JPH01163472A - Control method for idling operation of variable speed hydraulic machine - Google Patents

Control method for idling operation of variable speed hydraulic machine

Info

Publication number
JPH01163472A
JPH01163472A JP62318845A JP31884587A JPH01163472A JP H01163472 A JPH01163472 A JP H01163472A JP 62318845 A JP62318845 A JP 62318845A JP 31884587 A JP31884587 A JP 31884587A JP H01163472 A JPH01163472 A JP H01163472A
Authority
JP
Japan
Prior art keywords
hydraulic machine
variable speed
power
speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62318845A
Other languages
Japanese (ja)
Other versions
JP2858748B2 (en
Inventor
Hisao Kuwabara
尚夫 桑原
Hiroto Nakagawa
博人 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP62318845A priority Critical patent/JP2858748B2/en
Publication of JPH01163472A publication Critical patent/JPH01163472A/en
Priority to JP10134828A priority patent/JP2993930B2/en
Application granted granted Critical
Publication of JP2858748B2 publication Critical patent/JP2858748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To stabilize the electric power system of a hydraulic machine by simultaneously carrying out effective power control in the direction of suppressing the variation in frequency of the power system in addition to ineffective power control. CONSTITUTION:While always monitoring the frequency variation of an electric power system, the effective power of a generator motor 1 is regulated in accordance with the variation. That is, when a frequency is temporarily increased, a load power applied to the generator motor 1 is increased and the energy of this amount is stored as the rotation increasing energy of a hydraulic machine 2 while, on the contrary, when the frequency is temporarily lowered, the load power applied to the generator motor 1 is lowered. Control is performed so as to tide over the resultant lack of the amount of driving energy of the hydraulic machine 2 by compensating the consumption of the inertia energy of the hydraulic machine itself.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一次側又は二次側に電力変換器を備え可変速で
運転される電動運転可能な発電機又は電動機に直結され
た水力機械に係り特に電力系統の安定化に好適な空転運
転制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to a hydraulic machine that is directly connected to a generator or motor that can be driven electrically at a variable speed and that has a power converter on the primary or secondary side. In particular, the present invention relates to an idle operation control method suitable for stabilizing an electric power system.

〔従来の技術〕[Conventional technology]

本発明に関する公知例として、a、861年電気学会全
国大会発表Nα1028 r可変速揚水発電システム用
発?!!電動機の2軸励磁電流制御系検討」「b、電力
技術ハンドブック(電気書院、監修;填野一部(早天)
)PL−64,7・5・3項。
As a publicly known example related to the present invention, a. ! ! ``Study of two-axis excitation current control system for electric motors'' ``b. Electric power technology handbook (Denki Shoin, supervised; Kazuno Fudeno (Sayaten)
) PL-64, Section 7.5.3.

P5−81 9・4項が知られている。P5-81 Section 9.4 is known.

このうち上記公知例すでは同期電動機とこれに駆動され
る水力機械の調相運転の原理と方法が記述されている。
Among these, the above-mentioned known examples describe the principle and method of phase control operation of a synchronous motor and a hydraulic machine driven by the motor.

但し電力変換器を備え可変速運転可能な可変速水力機械
の調和運転制御法については一切述べていないか当然本
発明の対象としている有効電力制御も調相制御即ち無効
電力制御と同時に達成しようとの考え方は全くない。
However, there is no mention of a harmonic operation control method for a variable-speed hydraulic machine equipped with a power converter and capable of variable-speed operation, or, of course, there is no attempt to achieve active power control, which is the subject of the present invention, at the same time as phasing control, that is, reactive power control. There is no such way of thinking.

更に公知例aでは可変速揚水発電システム用発電電動機
の2軸励磁電流制御方法が開示されている。
Furthermore, known example a discloses a method for controlling a two-axis excitation current of a generator motor for a variable speed pumped storage power generation system.

第4図はその説明図で発電/電動機1の二次側即ち回転
子側を電力変換器3 (CYC)により可変周波数励磁
をして発電/電動機の一次側即ち固定子側の電力周波数
を一定に保持したまま回転子の回転速度を可変にした可
変速発電/f!i動機に関するものである。17のAP
R(出力制御装置)が図示してない出力指令(即ち有効
電力指令)と実出力検出器16の出力を比較し乍らAC
R37(励磁電流制御装置)に対しであるべき有効電力
相当の直軸電流の値Igを指令する。他方AVR36(
電圧制御装置)が図示してない電圧指令と電圧検出器3
9で検出した実際の発電/電動機電圧を比較しであるべ
き電圧相当の横軸電流の値idを指令する。
Figure 4 is an explanatory diagram, in which the secondary side of the generator/motor 1, that is, the rotor side, is excited with variable frequency by the power converter 3 (CYC), and the power frequency of the primary side, that is, the stator side of the generator/motor is kept constant. Variable speed power generation in which the rotation speed of the rotor is made variable while maintaining f! It is about i-motivation. 17 APs
While R (output control device) compares the output command (i.e., active power command) not shown in the figure with the output of the actual output detector 16,
A command is given to R37 (exciting current control device) to determine the value Ig of the direct axis current equivalent to the effective power that should be achieved. On the other hand, AVR36 (
Voltage control device) (not shown) Voltage command and voltage detector 3
The actual power generation/motor voltage detected in step 9 is compared, and a horizontal axis current value id corresponding to the voltage that should be obtained is commanded.

ACR(励磁電流制御装置)37は上記1g+idの他
に位相検出器7が検出する実際のスリップ位相角O5、
実際の各相電流imを考慮して各相電圧指令Vを決める
In addition to the above 1g+id, the ACR (exciting current controller) 37 inputs the actual slip phase angle O5 detected by the phase detector 7;
Each phase voltage command V is determined in consideration of the actual each phase current im.

尚38は発電/電動機の電流検出器、40は3電力変換
器用のトランスである。ところでこの公知例では水力機
械の空転運転中の制御方法については一切触れていない
Note that 38 is a current detector for the generator/motor, and 40 is a transformer for the three power converters. By the way, this known example does not mention at all a method of controlling a hydraulic machine during idling operation.

特に可変速の特徴を生かし回転部の慣性効果に蓄えたエ
ネルギーの放出やこれにエネルギーを蓄えるよう有効電
力も制御して電力系統の安定化により貢献しようとの考
え方は全く開示されていない。
In particular, there is no disclosure of the concept of contributing to the stabilization of the power system by taking advantage of the variable speed feature to release energy stored in the inertia effect of the rotating part, and by controlling the active power so as to store energy therein.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は可変速機の速度可変の特徴をより生かし電力系
統の安定化により貢献する水力機械の空転運転制御方法
を提供せんとするもので、従来通りの無効電力制御に加
えて、電力系統周波数の変動を抑える方向に有効電力制
御も可能にする。
The present invention aims to provide a method for controlling the idling operation of hydraulic machinery that makes full use of the variable speed characteristics of variable speed machines and contributes to the stabilization of the power system. It also enables active power control to suppress fluctuations in

〔問題点を解決するための手段〕[Means for solving problems]

電力系統の周波数変動を絶えず監視し乍ら、この変動に
応じて発電/電動機の有効電力を調整する。即ち周波数
が一時的に上昇した時は発電/電動機にかかる負荷電力
を増し、この分のエネルギーを該水力機械の回転上昇エ
ネルギーとして蓄えさせ、逆に周波数が一時的に下降し
た時は発電/電動機にかかる負荷電力を下げ、結果とし
て不足する分の水力機械の駆動エネルギーを該水力機械
自身の慣性エネルギの消費で補って乗り切るように制御
する。
While constantly monitoring frequency fluctuations in the power system, the active power of the generator/motor is adjusted in response to these fluctuations. In other words, when the frequency temporarily increases, the load power applied to the generator/motor is increased and this amount of energy is stored as rotational increase energy of the hydraulic machine, and conversely, when the frequency temporarily decreases, the load power applied to the generator/motor is stored. The load power applied to the hydraulic machine is reduced, and as a result, the insufficient driving energy of the hydraulic machine is compensated for by consumption of the inertial energy of the hydraulic machine itself.

尚電力系統の周波数変動が所定のレベル以下の時は定速
運転し乍ら無効電力制御のみを行う。
Note that when the frequency fluctuation of the power system is below a predetermined level, constant speed operation is performed and only reactive power control is performed.

又上述の有効電力制御によって水力機械の回転速度が上
昇又は下降し可変速運転可能バンドを外れようとした時
は、該可変速運転可能バンドを守る方向に有効電力指令
を自動補正する。即ち回転異常上昇時は有効電力を下げ
、異常下降時は有効電力を上げる。しかもこのN蹴り返
し補正回路のゲインは上述の電力系統周波数応答形有効
電力制御が逆に作用しても、これに打ち勝ち可変速運転
バンドの保持を優先させる程充分大きくする。
Furthermore, when the rotational speed of the hydraulic machine increases or decreases due to the above-mentioned active power control and is about to leave the variable speed operation band, the active power command is automatically corrected in a direction that protects the variable speed operation band. That is, when the rotation is abnormally increasing, the active power is lowered, and when the rotation is abnormally decreasing, the active power is increased. Moreover, the gain of this N kickback correction circuit is made sufficiently large to overcome even if the above-mentioned power system frequency response type active power control acts adversely, giving priority to maintaining the variable speed operation band.

又上述の有効電力制御、無効電力制御を2軸励磁電流制
御で矛盾なく実現する。
Moreover, the above-mentioned active power control and reactive power control are realized without contradiction by two-axis excitation current control.

〔作用〕[Effect]

例えば2軸励磁電流制御を使えば矛盾をきたすことなく
無効電力制御と共に有効電力制御ができること、本発明
の対象とする空転運転を行う程のサイズの発電/′r&
動機駆動機駆動機水力機械に比較的大きな慣性効果を有
していること、電力系統の安定化のためにはたとえ空転
モードといっても、利用可能な慣性効果があれば、これ
を徹底利用して高効率化、経済性追求をすべきであるこ
と、しかも上述の如く電力系統のエネルギーを一時的に
慣性効果に蓄め込んだり、逆に慣性効果に蓄っているエ
ネルギーを一時的に吐き出したりすることによって回転
速度が変るが、可変速装置であるので所定の範囲内にあ
る限り何の支障もなく評容できること、これらの点を合
理的に結びつけて可変速水力機械の空転運転時の機能倍
加、即ち慣性効果を利用した有効電力制御を可能にする
For example, if two-axis excitation current control is used, it is possible to perform active power control as well as reactive power control without causing any contradiction, and the power generation is large enough to perform the idling operation that is the object of the present invention.
Motive drive machine Drive machine Hydraulic machinery has a relatively large inertial effect, and in order to stabilize the power system, even if it is in idle mode, if there is an inertial effect that can be used, it must be fully utilized. In addition, as mentioned above, energy in the power system should be temporarily stored in the inertial effect, or conversely, energy stored in the inertial effect should be temporarily stored in the inertial effect. Although the rotational speed changes due to discharging, since it is a variable speed device, it can be evaluated without any problems as long as it is within a predetermined range.By rationally linking these points, it is possible to calculate the speed during idling operation of variable speed hydraulic machines. In other words, it enables active power control using inertia effect.

〔実施例〕〔Example〕

第1図は本発明の実施例を示すブロック図である。1は
発電機としても電動機としても使用可能な誘導形発電電
動機又は誘導電動機を示しく以後は発電/電動機と呼ぶ
)、2は1発電/電動機の回転子に直結された水力機械
、3は電力変換器。
FIG. 1 is a block diagram showing an embodiment of the present invention. 1 indicates an induction type generator motor or induction motor that can be used as both a generator and an electric motor (hereinafter referred to as a generator/motor), 2 indicates a hydraulic machine directly connected to the rotor of the 1 generator/motor, and 3 indicates electric power. converter.

即ち発電/電動機1の二次励磁回路にスリップ相当分の
可変周波数励磁をするサイクロコンバーター、6は水力
機械の実際の回転速度Nを検出する速度検出器、7はス
リップ位相検出器で発電/f!動機lの一次側即ち電力
系統の電圧位相と電気角で表わした1発電/′W1動機
の二次側回転位相の差に等しいスリップ位相角O8を検
出する。スリップ位相検出器の回転子は発電/電動機1
の一次巻線と並列に接続された3相巻線が設けられ、ス
リップ位相検出器の固定子側には電気角でπ/2だけ異
る位置にホールコンバーターがそれぞれ1個設けられて
いて、発電/電動機1の二次側から見た電力系統の電圧
位相が一致した信号が該ホールコンバーターより検出さ
れ、スリップ位相角O5に変換される。
That is, a cycloconverter provides variable frequency excitation corresponding to the slip in the secondary excitation circuit of the generator/motor 1, a speed detector 6 detects the actual rotational speed N of the hydraulic machine, and a slip phase detector 7 for generating electricity/f. ! A slip phase angle O8 is detected which is equal to the difference between the voltage phase of the primary side of the motive l, that is, the power system, and the rotation phase of the secondary side of the motive 1 power generation/'W1 expressed in electrical angle. The rotor of the slip phase detector is the generator/motor 1
A three-phase winding is provided that is connected in parallel with the primary winding, and one Hall converter is provided on the stator side of the slip phase detector at positions that differ by π/2 in electrical angle. A signal in which the voltage phase of the power system as seen from the secondary side of the generator/motor 1 matches is detected by the Hall converter and converted into a slip phase angle O5.

Noは該水力機械の空転運転中の定常時速底を決める設
定速度である。30は加算器でこのN。
No. is a set speed that determines the steady speed bottom during idle operation of the hydraulic machine. 30 is the adder and this N.

と実際の回転速度Nの差ENbを導出するものである。This is to derive the difference ENb between the actual rotational speed N and the actual rotational speed N.

31は上述の速度偏差εNbを入力として定常的にはこ
の偏差εNbをゼロならしめ、かつ該水力機械の速度制
御系の安定性を確保するように発電/電動機に対し有効
電力指令pX1を与える速度制御部である。fはこの発
電/電動機が接続される電力系統の周波数、foはその
定格周波数Δfはfとfoの偏差を示す。24は速度変
化率演算部でゲインに1時定数T1の不完全微分回路に
なっている。
31 is a speed at which the active power command pX1 is given to the generator/motor so as to input the above-mentioned speed deviation εNb, to constantly make this deviation εNb zero, and to ensure the stability of the speed control system of the hydraulic machine. This is the control section. f is the frequency of the power system to which this generator/motor is connected, and fo is its rated frequency Δf, which is the deviation between f and fo. 24 is a speed change rate calculating section, which is an incomplete differentiator circuit with a gain of 1 and a time constant T1.

25は不動帯要素で速度変化率演算部24から出力され
る速度変化率がプラス側の所定値より高くなったり、マ
イナス側の所定値より低くなった時にこれらオーバーシ
ュート分に応じて増減する有効電力指令pX2を出力す
る。
Reference numeral 25 denotes a fixed band element, which is effective and increases or decreases according to the overshoot when the speed change rate output from the speed change rate calculating section 24 becomes higher than a predetermined value on the plus side or lower than a predetermined value on the minus side. Output power command pX2.

尚このpX2はfが急上昇しΔfが急上昇した時には発
電/電動機の駆動出力(@、電力系統ら見れば負荷)を
上げる方向に作用し、反対にfが急降下した時は駆動出
力を下げる方向に作用し電力系統の安定化に役立つよう
に作用する。
This pX2 acts in the direction of increasing the drive output (@, load from the power system's perspective) of the generator/motor when f and Δf rise sharply, and on the other hand, when f suddenly drops, it acts in the direction of lowering the drive output. It acts to help stabilize the power system.

第3図はΔfからpX2までの部分の回路の代案でこの
場合は単純に周波数偏差Δf自身がプラスの所定値以上
になったりマイナスの所定値以下になった時にオーバー
シュート量に応じて応答するものである。
Figure 3 shows an alternative circuit for the part from Δf to pX2. In this case, it simply responds according to the amount of overshoot when the frequency deviation Δf itself exceeds a predetermined positive value or falls below a predetermined negative value. It is something.

第2図は速度制御部31の詳細を示すブロック図である
。31、bは積分要素でεNb即ちNの偏差が少しでも
残っておれば出力pX1を所望の方向に増し続けNをN
oに引き戻すように発電/電動機の出力を制御せんとす
るものである。
FIG. 2 is a block diagram showing details of the speed control section 31. 31, b is an integral element and if there is even a slight deviation of εNb, that is, N, the output pX1 continues to increase in the desired direction and N is changed to N.
The purpose is to control the output of the generator/motor so as to return the output to zero.

31aは比例要素でこのN制御系の安定性を改善するた
めのものである。
31a is a proportional element for improving the stability of this N control system.

41は不動帯要素でNが可変速バンド内に留る限り何の
出力も出さすNが可変速バンドの上限や下限を超えてオ
ーバシュートしようとした時、該オーバーシュート量を
検出するための要素である。
41 is a stationary band element that outputs no output as long as N remains within the variable speed band.When N attempts to overshoot beyond the upper or lower limit of the variable speed band, it is used to detect the amount of overshoot. is an element.

42はN蹴り返しゲイン部で上記41不動帯要素で検出
されたオーバーシュート量に応じてp×3有効電力指令
補正信号を発するものである。即ち41.42よりなる
N蹴り返し回路はNが可変速バンドを外れようとした時
、有効電力に補正を掛け(Nのその以上の暴走を喰い止
めるためのものである。
Reference numeral 42 denotes an N kickback gain unit which generates a p×3 active power command correction signal in accordance with the amount of overshoot detected by the above-described stationary band element 41. That is, the N kickback circuit consisting of 41 and 42 corrects the active power when N is about to go out of the variable speed band (to prevent N from running out of control further).

PΣは第1図からも明らかな様に有効電力指令pXlと
pX2それに上述の有効電力補正信号Px3の合成信号
である。
As is clear from FIG. 1, PΣ is a composite signal of the active power commands pXl and pX2 and the above-mentioned active power correction signal Px3.

16は発電/を動機1の実際の駆動出力pを検出する電
力検出器である。15は加算器でここでPΣとPの偏差
εPが求められる。APR(出力制御装置)17はこの
電力偏差ff1pに応じて励磁電流制御袋@37に対し
て直軸電流指令Iqを与える。励磁電流制御装置37は
前述の第4図の公知例と同様横軸電流指令I、と直轄電
流指令11、実際のスリップ位相角Osを入力とし回転
子の3相の励磁巻線に対する電圧指令を決める。voは
発電/電動機の電圧の設定値、33はAQRは無効電力
制御器でこの出力ΔVoによって上記電圧設定値Voが
補正を受ける。VΣはVoとΔVoの合成信号、■は実
際の発電/電動機の電圧、35は加算器でVΣとVの偏
差ε、を求めるものである。
Reference numeral 16 denotes a power detector for detecting the actual drive output p of the power generation/motor 1. Reference numeral 15 denotes an adder in which the deviation εP between PΣ and P is obtained. The APR (output control device) 17 gives a direct axis current command Iq to the excitation current control bag @37 according to this power deviation ff1p. The excitation current control device 37 inputs the horizontal axis current command I, the direct current command 11, and the actual slip phase angle Os, as in the prior art example shown in FIG. decide. vo is a set value of the voltage of the generator/motor, and 33 is a reactive power controller AQR, and the voltage set value Vo is corrected by this output ΔVo. VΣ is a composite signal of Vo and ΔVo, ■ is the actual voltage of the generator/motor, and 35 is an adder for determining the deviation ε between VΣ and V.

そしてAVR36がこの電圧偏差ξ9に応じて横軸電流
I6を決める電圧制御装置である。上述においてPΣ→
15→ε、−+ApR→■1→37→3→1→16→P
→15の制御ループは有効電力制御系と呼ぶことができ
る。そしてこの有効電力系の安定性や速度性はAPR(
出力制御装置)17内の積分要素や比例要素のゲインに
よって適切設定される。
The AVR 36 is a voltage control device that determines the horizontal axis current I6 according to this voltage deviation ξ9. In the above, PΣ→
15→ε, -+ApR→■1→37→3→1→16→P
→15 control loop can be called an active power control system. The stability and speed of this active power system are determined by the APR (
It is appropriately set by the gain of the integral element and proportional element in the output control device (output control device) 17.

他方■Σ→35→εV→36→■4→37→3→1→図
示してない電圧検出器→V→35の制御ループが電圧制
御系でこの電圧制御系の安定性や速溶性はAVR36(
電圧制御装置)内の積分要素や比例要素のゲインによっ
て適切設定される。又No→30→εNb→31→pX
1→27→上述の有効電力制御系→6→N→30の制御
ループは速度制御系である。そしてこの速度制御系の速
溶性や安定性は速度制御部31内の比例要素31aや積
分要素31bのゲインを調節して所望のレベルに設定さ
れる。
On the other hand, the control loop of ■Σ→35→εV→36→■4→37→3→1→voltage detector (not shown)→V→35 is a voltage control system, and the stability and quick solubility of this voltage control system are AVR36. (
It is set appropriately by the gain of the integral element and proportional element in the voltage control device). Also No → 30 → εNb → 31 → pX
The control loop of 1→27→the above active power control system→6→N→30 is a speed control system. The quick solubility and stability of this speed control system are set to a desired level by adjusting the gains of the proportional element 31a and the integral element 31b in the speed control section 31.

ところで本発明では空転運転中、電力系統周波数fの変
動が大きい時に有効電力pの一時的追従変動を許すこと
がポイントになっている。
By the way, the key point in the present invention is to allow temporary follow-up fluctuations in active power p when fluctuations in power system frequency f are large during idle operation.

従って速度制御部31内の比例要素31aや積分要素3
1bのゲインを過大にしないよう配慮する必要がある。
Therefore, the proportional element 31a and the integral element 3 in the speed control section 31
Care must be taken not to increase the gain of 1b excessively.

即ち速度制御系の応答速度を速め過ぎると一時的にpX
2が生じてもこれをす速くpXlの逆変動で消えてしま
おうと作用するからである。ところでこの様に速度制御
系の応答速度を抑える結果として回転速度Nの一時的変
動は避けられない。但し前にも述べた如く可変速機であ
るのでNが可変速バンド内にある限り正常運転を継続で
きる。
In other words, if the response speed of the speed control system is made too fast, pX
This is because even if 2 occurs, it quickly disappears due to the reverse fluctuation of pXl. However, as a result of suppressing the response speed of the speed control system in this way, temporary fluctuations in the rotational speed N are unavoidable. However, as mentioned above, since it is a variable speed machine, normal operation can be continued as long as N is within the variable speed band.

但し乍らNが可変速バンドを飛び出そうとした時は上述
のf応答機能より可変速バンド保持を優先すべきでこれ
を果すのが前述のN蹴り返し回路であり、42N蹴り返
しゲイン部のゲインも相当の高い値にする必要がある。
However, when N tries to jump out of the variable speed band, priority should be given to maintaining the variable speed band over the f response function described above, and this is achieved by the N kickback circuit described above, and the 42N kickback gain section. The gain also needs to be set to a fairly high value.

尚本発明は発電/電動機の一次側に電力変換器を設けた
可変速システムにも簡単に応用できる。
It should be noted that the present invention can be easily applied to a variable speed system in which a power converter is provided on the primary side of a generator/motor.

以下正常運転を継続できることについて第5図を参照し
て説明する。第5図は本発明の可変速水力機械とこれが
連がっている電力系統の動作説明図である。(イ)のΔ
kwは該電力系統生じた突然の電力の需給アンバランス
を示し、この場合同電力系統上の他所のある負荷が遮断
されるなどして同電力系統の供給電力の総和が同電力系
統の負荷の総和を上向ったことを意味する。これによっ
て同電力系統の周波数fは(ロ)の如く上昇する。
The ability to continue normal operation will be explained below with reference to FIG. FIG. 5 is an explanatory diagram of the operation of the variable speed hydraulic machine of the present invention and the electric power system connected thereto. Δ of (a)
kW indicates a sudden power supply and demand imbalance that occurs in the power system, in which case some load elsewhere on the power system is cut off, and the total power supplied to the power system becomes larger than the load in the power system. This means that the total sum has increased. As a result, the frequency f of the power system increases as shown in (b).

これによって同電力系統の周波数fは(ロ)の如く上昇
する。すると同電力系統に連がっている本発明の水力機
械のf応答機能が動作し、有効電力指令pX2が(ハ)
の如く変化する。
As a result, the frequency f of the power system increases as shown in (b). Then, the f response function of the hydraulic machine of the present invention connected to the same power system operates, and the active power command pX2 becomes (c).
It changes like this.

他方でAFC(自重周波数制御装置)等の作用で同′准
力系統に連がっている各発電所はこのfの変動に伴いそ
の出力を減する筈である。それらの各発電所の供給電力
減少分の総和が(ニ)の実線である。有効電力指令pX
2の変動に応じこの可変速水力機械の発電/電動機の実
際の駆動出力(モータリング)pが変動する。この結果
水力機械の回転速度Nは(へ)の如く加速され、これを
検知して前述の速度制御系が応動し有効電力指令pX1
は回転速度Nを下げようとして(ホ)の如く応答する。
On the other hand, each power plant connected to the same power system is supposed to reduce its output as f changes due to the action of AFC (dead weight frequency control device) and the like. The solid line (d) is the sum total of the reduction in power supplied by each of these power plants. Active power command pX
2, the actual drive output (motoring) p of the generator/motor of this variable speed hydraulic machine changes. As a result, the rotational speed N of the hydraulic machine is accelerated as shown in (to), which is detected and the aforementioned speed control system responds to the active power command pX1.
tries to lower the rotational speed N and responds as shown in (e).

但し前述の如く速度制御系の応答速度は比較的低いので
pX2とpXlの和もこの外乱の直後はとんどpX2に
支配されてほとんど(ハ)に近い応答となる。但しその
後時点tbに至るとpX2が時定数T1の作用で自然に
減少してきてpX2とpXlの和が正から負に反転し。
However, as mentioned above, since the response speed of the speed control system is relatively low, the sum of pX2 and pXl is dominated by pX2 immediately after this disturbance, resulting in a response almost similar to (c). However, after that, when reaching time tb, pX2 naturally decreases due to the action of time constant T1, and the sum of pX2 and pXl is reversed from positive to negative.

これにより回転速度Nは(へ)の如く目標回転速度No
へと戻っていく。
As a result, the rotation speed N becomes the target rotation speed No.
going back to.

ところで本発明の可変速機械の有効電力制御応答(pX
2−PXI)を加味した同電力系統の電力需給アンバラ
ンス解消作用の総和ΔKwxは(ニ)の実線との和にな
り、結局(ニ)の点線の様になる。即ち本発明の効果は
(ニ)の実線を点線にしたことにあり、電力需給アンバ
ランスをす速く消して電力系統周波数fの変動を小さく
抑えるところにある。もちろん本発明の効果は図からも
解るように外乱発生直後の僅かな時間に限られ定常的に
は本来の電力源(各種発電所等)の応答に待つことにな
る。但し本来の電力源の応答は一般に各各のプラントの
制約により簡単には速くできない。
By the way, the active power control response (pX
2-PXI), the total sum ΔKwx of the power supply and demand unbalance elimination effect of the power system is the sum of the solid line in (d), and eventually becomes like the dotted line in (d). That is, the effect of the present invention is that the solid line in (d) is changed to a dotted line, and the power supply and demand imbalance can be quickly eliminated to suppress fluctuations in the power system frequency f. Of course, as can be seen from the figure, the effect of the present invention is limited to a short period of time immediately after the occurrence of a disturbance, and on a regular basis, it waits for the response of the original power source (various power plants, etc.). However, the response of the original power source generally cannot be made faster due to the constraints of each plant.

これを考慮すると本発明の果す役割は決して小さくない
。換言すると本発明の水力機械を持つことによって電力
系統の有効電力応答速度が改善され電力系統周波数の変
動幅が縮小される。又、電力系統に起る比較的速い、短
周期の電力需給アンバランスにも追従できる能力を持つ
ことになる。
Considering this, the role played by the present invention is by no means small. In other words, by having the hydraulic machine of the present invention, the active power response speed of the power system is improved and the fluctuation width of the power system frequency is reduced. It also has the ability to follow relatively fast, short-term power supply and demand imbalances that occur in the power system.

空転モードは従来より、電力の系統の力率改善を目的と
した調和運転(回転方向は水車方向もありポンプ方向も
ある)や指令が与えられれば直ぐ案内羽根を開いて発電
や揚水モードに移行する待期運転のために採用されてき
たが、本発明によりこれら運転を従来通り続ける一方で
新機能を同時に発揮できることになる。
Conventionally, the idle mode has been used for harmonized operation (rotation direction can be in the direction of the water wheel or pump) for the purpose of improving the power factor of the power system, or when a command is given, the guide vane is immediately opened to switch to power generation or pumping mode. However, according to the present invention, it is possible to continue these operations as before while simultaneously exhibiting new functions.

〔発明の効果〕〔Effect of the invention〕

本発明の効果は前述からも明らかな如く可変速水力機械
の空転運転時に無効電力制御の他に有効電力制御も同時
に果す方法を提供したこと、これによってこの種の水力
機械が電力系統のf安定化により貢献できる道を開いた
こと、更にこれが電力系統の安定化のために従来設けら
れてきた各種の装置の軽量化、経済化に連るものである
ことである。
As is clear from the foregoing, the effects of the present invention are that it provides a method for controlling active power as well as reactive power control at the same time when a variable speed hydraulic machine is idling; In addition, this opens the door to contributing to power system stabilization, and it also leads to lighter weight and economicalization of various devices that have been conventionally installed to stabilize the power system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は(
図1の)31速度制御部の詳細を示すブロック図である
。第3図は第1図のΔfからp×2に至る回路の代案を
示す図、第4図は従来技術の2軸励磁電流制御の説明図
である。第5図は本発明の水力機械とこれが連がってい
る電力系統の動作説明図である。 31久 ス面の浄二1.゛ニー、′:に1更なし】第 5 図 (筆のI) 1.1.ヵ酷(1]ぴ::1づ−) 第 5 目 (tの2) 手続補正書(方式) %式% 事件の表示 昭和62年特許願第 318845  号発明 の 名
 称 可変速水力愼械の9転運転制御方法 補正をする者 事件との関係  特許出願人 名 4.51tT1体式会社 日 立 ’A  イ乍 
新名称 関西電力株式会社 代   理   人
Figure 1 is a block diagram showing an embodiment of the present invention, and Figure 2 is (
FIG. 2 is a block diagram showing details of the speed control section ) 31 in FIG. 1; FIG. 3 is a diagram showing an alternative circuit from Δf to p×2 in FIG. 1, and FIG. 4 is an explanatory diagram of conventional biaxial excitation current control. FIG. 5 is an explanatory diagram of the operation of the hydraulic machine of the present invention and the electric power system to which it is connected. 31 Kyusu no Joji 1. Figure 5 (Brush I) 1.1. Kakuru (1) P::1zu-) Item 5 (t-2) Procedural amendment (method) % formula % Display of the case Patent application No. 318845 of 1988 Name of the invention Variable speed hydraulic machine 9.Relationship with the person who amended the operation control method case Patent applicant name 4.51tT1 type company Hitachi 'A I
New name Kansai Electric Power Co., Inc. Agent

Claims (1)

【特許請求の範囲】 1、水力機械とこれに直結され、電動モードで使用可能
な発電機又は電動機とこの発電/電動機の一次側又は二
次側に設けられた電力変換器を有し、可動速運転を可能
にした可変速水力機械に関し、ランナ室の水面を押し下
げランナを空転運転せしめる空転運転モードにおいて、
無効電力制御を行う一方で電力系統の周波数の変動を検
出しこれを抑える方法に発電/電動機や水車の慣性効果
に蓄えた又は蓄えるエネルギー分を出し入れするように
作用する有効電力制御も同時に行う様にした可変速水力
機械の空転運転制御方法。 2、発電/電動機の二次側に電力変換器を有する可変速
水力機械に関し、回転子の励磁電流の直軸も有効電力制
御信号により、横軸を無効電力制御信号により制御する
ように2軸電流制御で両電力制御を同時に達成するよう
にした第1項の可変速水力機械の空転運転制御方法。 3、空転運転中は可変速範囲内の所定の設定速度と実回
転速度を比較しその差をゼロならしめるように有効電力
を制御する信号と電力系統の周波数の変動幅が大きい時
又は変動率が大きい時に作動して該周波数変動を抑制す
る方向に有効電力制御をする信号の合成信号によつて有
効電力を制御するようにした第1項の可変速水力機械の
空転運転制御方法。 4、回転速度が所定の可変速バンドを上/下に外れた時
はこれを可変速バンド内に蹴り戻すように有効指令を自
動補正する回転速度蹴り返し制御を備えた第3項の可変
速水力機械の空転運転制御方法。
[Claims] 1. A movable hydraulic machine that has a hydraulic machine, a generator or a motor that is directly connected to the hydraulic machine, and that can be used in electric mode, and a power converter installed on the primary or secondary side of this generator/motor. Regarding the variable speed hydraulic machine that enables high-speed operation, in the idle operation mode that pushes down the water surface in the runner chamber and causes the runner to idle,
While performing reactive power control, there is also a method of detecting and suppressing fluctuations in the frequency of the power system, and simultaneously performing active power control that acts to draw in or take out the energy stored in the inertial effect of the generator/motor or water turbine. A method for controlling idling operation of variable speed hydraulic machinery. 2. Regarding variable speed hydraulic machines that have a power converter on the secondary side of the generator/motor, two axes are used so that the direct axis of the rotor's exciting current is also controlled by the active power control signal, and the horizontal axis is controlled by the reactive power control signal. 1. A method for controlling idling operation of a variable speed hydraulic machine according to item 1, in which both power controls are simultaneously achieved by current control. 3. During idling operation, when the predetermined set speed within the variable speed range and the actual rotation speed are compared and the difference between them is reduced to zero, the signal that controls the active power and the power system frequency fluctuation range or fluctuation rate are large. 2. The idle operation control method of a variable speed hydraulic machine according to claim 1, wherein the active power is controlled by a composite signal of signals that operate when the frequency fluctuation is large and performs active power control in a direction to suppress the frequency fluctuation. 4. Variable speed according to item 3, which is equipped with rotational speed kickback control that automatically corrects the effective command to kick the rotational speed back into the variable speed band when the rotational speed deviates above/below the predetermined variable speed band. Method for controlling idling operation of hydraulic machinery.
JP62318845A 1987-12-18 1987-12-18 Idling control method for variable speed hydraulic machine Expired - Lifetime JP2858748B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62318845A JP2858748B2 (en) 1987-12-18 1987-12-18 Idling control method for variable speed hydraulic machine
JP10134828A JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62318845A JP2858748B2 (en) 1987-12-18 1987-12-18 Idling control method for variable speed hydraulic machine
JP10134828A JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10134828A Division JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Publications (2)

Publication Number Publication Date
JPH01163472A true JPH01163472A (en) 1989-06-27
JP2858748B2 JP2858748B2 (en) 1999-02-17

Family

ID=59580718

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62318845A Expired - Lifetime JP2858748B2 (en) 1987-12-18 1987-12-18 Idling control method for variable speed hydraulic machine
JP10134828A Expired - Lifetime JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP10134828A Expired - Lifetime JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Country Status (1)

Country Link
JP (2) JP2858748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148947A (en) * 2019-06-13 2019-08-20 河海大学 The method for being actually implanted into power of each node induction conductivity of power grid is corrected in dynamic power flow analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148947A (en) * 2019-06-13 2019-08-20 河海大学 The method for being actually implanted into power of each node induction conductivity of power grid is corrected in dynamic power flow analysis
CN110148947B (en) * 2019-06-13 2020-10-02 河海大学 Method for correcting actual injection power of induction motor of each node of power grid in dynamic power flow analysis

Also Published As

Publication number Publication date
JP2858748B2 (en) 1999-02-17
JPH10295042A (en) 1998-11-04
JP2993930B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JP2553319B2 (en) Variable speed generator motor
JPH0351910B2 (en)
JP2585220B2 (en) Variable speed pumping equipment
JPH01163472A (en) Control method for idling operation of variable speed hydraulic machine
JPH05284798A (en) Ac-excited dynamotor
JP3515275B2 (en) Variable speed generator motor
JP2631373B2 (en) Operation control device of variable speed pumped storage power generation system
JP3741384B2 (en) Synchronous machine thyristor start controller
JP3388672B2 (en) Pumped storage power generation system
JP3495140B2 (en) Voltage control device for wound induction machine
JPS62236393A (en) Operation control system for variable speed pumpingup generator plant
JP2521130B2 (en) AC excitation synchronous machine control system
JPH0576277B2 (en)
JPH0225033B2 (en)
JPH01243895A (en) Exciting method and device for variable speed pumped storage generator/motor
JPH0634628B2 (en) Variable speed pumped storage system operation controller
JP2771474B2 (en) Variable speed generator
JP2512414Y2 (en) Control device for main shaft drive generator
JPS62282171A (en) Variable speed pumping system
JPS62228673A (en) Controlling system for variable-speed drive device of hydraulic machine
JPH0326039B2 (en)
JPH01163474A (en) Control method for operation of variable speed water turbine
JPS63265595A (en) Controller for variable speed pumping-up power generating system
JPS63140698A (en) Operation controller for variable speed pumped-storage power generating system
JPH0576279B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071204

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10