煙道管に通流する燃焼排
ガスを原料ガスとして炭酸ガスを分離回収する炭酸ガス
製造方法において、熱風炉の送風、燃焼の切り替え時に
炭酸ガス濃度が低下した前記排ガスを前記煙道管に導入
せず、大気に放散することを特徴とする。
[Means and effects for solving the problems] The method for producing carbon dioxide gas according to the present invention is a method for producing carbon dioxide gas in which carbon dioxide gas is separated and recovered using combustion exhaust gas flowing through a flue pipe of a hot air stove as a raw material gas. The present invention is characterized in that the exhaust gas with a reduced carbon dioxide concentration is not introduced into the flue pipe when switching between blowing and combustion in the furnace, but is dissipated into the atmosphere.

熱風炉の燃焼工程、送風工程の切り替え時に発生する炭
酸ガス濃度の低下した燃焼排ガスは大気に放散されるの
で、前記排ガスは煙道管に導入される虞はなく、製品ガ
スである炭酸ガスの純度は一定に保持される。
The combustion exhaust gas with a reduced carbon dioxide concentration that is generated when switching between the combustion process and the blowing process of a hot air stove is dissipated into the atmosphere, so there is no risk that the exhaust gas will be introduced into the flue pipe, and the carbon dioxide that is the product gas is Purity remains constant.

[実施例] 本発明の1実施例を添付の図面に基づいて説明する。第
1図は本発明の方法に用いられる熱風炉のガス配管の系
統図である。第1図は1本の高炉について4基ある熱風
炉MS−l乃至)(S−4のうちの1基(H8−1)、
2は熱風管、3はサイレンサー4を通して4基の熱風炉
からの燃焼排ガスが放散される放散管、5は燃焼排ガス
が流通する煙道管、6は送風工程、燃焼工程の切り替え
時に使用される均圧管、7は送風管、8は炭酸ガス製造
装置である。Vl、’V2は何れも燃焼工程で燃焼排ガ
スを煙道管に導入する煙道弁、■4は前記切り替え時に
他の熱風炉と連通されて圧力調整が行われる充風弁、■
5は送風工程で蓄熱されである熱風炉に空気を圧送する
送風弁、■6は前記切り替え時に炭酸ガス濃度が低下さ
れた排ガスをサイレンサーを通して大気に放散する排気
弁である。
[Example] An example of the present invention will be described based on the accompanying drawings. FIG. 1 is a system diagram of gas piping for a hot air stove used in the method of the present invention. Figure 1 shows four hot blast stoves MS-1 to MS-1 for one blast furnace (one of S-4 (H8-1),
2 is a hot air pipe; 3 is a dissipation pipe through which combustion exhaust gas from the four hot air stoves is dissipated through a silencer 4; 5 is a flue pipe through which combustion exhaust gas flows; 6 is used when switching between the blowing process and the combustion process. A pressure equalizing pipe, 7 a blower pipe, and 8 a carbon dioxide production device. Vl and 'V2 are both flue valves that introduce combustion exhaust gas into the flue pipe during the combustion process, ■4 is a blow valve that is communicated with another hot air stove to adjust the pressure at the time of switching, and ■
Reference numeral 5 designates an air blowing valve that forcefully sends air into the hot air stove, which is the heat stored in the air blowing process, and 6 represents an exhaust valve that releases the exhaust gas whose carbon dioxide concentration has been reduced during the switching to the atmosphere through a silencer.

以上のように構成された熱風炉の作用について説明する
。第2図に送風、切り替え、燃焼の各工程に対応した前
記答弁の開閉を示す。この図では斜線を施した部分が開
でその他は閉である。先ず送風工程では送風弁が開でそ
の他の弁は閉となっており、ここから送風空気が約4k
(kg/CId。
The operation of the hot air stove configured as above will be explained. FIG. 2 shows the opening and closing of the answer valve corresponding to each process of air blowing, switching, and combustion. In this figure, the shaded areas are open and the rest are closed. First, in the ventilation process, the ventilation valve is open and the other valves are closed, and from here the ventilation air flows through approximately 4 kg.
(kg/CId.

ゲージ圧、以下同様)の圧力で前の燃焼工程で蓄熱され
た熱風炉に吹き込まれ、ここで熱交換された後、熱風と
なって高炉に供給される。前記熱交換が進み、熱風温度
が限度以下に低下すると、熱風炉は再び燃焼工程で蓄熱
されなければならないが、この間の切り替え時に均圧工
程と排圧工程がある。
Gauge pressure (hereinafter the same applies) is blown into the hot blast furnace where heat has been stored in the previous combustion process, where the heat is exchanged, and then the hot blast is supplied to the blast furnace. When the heat exchange progresses and the hot air temperature falls below the limit, the hot air stove must store heat again in the combustion process, but there is a pressure equalization process and a pressure exhaust process at the time of switching between these steps.

熱風炉MS−1は上記のように送風工程では4にである
が、燃焼工程ではほぼ大気圧であるので、この圧力を低
下させる必要がある。切り替え時には必ず対になってH
8−1とは逆に燃焼工程から送風工程になる熱風炉例え
ばH3−3があり、H8−1の4にの圧力を低下させる
手順として、この圧力を有効に活用するためH3−1゜
H3−:3双方の充風弁■4を開として前記2基の熱風
炉を等しく2kに均圧させる。これが均圧工程ゼある。
As mentioned above, the hot air stove MS-1 is at a pressure of 4.0 mph during the blowing process, but it is at approximately atmospheric pressure during the combustion process, so it is necessary to reduce this pressure. When switching, be sure to pair H
Contrary to 8-1, there is a hot blast furnace, for example H3-3, which goes from the combustion process to the blowing process, and as a procedure to reduce the pressure in step 4 of H8-1, in order to effectively utilize this pressure, H3-1゜H3 -: 3 Open both blow valves (4) to equalize the pressure of the two hot air stoves to 2k. This is the pressure equalization process.

次いで排圧工程となり、充風弁■4を閉、排風弁V6を
開としてサイレンサー4からMS−1の残圧を放出させ
て大気圧とする。この後、H8−1は燃料ガス、燃焼空
気の供給をうけて燃焼工程に入る。
Next, in the pressure exhausting step, the air filling valve (4) is closed and the air exhaust valve (V6) is opened to release the residual pressure of MS-1 from the silencer 4 to bring it to atmospheric pressure. After this, H8-1 is supplied with fuel gas and combustion air and enters the combustion process.

次に燃焼工程から送風工程に移行するときの切り替え時
の工程を上記H8−3について説明する。この系統図は
H8−1と同様であるので弁、管の記号は第1図と同じ
とする。燃焼工程においては煙道弁V’l、V2が開、
その他の弁が閉となっており、燃焼工程が終了すると燃
料ガス、燃焼空気の供給を止め、前記Vl、V2を閉と
し、このとき大気圧になっているH8−3の圧力は、充
風弁■4を開として均圧管6により)Is−1と連通さ
れて2kになる。次いで充風弁■4を閉、送風弁■5を
開としてHS−,3の圧力を4にとしてから高炉への熱
風の送風を開始し、送風工程に移行される。
Next, the process at the time of switching from the combustion process to the blowing process will be described for H8-3 above. This system diagram is the same as H8-1, so the symbols for valves and pipes are the same as in Figure 1. In the combustion process, flue valves V'l and V2 are opened,
The other valves are closed, and when the combustion process is completed, the supply of fuel gas and combustion air is stopped, and the above-mentioned Vl and V2 are closed. At this time, the pressure of H8-3, which is at atmospheric pressure, is When the valve (4) is opened, the pressure is communicated with (Is-1) by the pressure equalizing pipe (6) and becomes 2k. Next, the blowing valve (4) is closed, the blowing valve (5) is opened, the pressure of HS-,3 is set to 4, and then blowing of hot air to the blast furnace is started, and the process moves to the blowing step.

なお、切り替え時において炭酸ガス製造装置に供給され
る燃焼排ガスの流量は通常、高炉1基の燃焼排ガス発生
量の半分以下であるので、H3−1、MS−3と同様に
構成された他の熱風炉たとえばH8−2またはH3−4
によって十分賄われ6一 る。
In addition, since the flow rate of flue gas supplied to the carbon dioxide production equipment at the time of switching is usually less than half of the amount of flue gas generated by one blast furnace, other Hot stove such as H8-2 or H3-4
It is fully covered by 6.

本実施例による具体的な数値を挙げると、燃焼排ガスの
煙道管におけるガス組成は、通常時で%で表すと、C0
2;27〜3o、N2 ;71〜72.02;1(乾き
ベース)で、従来例では送風から燃焼に移行する切り替
え時にはcO2が約15分間にわたって20%〜25%
に低下するのに対して、本実施例ではこの低下が殆ど認
められなかった。
To give specific numerical values according to this example, the gas composition of the combustion exhaust gas in the flue pipe is expressed in % under normal conditions as C0
2; 27 to 3 o, N2; 71 to 72.
However, in this example, this decrease was hardly observed.

以上のようにして熱風炉の切り替え時において、炭酸ガ
ス濃度の低下した燃焼排ガスは煙道管6に導入されず、
製品ガスの濃度は一定に保たれる。
As described above, when switching hot air stoves, combustion exhaust gas with a reduced carbon dioxide concentration is not introduced into the flue pipe 6.
The concentration of product gas is kept constant.

[発明の効果] この発明によれば、炭酸ガス濃度の低下した燃焼排ガス
は排気弁、サイレンサーを通して大気中に放散され、煙
道管に導入されないので、炭酸ガス製造装置で製造され
る製品ガスの純度が安定する。
[Effects of the Invention] According to the present invention, combustion exhaust gas with reduced carbon dioxide concentration is dissipated into the atmosphere through the exhaust valve and silencer and is not introduced into the flue pipe. Purity is stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に用いられる熱風炉のガス配管の
系統図、第2図はこの発明の送風、切り替え、燃焼の各
工程に対応した答弁の開閉を示す図である。 1・・・熱風炉、2・・・熱風管、3・・・放散管、4
・・・サイレンサー、5・・煙道管、6・・・均圧管、
7・・・送風管、8・・・炭酸ガス製造装置、Vl、V
2・・・煙道管、V4・・・充風弁、■5・・・送風弁
、■6・・・排気弁。
FIG. 1 is a system diagram of the gas piping of the hot air stove used in the method of the present invention, and FIG. 2 is a diagram showing the opening and closing of the response valves corresponding to each process of air blowing, switching, and combustion of the present invention. 1...Hot air stove, 2...Hot air pipe, 3...Diffusion pipe, 4
...silencer, 5.. flue pipe, 6.. pressure equalization pipe,
7...Blow pipe, 8...Carbon dioxide production device, Vl, V
2... Flue pipe, V4... Air filling valve, ■5... Air blowing valve, ■6... Exhaust valve.

Claims (1)

【特許請求の範囲】[Claims] 熱風炉の煙道管に通流する燃焼排ガスを原料ガスとして
炭酸ガスを分離回収する炭酸ガス製造方法において、熱
風炉の送風、燃焼の切り替え時に炭酸ガス濃度が低下し
た前記排ガスを前記煙道管に導入せず、大気に放散する
ことを特徴とする炭酸ガス製造方法。
In a carbon dioxide production method in which carbon dioxide is separated and recovered using combustion exhaust gas flowing through a flue pipe of a hot air stove as a raw material gas, the exhaust gas whose carbon dioxide concentration has decreased when switching between blowing and combustion of the hot air stove is passed through the flue pipe. A method for producing carbon dioxide characterized by dissipating it into the atmosphere without introducing it into the atmosphere.
JP62322317A 1987-12-18 1987-12-18 Production of carbon dioxide Pending JPH01164715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322317A JPH01164715A (en) 1987-12-18 1987-12-18 Production of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322317A JPH01164715A (en) 1987-12-18 1987-12-18 Production of carbon dioxide

Publications (1)

Publication Number Publication Date
JPH01164715A true JPH01164715A (en) 1989-06-28

Family

ID=18142281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322317A Pending JPH01164715A (en) 1987-12-18 1987-12-18 Production of carbon dioxide

Country Status (1)

Country Link
JP (1) JPH01164715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014535004A (en) * 2011-10-19 2014-12-25 ポール ワース エス.アー. Operation method of regenerative heater in blast furnace plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014535004A (en) * 2011-10-19 2014-12-25 ポール ワース エス.アー. Operation method of regenerative heater in blast furnace plant

Similar Documents

Publication Publication Date Title
CN102270566A (en) Sealing device and method of reaction cavity
KR100954164B1 (en) Atmosphere Control During Continuous Heat Treatment of Metal Strips
JPH01164715A (en) Production of carbon dioxide
US1505768A (en) Tunnel kiln and method of operating same
JP3988332B2 (en) Oxygen enrichment method for blast furnace
CN114774606A (en) Blast furnace hot blast stove changing and pressure equalizing method
US1942762A (en) Hot blast stove
US2151983A (en) Method of and apparatus for decorating and annealing glassware
CN206173399U (en) Cooling device of annealing furnace
JPS63226524A (en) Combustion control in hot blast furnace
CN2380576Y (en) Device for uniformly distributing lower air-flow of blast heater
JPH11124634A (en) Heat treatment apparatus of steel strip in continuous annealing process and its heat treatment method
JPH01164714A (en) Method for purifying carbon dioxide by psa system
US1054643A (en) Regulation of regenerative furnaces.
GB191320667A (en) Apparatus for the Purification of Gases Rich in Sulphurous Anhydride and Carbonic Anhydride.
JP2002310573A (en) Apparatus and method for treating exhaust gas
CN205313586U (en) System is reformed transform to hot -blast furnace
JPH07326591A (en) Vertical furnace
JP3183596B2 (en) Soot removal method for gas supply tuyere of continuous molding coke making facility
JPH0136908Y2 (en)
US274320A (en) Regenerating-furnace
JPH01164716A (en) Production of carbon dioxide
JPH02156019A (en) Atmosphere heat treatment
SU373302A1 (en) METHOD FOR FILLING AIR HEATERS OF DOMAIN FURNACES |
US1474606A (en) Open-hearth furnace