JPH01164495A - Large-capacity intermittent-air water lifting cylinder device - Google Patents

Large-capacity intermittent-air water lifting cylinder device

Info

Publication number
JPH01164495A
JPH01164495A JP62324518A JP32451887A JPH01164495A JP H01164495 A JPH01164495 A JP H01164495A JP 62324518 A JP62324518 A JP 62324518A JP 32451887 A JP32451887 A JP 32451887A JP H01164495 A JPH01164495 A JP H01164495A
Authority
JP
Japan
Prior art keywords
air
water
pumping
chamber
air chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62324518A
Other languages
Japanese (ja)
Inventor
Yutaka Ishimaru
豊 石丸
Sadaaki Saito
斎藤 定明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pfaudler Co Ltd
Original Assignee
Shinko Pfaudler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pfaudler Co Ltd filed Critical Shinko Pfaudler Co Ltd
Priority to JP62324518A priority Critical patent/JPH01164495A/en
Publication of JPH01164495A publication Critical patent/JPH01164495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To surely move plural water lifting cylinders in the vertical direction by arranging the cylinders at the same height, and providing an air chamber furnished with an inverted siphon below each cylinder. CONSTITUTION:The air chambers 7a, 7b, and 7c corresponding to the three water lifting cylinders 2a, 2b, and 2c are separately connected to a common header 11A through air supply hoses 13a, 13b, and 13c. When the air chamber 2a is floated, the outlet position of the hose 13a is raised, the air supply rate to the air chamber 2a is increased, and the air supply rate to the other chambers 2b and 2c is decreased. When the air in the chamber 2a is discharged and the chamber 2a is sunk, the chamber 2a between the chambers 2b and 2c contg. a larger amt. of air is then floated, and the air is discharged. The chamber 2c is then floated, and the air is discharged. The intermittent discharge of air is repeated in this way, and the water lifting and circulating efficiency is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ダム貯水池、港湾等のように水深が概して深
く、貯留水が水温躍層を境にして上層と下層とに分れ混
合しようとせず水質の悪化する傾向のある水域に対し、
水底に設置して水に酸素を供給すると同時に上層、下層
の水を循環して水質の浄化を図る装置の改良に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is directed to a dam reservoir, a port, etc. where the water depth is generally deep, and the stored water separates into an upper layer and a lower layer with the thermocline as a boundary and mixes. For water areas where water quality tends to deteriorate without
This invention relates to an improvement in a device that is installed at the bottom of the water and supplies oxygen to the water while simultaneously circulating the water in the upper and lower layers to purify the water quality.

(従来の技術) 前記目的に適する装置の1つとして、従来、特公昭42
−5975号等のような逆ザイフオン作用を利用した間
欠空気揚水筒装置が用いられている。この装置は水中に
設置され、揚水筒部の下方の空気室部内に逆サイフオン
が組込まれており、外部空気源から連続的に受給する空
気が空気室部内に蓄積して一定量に達すると逆サイフオ
ンが作動して蓄積空気を一気に揚水筒部内に送り込み、
こうして間欠的に揚水筒部内を上昇する気泡塊のピスト
ン作用により外部の水を吸引して揚水するものである。
(Prior art) As one of the devices suitable for the above purpose, the Japanese Patent Publication No. 42
An intermittent air pumping cylinder device utilizing a reverse Zyphon effect, such as No. 5975, is used. This device is installed underwater, and a reverse siphon is built into the air chamber below the pumping cylinder.When air continuously received from an external air source accumulates in the air chamber and reaches a certain amount, the reverse siphon is activated. The siphon operates and sends the accumulated air all at once into the water pumping cylinder.
In this way, external water is sucked and pumped by the piston action of the air bubbles that intermittently rise inside the water pumping cylinder.

この間欠揚水の時間間隔は通常5〜IO秒程度にせられ
る。この装置は広い水域の水の循環流を強制的に起こさ
せる目的上、1個所の1基の装置にできるだけ大きい揚
水能力を持たせかつその揚水効率の高いことが要求され
る。
The time interval for this intermittent pumping is usually about 5 to 10 seconds. This device is required to have as large a pumping capacity as possible in one device at one location and to have high pumping efficiency for the purpose of forcing circulation of water over a wide area of water.

しかし、単一揚水筒部の間欠空気揚水筒装置では、揚水
能力増大の1つの手段として、給気量を増加させて逆サ
イフオンによる空気室部から揚水筒部への空気放出の時
間間隔を短くすると、1つの気泡塊が揚水筒部内を上昇
中かあるいはその上端から離れた直後に次の気泡塊が揚
水筒部内に放出されるようになり、気泡塊に後続する揚
水筒部内水流の慣性による慣性流の効果を阻害するよう
になって、消費空気量当たりの揚水量が低下する。
However, in an intermittent air pumping tube device with a single pumping tube, one way to increase the pumping capacity is to increase the amount of air supply and shorten the time interval between air discharge from the air chamber to the pumping tube by the reverse siphon. Then, immediately after one bubble mass is rising inside the pumping cylinder or leaves its upper end, the next bubble mass is released into the pumping cylinder, and due to the inertia of the water flow in the pumping cylinder following the bubble mass. The effect of inertial flow is inhibited, and the amount of water pumped per amount of air consumed decreases.

また他の手段として、スケールアップ効果に依存して揚
水筒部の直径を大きくすると、揚水筒部内で安定状態の
気泡塊を形成させるための必要空気量が直径の3乗の割
合で増加し、さらに筒径が40乃至50cmの程度を越
えると揚水筒部内で一個の気泡塊が安定に形成されなく
なって割れたピストンと同様ピストン作用により揚水流
を発生する効果が顕著に低下する。
As another means, if the diameter of the pumping cylinder is increased depending on the scale-up effect, the amount of air required to form a stable bubble mass within the pumping cylinder increases at a rate of the cube of the diameter. Further, if the diameter of the cylinder exceeds 40 to 50 cm, a single air bubble cannot be stably formed within the pumping cylinder, and the effect of generating a pumping flow by the action of the piston is significantly reduced, similar to a broken piston.

このように気泡塊の物理的挙動による限界があるため、
大容量の揚水循環を必要とする場合には、実開昭60−
176300号のように複数の小口径揚水筒の間欠空気
揚水筒を一体的に併設した装置とすることが提案されて
いる。
Because of this limitation due to the physical behavior of the bubble mass,
When large-capacity pumped water circulation is required,
As in No. 176300, it has been proposed to provide a device in which a plurality of small-diameter intermittent air pumping tubes are integrated together.

(発明が解決しようとする問題点) 貯水池等の水域における間欠空気揚水筒装置の揚水循環
の水流の挙動は、揚水筒部内を通過する前記揚水流、慣
性流の量より揚水筒部の上端から放出された気泡塊が水
域中を小気泡群に分散して上昇する過程で周囲の水を誘
引する連行流のほうが多く、連行流の量は前記筒内流の
量の数倍にもなり得る。
(Problem to be Solved by the Invention) The behavior of the water flow in the pumping circulation of an intermittent air pumping tube device in a water area such as a reservoir is determined by the amount of the pumping flow and inertial flow passing through the pumping tube section from the upper end of the pumping tube section. In the process in which the released bubble mass disperses into small bubble groups in the water body and rises, there is a larger amount of entrained flow that attracts surrounding water, and the amount of entrained flow can be several times the amount of the above-mentioned in-cylinder flow. .

ところが、実開昭60−176300号の装置では、複
数の揚水筒部から分割された気泡塊が同時に放出された
のちの水域内を上昇する空気の分散過程では、1個の大
気泡塊が放出された場合と同様に小気泡群が1個所に集
中した状態となって上昇し、これが長い時間間隔で間欠
的に行われるだけのため、連行流を増加させる効果は乏
しい。
However, in the device of Utility Model Application Publication No. 176300/1983, after the divided air bubbles are simultaneously released from multiple pumping tubes, only one air bubble is released during the dispersion process of the air rising in the water area. As in the case where the small bubbles are concentrated in one place and rise, and this only occurs intermittently at long time intervals, the effect of increasing the entrained flow is poor.

複数の揚水筒部毎に逆サイフオン付空気室部を個別に設
けても、その作動は各空気室容量の差、給気量の配分の
差等によって逆サイフオン作動発起の時間間隔が個別に
相異し分割気泡塊の放出作動が相互に無関係に不規則に
行われるだけであって、構造が複雑化した割合にはさし
たる改善が認められない。
Even if air chambers with reverse siphons are individually provided for each of the plurality of water pumping cylinders, the time intervals for the activation of the reverse siphons may differ depending on the difference in the capacity of each air chamber, the difference in the distribution of air supply, etc. The discharging operations of the differently divided cell mass are performed irregularly and unrelated to each other, and there is no significant improvement in the degree of complexity of the structure.

(問題点を解決するための手段) 本発明は、従来技術の間欠空気揚水筒装置の大容量化に
伴う前記諸問題に解決を与えるため、送給空気量の増加
に対応して揚水筒を複数の小径揚水筒部に分割する場合
に、空気量が同じであれば、1つの揚水筒から大きい気
泡塊を長い時間間隔で、あるいは分割気泡塊を不規則時
間間隔で放出するよりも、各分割揚水筒部からの間欠的
分割気泡塊の放出を短い時間間隔でなるべく規則的に放
出させて間欠放出の連続化を図るほうがより大きな連行
流が得られるとの知見に基づいてなされたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems associated with the increase in the capacity of the intermittent air pumping tube device of the prior art, the present invention provides a solution to the above-mentioned problems caused by the increase in the capacity of the intermittent air pumping tube device of the prior art. When dividing into multiple small-diameter pumping tubes, if the amount of air is the same, it is better to release large bubbles from one pumping tube at long time intervals, or to release divided bubbles at irregular time intervals. This was done based on the knowledge that a larger entrainment flow could be obtained by discharging intermittent divided air bubbles from the divided pumping cylinder part as regularly as possible at short time intervals to make the intermittent discharge continuous. be.

本発明では、下部空気室部から各揚水筒部への空気放出
が規則的に行われるようにして、揚水筒の上部で発生す
る断続的な空気の上界流をできるだけ連続化して連行流
を増大させるようにする。そのため、複数の揚水筒部を
同一高さに配置して各揚水筒部の下方に逆サイフオン付
空気室部を上下動可能に設け、外部から連続的に供給さ
れる空気を集中的に受入れるヘッダーをその近傍に設け
、ヘッダーから各空気室部へ個別に給気ホースを接続し
て、空気室部の上下移動に伴って規則的に各空気室部に
空気が分配送給されるようにし、またこれが空気室部の
規則正しい順序の上下移動を確実に行わせるようにする
In the present invention, the air is discharged regularly from the lower air chamber to each pumping cylinder, and the intermittent upper air flow generated at the top of the pumping cylinder is made continuous as much as possible to create an entrained flow. Try to increase it. Therefore, multiple pumping tubes are arranged at the same height, and an air chamber with an inverted siphon is provided below each pumping tube so that it can move up and down.The header centrally receives air continuously supplied from the outside. is installed near the header, and air supply hoses are connected individually from the header to each air chamber so that air is regularly distributed and supplied to each air chamber as the air chamber moves up and down. This also ensures that the air chambers move up and down in a regular sequence.

これらを総合して、本発明の大容量間欠空気揚水筒装置
は、構成上、複数の揚水筒部を共通の保持枠に間隔を隔
てて併設し、これを水底アンカーに係留しフロートによ
り各揚水筒部が水域内の同一高さにあって直立状態に保
持されるようにするとともに、保持枠に各揚水筒部に対
応して逆サイフオンを組込んだ空気室部を上下移動可能
に設け、外部空気源から空気を受給する共通のヘッダ一
部から可撓性の空気ホースを各空気室に個別接続して各
空気室部に空気を分配送給するようにしたことを特徴と
する。
In summary, the large-capacity intermittent air pumping tube device of the present invention has a structure in which a plurality of pumping tube sections are installed at intervals on a common holding frame, and these are moored to bottom anchors, and each pumping tube is moored by a float. The water cylinder portions are held at the same height in the water body in an upright state, and an air chamber portion incorporating a reverse siphon is provided in the holding frame corresponding to each water pumping cylinder portion so as to be movable up and down. The present invention is characterized in that a flexible air hose is individually connected to each air chamber from a part of a common header that receives air from an external air source, so that air can be distributed and distributed to each air chamber section.

(作 用) 各空気室部は貯留空気量が一定量を越えるとその浮力に
より上昇する。最も早く浮上した空気室部へは、接続し
た給気ホースの出口位置が高くなるので水位差によりヘ
ッダーからの空気の供給が他の空気室部よりも優先して
行われるようになり、速やかに逆サイフオン発起状態に
到達する。そして逆サイフオンの発起によりその空気室
部の空気が一挙に放出され、この空気室部は放出可能な
空気をすべて放出し最小の空気保有量となり浮力を失っ
て降下する。
(Function) When the amount of stored air exceeds a certain amount, each air chamber rises due to its buoyancy. The outlet of the connected air supply hose will be higher in the air chamber that surfaced the fastest, so air will be supplied from the header with priority over other air chambers due to the difference in water level, and the air chamber will quickly rise to the surface. Reach the reverse siphon initiation state. Then, when the reverse siphon is activated, the air in the air chamber is released all at once, and the air chamber releases all the air that can be released, becomes the minimum air holding amount, loses buoyancy, and descends.

その次には、空気貯留量の最も多い他の空気室部が浮上
して同様にして空気を放出する。このようにして連続的
に定量供給される空気が一定の順序で交互に上昇する空
気室部に順序に分配供給されるので、各空気室部への分
配空気量が均等量化され、各空気室部から揚水筒部への
空気放出がほぼ等間隔の時間差をもって行われるように
なる。
Subsequently, the other air chamber section with the largest amount of air storage floats up and releases air in the same manner. In this way, the continuously supplied air is distributed and supplied to the air chambers that alternately rise in a fixed order, so the amount of air distributed to each air chamber is equalized, and each air chamber is Air is discharged from the tank to the pumping cylinder at approximately equal time intervals.

(実施例) 以下、本発明を添付図を参照し実施例に即して具体的に
説明する。第1図は本発明の原理的構成を示すために最
も単純化して揚水筒部の数を最小の2とした実施例を示
し、第2図はその水域中での設置状況および作動状況を
示す。
(Examples) Hereinafter, the present invention will be specifically described based on examples with reference to the accompanying drawings. Fig. 1 shows an embodiment in which the number of pumping cylinders is the minimum of 2 in order to show the basic structure of the present invention, and Fig. 2 shows the installation situation and operating situation in a water body. .

この大容量間欠空気揚水筒装置(1)は、この例では2
つの均等構成の揚水筒部(2a) (2b)が水の通過
の自由な共通の保持枠(3)上に間隔を隔てて併設され
ている。そしてこの揚水筒装置(11は、第2図のよう
に、貯水池等の水域(a)の水底(b目二のアンカー(
4)にワイヤー(5)で係留され、各筒上部のフロート
(61(61により浮力バランスを保って水底近くで一
定の姿勢をとる。この姿勢において両揚水筒部(2a)
 (2b)は水域中の同一高さにあって直立状態に保持
される。
In this example, this large-capacity intermittent air pumping cylinder device (1) has two
Two equally constructed water pumping cylinders (2a) and (2b) are arranged at intervals on a common holding frame (3) through which water can freely pass. As shown in FIG.
4) with wires (5), and the floats (61 (61) at the top of each cylinder maintain a buoyancy balance and take a constant posture near the bottom of the water. In this posture, both lifting cylinders (2a)
(2b) is held upright at the same height in the body of water.

通水自由な保持枠(3)内には、各揚水筒部(2a)(
2b)に対応してそれぞれ空気室部(7a) (7b)
を設ける。その1つ(7a)につき構造を説明すると、
外側の倒立カップ状で空気溜を形成する空気室部(7a
)はその上底中央に設けた空気放出管(8a)が揚水筒
部(2a)の底板の案内筒(9a)を貫通し、それをガ
イドとして摺動して保持枠(3)内で上下移動できるよ
うになっており、空気室部(7a)内の下端を閉鎖し上
端が空気溜の天井近くに位置する内筒(10a)で空気
放出管(8a)の下端部を囲い逆サイフオンを形成して
いる。他方の空気室部(7b)について、均等構造であ
る。(以下均等の各部は英字小文字製記号を変えて区別
するに留め、説明の重複を省略する。) 両空気室部(7a) (7b)の近傍には共通のヘッダ
一部(11)を例えば保持枠(3)に取付けて設け、地
上外部の空気源(図示せず)から共通のホースα乃を経
由して圧力空気を受給するようにし、ヘッダ一部0υか
ら各空気室部(7a) (7b)に対し可撓性の給気ホ
ース(13a) (13b)を個別接続する。
Inside the holding frame (3) through which water can freely flow, each water pumping cylinder part (2a) (
2b) corresponding to the air chambers (7a) and (7b), respectively.
will be established. To explain the structure of one of them (7a),
Air chamber part (7a) that forms an air pocket in an inverted cup shape on the outside
) has an air discharge pipe (8a) installed at the center of its upper base that passes through a guide tube (9a) on the bottom plate of the water pumping tube section (2a), and slides up and down within the holding frame (3) using the guide tube (9a) as a guide. It is movable, and the lower end of the air chamber (7a) is closed, and the lower end of the air discharge pipe (8a) is enclosed by the inner cylinder (10a) whose upper end is located near the ceiling of the air chamber to create a reverse siphon. is forming. The other air chamber section (7b) has an equal structure. (Hereinafter, each part that is equivalent will be distinguished by changing the symbol made of lowercase letters, and redundant explanation will be omitted.) A common header part (11) is placed near both air chambers (7a) and (7b), for example. It is attached to the holding frame (3) and receives pressurized air from an air source outside the ground (not shown) via a common hose α, and from the header part 0υ to each air chamber part (7a). Flexible air supply hoses (13a) and (13b) are individually connected to (7b).

この実施例において、空気室部(7a) (7b)がと
もに下降位置にあるときは、ヘッダ一部Ql)から両空
気室部(7a) (7b)に空気が均等に供給されるが
、何れかの空気室部、例えば(7a)が貯留空気ψが多
いために先に浮上すると、この空気室部への給気ホース
(13a)の出口が他の空気室部(7b)の給気ホース
(13b)出口より高位置となるので、ヘッダー00か
らの空気が浮上した空気室部(7a)に優先的に供給さ
れ、そのために他の空気室部(7b)には殆ど空気が供
給されな(なる。こうして浮上空気室部(7a)内の水
位が空気放出管(8a)の下端まで降下すると逆サイフ
オン作用が発起し空気室部(7a)内に貯留された空気
が揚水筒部(2a)内に一挙に放出され、気泡塊(C)
となって揚水筒部(2a)内を上昇しそのピストン作用
により外部の水が吸水口(14a)から吸引されて揚水
され、その後気泡塊(C)は揚水筒部(2a)の上端か
ら放出され、水域(a)中を次第にドーナツ形から大気
泡、小気泡に分割されながら水面に向かって約17°の
角度範囲で上昇し、その間に周囲の水を連行する。矢印
(d)は連行流を示す。
In this embodiment, when both the air chambers (7a) and (7b) are in the lowered position, air is evenly supplied from the header part Ql) to both the air chambers (7a) and (7b); If that air chamber, for example (7a), rises first because it has a large amount of stored air ψ, the outlet of the air supply hose (13a) to this air chamber will be connected to the air supply hose of another air chamber (7b). (13b) Since the position is higher than the outlet, air from the header 00 is preferentially supplied to the floating air chamber (7a), so almost no air is supplied to the other air chambers (7b). (In this way, when the water level in the floating air chamber (7a) falls to the lower end of the air discharge pipe (8a), a reverse siphon effect occurs and the air stored in the air chamber (7a) is transferred to the pumping tube part (2a). ) is released all at once into a mass of air bubbles (C)
The water rises inside the water pumping cylinder (2a), and by its piston action, external water is sucked from the water intake port (14a) and pumped up, and then the air bubble mass (C) is released from the upper end of the water pumping cylinder (2a). The bubbles gradually split into large and small bubbles from a donut shape in the water body (a) and rise towards the water surface within an angle range of approximately 17°, entraining the surrounding water along the way. Arrow (d) indicates entrained flow.

空気放出を行った空気室部(7a)は浮力を失って沈降
する。空気室部(7a)が上昇を開始し空気放出を行っ
て沈降を終わるまでの間、他の空気室部(7b)には殆
ど空気が分配されなくなるので空気室部(7b)の浮上
は抑制されている。その後空気室部(7a)の沈降によ
りヘッダー〇〇からの空気が再び両空気室部(7a) 
(7b)に均等に供給されるようになるので、次に貯留
空気量の多い空気室部(7b)が浮上して前記同様にし
て空気を放出する。この作動を交互に繰返す。前記のよ
うに1つの揚水筒部の空気放出、間欠揚水の時間間隔は
5〜10秒程度の比較的短い時間間隔とするので、たと
え空気室部(3a) (3b)の容量、給気ホース(1
3a) (13b)経由の常態の給気量に僅かな相互間
の差があっても、空気室部(2a) (2b)は一定の
時間を隔てて交互に上昇して、はぼ等間隔の時間差をお
いて逆サイフオンが作動するようになり、小気泡の上昇
に伴う連行流(d)が時間的に短い時間間隔のうちに後
続するようにして行われるので、連行流(d)による揚
水効果が揚水筒部相互間での干渉なく有効に発揮される
The air chamber (7a) that has released air loses its buoyancy and sinks. Until the air chamber (7a) starts rising, releases air, and finishes settling, almost no air is distributed to the other air chambers (7b), so the floating of the air chamber (7b) is suppressed. has been done. After that, due to the settling of the air chamber (7a), the air from the header 〇〇 returns to both air chambers (7a).
(7b), the air chamber (7b) with the largest amount of stored air floats next and releases air in the same manner as described above. Repeat this operation alternately. As mentioned above, the time interval between air release and intermittent pumping from one pumping cylinder section is relatively short, about 5 to 10 seconds, so even if the capacity of the air chamber section (3a) (3b), the air supply hose (1
Even if there is a slight difference in the normal supply air amount via 3a) (13b), the air chambers (2a) and (2b) will rise alternately at regular intervals, and the air chambers will rise at approximately equal intervals. The reverse siphon begins to operate after a time difference of The pumping effect is effectively exerted without interference between the pumping cylinder parts.

本発明においては、揚水筒部を3以上としても等間隔時
間差揚水が可能である。第3図は3つの揚水筒部を並列
に示した実施例である。
In the present invention, it is possible to pump water at equal intervals and at different times even if there are three or more water pumping cylinder parts. FIG. 3 shows an embodiment in which three pumping cylinder sections are shown in parallel.

すなわち、3つの揚水筒部輯a) (2b) (2c)
に対応する各空気室部(7a) (7b) (7c)が
共通のヘッダー (114)からそれぞれ個別の給気ホ
ース(13a)(13b) (13c)で接続されてい
る。まず空気室部(2a)が浮上すると、給気ホース(
13a)の出口位置が高くなるために、空気室部(2a
)への給気量が増加して他の空気室部(2b) (2c
)への給気量が減少する。空気室部(2a)が空気を放
出して沈降すると、空気室部(2b) (2c)のうち
貯留空気量の多いうほうの空気室、例えば(2b)が次
に浮上して空気を放出する。次いで空気室部(2c)が
浮上して空気を放出する。以降は空気貯留量の多い空気
室部(2a) (2b) (2c)の順に浮上して空気
の間欠放出を繰返し、3本の揚水筒部(2a) (2b
) (2c)からはほぼ等間隔の時間差を置いて間欠揚
水を繰返すことになる。
That is, the three pumping cylinder parts a) (2b) (2c)
The air chambers (7a), (7b), and (7c) corresponding to the respective air chambers are connected to a common header (114) by individual air supply hoses (13a, 13b, and 13c), respectively. First, when the air chamber (2a) floats up, the air supply hose (
Since the outlet position of the air chamber (13a) is higher, the air chamber (2a)
) increases the amount of air supplied to other air chambers (2b) (2c
) decreases. When the air chamber (2a) releases air and sinks, the air chamber (2b) or (2c) with a larger amount of stored air, for example (2b), rises next and releases air. do. Then, the air chamber section (2c) floats up and releases air. After that, the air chambers (2a), (2b), and (2c) with the largest amount of air storage are floated in that order, and air is repeatedly released intermittently, and the three water pumping cylinders (2a) (2b)
) From (2c) onwards, intermittent water pumping will be repeated at approximately equal time intervals.

多数の揚水筒部の配置は共通のヘッダーとの関係におい
て自由に選ぶことができる。例えば、第4図に示すよう
に、ヘッダー(IIB)を中心に空気室部(7a) (
7b) (7c) (7d)を同一円周上に配置しても
よく、また揚水筒部の数が多い場合には、第5図に示す
ようにヘッダー(IIC)の両側に複数の揚水筒部(2
)を2列に配置することができる。
The arrangement of the multiple pump cylinders can be freely chosen in relation to the common header. For example, as shown in Fig. 4, the air chamber (7a) (
7b) (7c) (7d) may be arranged on the same circumference, and if there are many pumping cylinders, multiple pumping cylinders may be arranged on both sides of the header (IIC) as shown in Figure 5. Part (2
) can be arranged in two columns.

揚水筒部数を多くすれば時間差揚水の時間間隔は一層均
等となるが、実際上あまり多数とする必要はないことは
容易に了解される。
If the number of water pumping cylinders is increased, the time intervals of staggered water pumping will become more even, but it is easily understood that there is no need to increase the number in practice.

(発明の効果) 本発明の間欠空気揚水筒装置によると、同一高さに設置
した複数の間欠空気揚水筒部の上端からほぼ等間隔の時
間差を置いて規則的に気泡塊が放出されるようになり、
揚水筒部から離れて上昇する小気泡群の流れがより連続
化してより多量の連行流を発生させるので間欠空気揚水
筒装置の揚水循環量が多くなり、水域における設置数を
少なく大容量化した場合にも安定に作動して高い揚水循
環効率が得られる効果がある。
(Effects of the Invention) According to the intermittent air pumping cylinder device of the present invention, air bubbles are regularly released from the upper ends of the plurality of intermittent air pumping cylinders installed at the same height at substantially equal time intervals. become,
The flow of small bubbles rising away from the pumping tube becomes more continuous and generates a larger amount of entrainment flow, which increases the pumping circulation volume of the intermittent air pumping tube device, reducing the number of installations in the water area and increasing the capacity. It has the effect of operating stably and achieving high pumping water circulation efficiency even when

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の間欠空気揚水筒装置の原理的構成を示
すための最も単純化し2揚水筒部の実施例の縦断側面図
、第2図はその水域における設置状況、作動状況を示す
ための説明図、第3図は3つの揚水筒部を並べて示した
本発明の他の実施例の縦断側面図、第4図は多数揚水筒
部の他の実施例の配置の1例を示す平面図、第5図はそ
の配置の他側を示す平面図である。 (i)・・・間欠空気揚水筒装置、(2a) (2b)
 (2c)・・・揚水筒部、(3)・・・保持枠、(4
)・・・アンカー、(5)・・・ワイヤー、+61 ・
・・フロート、(7) (7a) (7b) (7c)
 (7d) −空気室部、(8a) (8b) (8c
) =空気放出管、(9a) (9b)(9c)−案内
筒、(10a) (10b) (10c) ・・・内筒
、αυ(11八’) (IIB) (IIC)・・・ヘ
ッダー、(ロ)・・・共通ホース、Q湯(13a) (
13b) (13c) (13d)−給気ホース、(1
4a) (14b) (14C)−吸水口、(a)−・
・水域、(b) ・・・水底、(C)・・・気泡塊、(
dl・・・連行流。
Fig. 1 is a vertical cross-sectional side view of an embodiment of the simplest two-pumping cylinder section to show the principle structure of the intermittent air pumping cylinder device of the present invention, and Fig. 2 is a longitudinal side view showing the installation situation and operating situation in the water area. FIG. 3 is a vertical cross-sectional side view of another embodiment of the present invention showing three pumping cylinders arranged side by side, and FIG. 4 is a plan view showing an example of the arrangement of another embodiment of multiple pumping cylinders. FIG. 5 is a plan view showing the other side of the arrangement. (i)...Intermittent air pumping cylinder device, (2a) (2b)
(2c)... Lifting cylinder part, (3)... Holding frame, (4
)...Anchor, (5)...Wire, +61 ・
...Float, (7) (7a) (7b) (7c)
(7d) - Air chamber, (8a) (8b) (8c
) = Air discharge pipe, (9a) (9b) (9c) - Guide cylinder, (10a) (10b) (10c) ... Inner cylinder, αυ (118') (IIB) (IIC) ... Header , (b)...Common hose, Q hot water (13a) (
13b) (13c) (13d) - Air supply hose, (1
4a) (14b) (14C)-Water inlet, (a)-・
・Water area, (b) ... water bottom, (C) ... bubble mass, (
dl...Long style.

Claims (1)

【特許請求の範囲】[Claims]  複数の揚水筒部を共通の保持枠に間隔を隔てて併設し
、これを水底アンカーに係留しフロートにより各揚水筒
部が水域内で同一高さにあって直立状態に保持されるよ
うにするとともに、保持枠に各揚水筒部に対応して逆サ
イフオン発起部を組込んだ空気室部を上下移動可能に設
け、外部空気源から空気を受給する共通のヘッダー部か
ら可撓性の給気ホースを各空気室部に個別接続して各空
気室部に空気を分配送給するようにしたことを特徴とす
る大容量間欠空気揚水筒装置。
A plurality of water pumping cylinders are placed side by side on a common holding frame at intervals, and these are moored to underwater anchors so that each water pumping cylinder is held upright at the same height within the body of water using a float. At the same time, an air chamber incorporating a reverse siphon starting part is provided in the holding frame so as to be movable up and down, corresponding to each pumping cylinder part, and a flexible air supply is provided from a common header part that receives air from an external air source. A large-capacity intermittent air pumping cylinder device characterized in that a hose is individually connected to each air chamber to distribute and supply air to each air chamber.
JP62324518A 1987-12-21 1987-12-21 Large-capacity intermittent-air water lifting cylinder device Pending JPH01164495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324518A JPH01164495A (en) 1987-12-21 1987-12-21 Large-capacity intermittent-air water lifting cylinder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324518A JPH01164495A (en) 1987-12-21 1987-12-21 Large-capacity intermittent-air water lifting cylinder device

Publications (1)

Publication Number Publication Date
JPH01164495A true JPH01164495A (en) 1989-06-28

Family

ID=18166695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324518A Pending JPH01164495A (en) 1987-12-21 1987-12-21 Large-capacity intermittent-air water lifting cylinder device

Country Status (1)

Country Link
JP (1) JPH01164495A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146611A1 (en) * 2014-03-25 2015-10-01 住友電気工業株式会社 Intermittent bubble generation device
JP2018176113A (en) * 2017-04-19 2018-11-15 三菱ケミカル株式会社 Siphon-type diffuser pipe, membrane separation activated sludge apparatus, and water treatment method
JP2018202372A (en) * 2017-06-09 2018-12-27 三菱ケミカル株式会社 Siphon type diffuser, membrane separation active sludge device, and water treatment method
JP2019076857A (en) * 2017-10-26 2019-05-23 三菱ケミカルアクア・ソリューションズ株式会社 Siphon type diffuser, membrane separation active sludge apparatus and water treatment method
CN116249585A (en) * 2020-09-18 2023-06-09 株式会社明电舍 Bubble generating device and liquid filtering device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146611A1 (en) * 2014-03-25 2015-10-01 住友電気工業株式会社 Intermittent bubble generation device
JPWO2015146611A1 (en) * 2014-03-25 2017-04-13 住友電気工業株式会社 Intermittent bubble generator
US10179311B2 (en) 2014-03-25 2019-01-15 Sumitomo Electric Industries, Ltd. Intermittent-bubbling equipment
JP2018176113A (en) * 2017-04-19 2018-11-15 三菱ケミカル株式会社 Siphon-type diffuser pipe, membrane separation activated sludge apparatus, and water treatment method
JP2018202372A (en) * 2017-06-09 2018-12-27 三菱ケミカル株式会社 Siphon type diffuser, membrane separation active sludge device, and water treatment method
JP2019076857A (en) * 2017-10-26 2019-05-23 三菱ケミカルアクア・ソリューションズ株式会社 Siphon type diffuser, membrane separation active sludge apparatus and water treatment method
CN116249585A (en) * 2020-09-18 2023-06-09 株式会社明电舍 Bubble generating device and liquid filtering device
CN116249585B (en) * 2020-09-18 2024-02-20 株式会社明电舍 Bubble generating device and liquid filtering device

Similar Documents

Publication Publication Date Title
KR890003924B1 (en) Method for supply of air masses
US10989228B2 (en) Non-clogging airlift pumps and systems and methods employing the same
JPH01111494A (en) Continuously connected type intermittent air water lifting cylinder
JPH01164495A (en) Large-capacity intermittent-air water lifting cylinder device
CN106575483B (en) Hydrodynamic device
JPS63315195A (en) Partial water purification method in continuous water area
JPS632158Y2 (en)
JP3782841B2 (en) Eddy current diffuser
JPH01164497A (en) Large-capacity intermittent-air water lifting cylinder device
JP3879011B2 (en) Bubble dividing cylinder for intermittent air pumping apparatus and intermittent air pumping apparatus provided with bubble dividing cylinder
JPH01164496A (en) Large-capacity intermittent-air water lifting cylinder device
JP2009028686A (en) Aerator
JPH07275884A (en) Large capacity deep water aeration device
KR100668420B1 (en) Water cleanup device
JPH0533760Y2 (en)
JPH0751696A (en) Large-capacity pumping method and device therefor
JPH044480B2 (en)
CN210715232U (en) Submersible pump with vibration damping seat
JPS6327834Y2 (en)
JP3277333B2 (en) Method and apparatus for improving water quality of a water area having upper and lower stratification
JP3558691B2 (en) Pumping cylinder
JPS63391Y2 (en)
JPH0346679B2 (en)
JPH06343993A (en) Intermittent air pumping-up method and device for sea water
JP2023127731A (en) Bubble generation device and liquid filtration device