JP2858748B2 - Idling control method for variable speed hydraulic machine - Google Patents

Idling control method for variable speed hydraulic machine

Info

Publication number
JP2858748B2
JP2858748B2 JP62318845A JP31884587A JP2858748B2 JP 2858748 B2 JP2858748 B2 JP 2858748B2 JP 62318845 A JP62318845 A JP 62318845A JP 31884587 A JP31884587 A JP 31884587A JP 2858748 B2 JP2858748 B2 JP 2858748B2
Authority
JP
Japan
Prior art keywords
speed
hydraulic machine
power
generator
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62318845A
Other languages
Japanese (ja)
Other versions
JPH01163472A (en
Inventor
尚夫 桑原
博人 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kansai Denryoku KK filed Critical Hitachi Ltd
Priority to JP62318845A priority Critical patent/JP2858748B2/en
Publication of JPH01163472A publication Critical patent/JPH01163472A/en
Priority to JP10134828A priority patent/JP2993930B2/en
Application granted granted Critical
Publication of JP2858748B2 publication Critical patent/JP2858748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Water Turbines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一次側又は二次側に電力変換器を備え可変速
で運転される電動運転可能な可変速水力機械に係り、特
に電力系統の安定化に好適な可変速水力機械に関する。 〔従来の技術〕 本発明に関する公知例として、a.S61年電気学会全国
大会発表No.1028「可変速揚水発電システム用発電電動
機の2軸励磁電流制御系検討」 「b.電力技術ハンドブツク(電気書院,監修;填野一郎
(早大))P1−64,7・5・3項,P5−81 9・4項が知
られている。 このうち上記公知例bでは同期電動機とこれに駆動さ
れる水力機械の調相運転の原理と方法が記述されてい
る。 但し電力変換器を備え可変速運転可能な可変速水力機
械の調相運転制御法については一切述べていないか当然
本発明の対象としている有効電力制御も調相制御即ち無
効電力制御と同時に達成しようとの考え方は全くない。 更に公知例aでは可変速揚水発電システム用発電電動
機の2軸励磁電流制御方法が開示されている。 第4図はその説明図で発電/電動機1の二次側即ち回
転子側を電力変換器3(CYC)により可変周波数励磁を
して発電/電動機の一次側即ち固定子側の電力周波数を
一定に保持したまま回転子の回転速度を可変にした可変
速発電/電動機に関するものである。17のAPR(出力制
御装置)が図示してない出力指令(即ち有効電力指令)
と実出力検出器16の出力を比較し乍らACR37(励磁電流
制御装置)に対してあるべき有効電力相当の直軸電流の
値Igを指令する。他方AVR36(電圧制御装置)が図示し
てない電圧指令と電圧検出器39で検出した実際の発電/
電動機電圧を比較してあるべき電圧相当の横軸電流の値
idを指令する。 ACR(励磁電流制御装置)37は上記ig,idの他に位相検
出器7が検出する実際のスリツプ位相角θ、実際の各
相電流imを考慮して各相電圧指令vを決める。 尚38は発電/電動機の電流検出器、40は3電力変換器
用のトランスである。ところでこの公知例では水力機械
の空転運転中の制御方法については一切触れていない。 特に可変速の特徴を生かし回転部の慣性効果に蓄えた
エネルギーの放出やこれにエネルギーを蓄えるよう有効
電力も制御して電力系統の安定化により貢献しようとの
考え方は全く開示されていない。 〔発明が解決しようとする問題点〕 本発明は従来通りの無効電力制御に加えて、電力系統
周波数の変動を抑える方向に有効電力制御も可能にした
可変速水力機械を提供することを目的とする。 〔問題点を解決するための手段〕 上記目的を達成するために、本発明は水力機械と、水
力機械に直結された発電機又は電動機と、発電/電動機
の一次側または二次側に設けられた電力変換器と、発電
/電動機の一次側に接続された電力系統の周波数の変動
を検出する検出手段とを備えて、可変速運転を行う可変
速水力機械において、ランナ室の水面を押し下げて、ラ
ンナを空転運転する空転運転モードにて、検出手段によ
り検出された電力系統の周波数が上昇した時は、水力機
械の回転数を上昇させ、電力系統の周波数が低下した時
は、水力機械の回転速度を低下させる制御手段を備える
ようにしたものである。 〔作用〕 本発明の可変速水力機械によれば、電力系統の周波数
状態に応じて回転数を上昇、または下降させることによ
り、高速に有効電力の出し入れをすることが可能にな
り、電力系統の周波数安定度を向上させるようになる。 〔実施例〕 第1図は本発明の実施例を示すブロツク図である。1
は発電機としても電動機としても使用可能な誘導形発電
電動機又は誘導電動機を示し(以後は発電/電動機と呼
ぶ)、2は1発電/電動機の回転子に直結された水力機
械、3は電力変換器、即ち発電/電動機1の二次励磁回
路にスリツプ相当分の可変周波数励磁をするサイクロコ
ンバーター、6は水力機械の実際の回転速度Nを検出す
る速度検出器、7はスリツプ位相検出器で発電/電動機
1の一次側即ち電力系統の電圧位相と電気角で表わした
1発電/電動機の二次側回転位相の差に等しいスリツプ
位相角θを検出する。スリツプ位相検出器の回転子は
発電/電動機1の一次巻線と並列に接続された3相巻線
が設けられ、スリツプ位相検出器の固定子側には電気角
でπ/2だけ異る位置にホールコンバーターがそれぞれ1
個設けられていて、発電/電動機1の二次側から見た電
力系統の電圧位相が一致した信号が該ホールコンバータ
ーより検出され、スリツプ位相角θに変換される。 N0は該水力機械の空転運転中の定常時速度を決める設
定速度である。30は加算器でこのN0と実際の回転速度N
の差εNbを導出するものである。31は上述の速度偏差ε
Nbを入力として定常的にはこの偏差εNbをゼロならし
め、かつ該水力機械の速度制御系の安定性を確保するよ
うに発電/電動機に対し有効電力指令p×1を与える速
度制御部である。fはこの発電/電動機が接続される電
力系統の周波数、f0はその定格周波数Δfはfとf0の偏
差を示す。24は変則変化率演算部でゲインk1時定数T1
不完全微分回路になつている。 25は不動帯要素で速度変化率演算部24から出力される
速度変化率がプラス側の所定値より高くなつたり、マイ
ナス側の所定値より低くなつた時にこれらオーバーシユ
ート分に応じて増減する有効電力指令p×2を出力す
る。 尚このp×2はfが急上昇しΔfが急上昇した時には
発電/電動機の駆動出力(電力系統から見れば負荷)を
上げる方向に作用し、反対にfが急降下した時は駆動出
力を下げる方向に作用し電力系統の安定化に役立つよう
に作用する。 第3図はΔfからp×2までの部分の回路の代案でこ
の場合は単純に周波数偏差Δf自身がプラスの所定値以
上になつたりマイナスの所定値以下になつた時にオーバ
ーシユート量に応じて応答するものである。 第2図は速度制御部31の詳細を示すブロツク図であ
る。31bは積分要素でεNb即ちNの偏差が少しでも残つ
ておれば出力p×1を所望の方向に増し続けNをN0に引
き戻すように発電/電動機の出力を制御せんとするもの
である。 31aは比例要素でこのN制御系の安定性を改善するた
めのものである。 41は不動帯要素でNが可変速バンド内に留る限り何の
出力も出さずNが可変速バンドの上限や下限を超えてオ
ーバシユートしようとした時、該オーバーシユート量を
検出するための要素である。 42はN蹴り返しゲイン部で上記41不動帯要素で検出さ
れたオーバーシユート量に応じてp×3有効電力指令補
正信号を発するものである。即ち41,42よりなるN蹴り
返し回路はNが可変速バンドを外れようとした時、有効
電力に補正を掛け(Nのその以上の暴走を喰い止めるた
めのものである。 PΣは第1図からも明らかな様に有効電力指令p×1
とp×2それに上述の有効電力補正信号p×3の合成信
号である。 16は発電/電動機1の実際の駆動出力pを検出する電
力検出器である。15は加算器でここでPΣとPの偏差ε
が求められる。APR(出力制御装置)17はこの電力偏
差εに応じて励磁電流制御装置37に対して直軸電流指
令Iqを与える。励磁電流制御装置37は前述の第4図の公
知例と同様横軸電流指令Idと直軸電流指令Iq、実際のス
リツプ位相角θを入力とし回転子の3相の励磁巻線に
対する電圧指令を決める。V0は発電/電動機の電圧の設
定値、33はAQRは無効電力制御器でこの出力ΔV0によつ
て上記電圧設定値V0が補正を受ける。VΣはV0とΔV0
合成信号、Vは実際の発電/電動機の電圧、35は加算器
でVΣとVの偏差εを求めるものである。 そしてAVR36がこの電圧偏差εに応じて横軸電流Id
を決める電圧制御装置である。上述においてPΣ→15→
ε→APR→Iq→37→3→1→16→P→15の制御ループ
は有効電力制御系と呼ぶことができる。そしてこの有効
電力系の安定性や速度性はAPR(出力制御装置)17内の
積分要素や比例要素のゲインによつて適切設定される。 他方VΣ→35→ε→36→Id→37→3→1→図示して
ない電圧検出器→V→35の制御ループが電圧制御系でこ
の電圧制御系の安定性や速応性はAVR36(電圧制御装
置)内の積分要素や比例要素ゲインによつて適切設定さ
れる。又N0→30→εNb→31→p×1→27→上述の有効電
力制御系→6→N→30の制御ループは速度制御系であ
る。そしてこの速度制御系の速応性や安定性は速度制御
部31内の比例要素31aや積分要素31bのゲインを調節して
所望のレベルに設定される。 ところで本発明では空転運転中、電力系統周波数fの
変動が大きい時に有効電力pの一時的追従変動を許すこ
とがポイントになつている。 従つて速度制御部31内の比例要素31aや積分要素31bの
ゲインを過大にしないよう配慮する必要がある。即ち速
度制御系の応答速度を速め過ぎると一時的にp×2が生
じてもこれをす速くp×1の逆変動で消えてしまおうと
作用するからである。ところでこの様に速度制御系の応
答速度を抑える結果として回転速度Nの一時的変動は避
けられない。但し前にも述べた如く可変速機であるので
Nが可変速バンド内にある限り正常運転を継続できる。 但し乍らNが可変速バンドを飛び出そうとした時は上
述のf応答機能より可変速バンド保持を優先すべきでこ
れを果すのが前述のN蹴り返し回路であり、42N蹴り返
しゲイン部のゲインも相当の高い値にする必要がある。 尚本発明は発電/電動機の一次側に電力変換器を設け
た可変速システムにも簡単に応用できる。 以下正常運転を継続できることについて第5図を参照
して説明する。第5図は本発明の可変速水力機械とこれ
が連がつている電力系統の動作説明図である。(イ)の
ΔkWは該電力系統生じた突然の電力の需給アンバランス
を示し、この場合同電力系統上の他所のある負荷が遮断
されるなどして同電力系統の供給電力の総和が同電力系
統の負荷の総和を上向つたことを意味する。これによつ
て同電力系統の周波数fは(ロ)の如く上昇する。これ
によつて同電力系統の周波数fは(ロ)の如く上昇す
る。すると同電力系統に連がつている本発明の水力機械
のf応答機能が動作し、有効電力指令p×2が(ハ)の
如く変化する。 他方でAFC(自電周波数制御装置)等の作用で同電力
系統に連がつている各発電所はこのfの変動に伴いその
出力を減ずる筈である。それらの各発電所の供給電力減
少分の総和が(ニ)の実線である。有効電力指令p×2
の変動に応じこの可変速水力機械の発電/電動機の実際
の駆動出力(モータリング)pが変動する。この結果水
力機械の回転速度Nは(ヘ)の如く加速され、これを検
知して前述の速度制御系が応動し有効電力指令p×1は
回転速度Nを下げようとして(ホ)の如く応答する。但
し前述の如く速度制御系の応答速度は比較的低いのでp
×2とp×1の和もこの外乱の直後ほとんどp×2に支
配されてほとんど(ハ)に近い応答となる。但しその後
時点tbに至るとp×2が時定数T1の作用で自然に減少し
てきてp×2とp×1の和が正から負に反転し、これに
より回転速度Nは(へ)の如く目標回転速度N0へと戻つ
ていく。 ところで本発明の可変速機械の有効電力制御応答(p
×2−p×1)を加味した同電力系統の電力需給アンバ
ランス解消作用の総和ΔKWXは(ニ)の実線との和にな
り、結局(ニ)の点線の様になる。即ち本発明の効果は
(ニ)の実線を点線にしたことにあり、電力需給アンバ
ランスをす速く消して電力系統周波数fの変動を小さく
抑えるところにある。もちろん本発明の効果は図からも
解るように外乱発生直後の僅かな時間に限られ定常的に
は本来の電力源(各種発電所等)の応答に待つことにな
る。但し本来の電力源の応答は一般に各各のプラントの
制約により簡単には速くできない。これを考慮すると本
発明の果す役割は決して小さくない。換言すると本発明
の水力機械を持つことによつて電力系統の有効電力応答
速度が改善され電力系統周波数の変動幅が縮小される。
又、電力系統に起る比較的速い、短周期の電力需給アン
バランスにも追従できる能力を持つことになる。 空転モードは従来より、電力の系統の力率改善を目的
とした調相運転(回転方向は水車方向もありポンプ方向
もある)や指令が与えられれば直ぐ案内羽根を開いて発
電や揚水モードに移行する待期運転のために採用されて
きたが、本発明によりこれら運転を従来通り続ける一方
で新機能を同時に発揮できることになる。 〔発明の効果〕 本発明の可変速水力機械によれば、電力系統の周波数
変動に応じて電力系統から高速に有効電力を吸収し、又
は放出できるので、可変速水力機械の有効電力調整能力
を系統の電力需給バランスを取るために効率良く使用す
ることが可能になり、接続された電力系統の電力需給バ
ランス能力を高めることが可能になる。
Description: BACKGROUND OF THE INVENTION The present invention relates to an electric operable variable-speed hydraulic machine having a power converter on a primary side or a secondary side and operated at a variable speed, and particularly to an electric power system. The present invention relates to a variable speed hydraulic machine suitable for stabilization. [Prior Art] Known examples of the present invention include: a. S61, National Institute of Electrical Engineers of Japan, No. 1028, “Study on Two-Axis Excitation Current Control System of Generator Motor for Variable Speed Pumped Storage Power Generation System”, “b. Shoin, supervision; Ichiro Enno (Waseda Univ.)) P1-64, 7.5.3, P5-819.9.4 are known. However, the principle and method of the phase control operation of a hydraulic machine are described, but the method of controlling the phase control of a variable-speed hydraulic machine having a power converter and capable of variable-speed operation is not described at all. There is no idea of achieving the active power control at the same time as the phase control, that is, the reactive power control.Moreover, the known example a discloses a two-axis excitation current control method for a generator motor for a variable speed pumped storage power generation system. FIG. 4 is an explanatory view showing the generator / motor 1 The secondary side, that is, the rotor side, was subjected to variable frequency excitation by the power converter 3 (CYC), and the rotation speed of the rotor was made variable while the power frequency on the primary side, that is, the stator side, of the generator / motor was kept constant. It is related to a variable speed generator / motor, and an APR (output control device) of 17 is an output command not shown (that is, an active power command).
An actual output detector 16 compares the output of乍Ra ACR37 commanding value I g of direct axis current in the active power corresponds to relative (exciting current controller). On the other hand, the AVR 36 (voltage control device) generates a voltage command (not shown) and the actual power generation /
The value of the horizontal axis current equivalent to the voltage to be compared with the motor voltage
Specify id. An ACR (excitation current control device) 37 determines each phase voltage command v in consideration of the actual slip phase angle θ S detected by the phase detector 7 and the actual phase current im in addition to the above ig and id. 38 is a current detector for the generator / motor, and 40 is a transformer for a three-power converter. By the way, this known example does not mention any control method during the idling operation of the hydraulic machine. In particular, there is no disclosure of the idea of utilizing the characteristic of variable speed to release the energy stored in the inertial effect of the rotating section and to control the active power so as to store the energy therein, thereby contributing to the stabilization of the power system. [Problems to be Solved by the Invention] An object of the present invention is to provide a variable-speed hydraulic machine that enables active power control in the direction of suppressing fluctuations in power system frequency in addition to conventional reactive power control. I do. [Means for Solving the Problems] In order to achieve the above object, the present invention provides a hydraulic machine, a generator or a motor directly connected to the hydraulic machine, and a primary or secondary side of the generator / motor. In a variable-speed hydraulic machine that performs variable-speed operation, the water level of a runner chamber is reduced by using a power converter that has a power converter and detection means that detects a change in the frequency of a power system connected to the primary side of a generator / motor. In the idle running mode in which the runner runs idle, when the frequency of the power system detected by the detection means increases, the rotation speed of the hydraulic machine increases, and when the frequency of the power system decreases, the A control means for lowering the rotation speed is provided. [Operation] According to the variable-speed hydraulic machine of the present invention, it is possible to take in and take out active power at high speed by increasing or decreasing the rotation speed according to the frequency state of the power system. The frequency stability is improved. FIG. 1 is a block diagram showing an embodiment of the present invention. 1
Denotes an induction type generator motor or induction motor that can be used as both a generator and a motor (hereinafter referred to as a generator / motor), 2 is a hydraulic machine directly connected to a rotor of 1 generator / motor, and 3 is a power converter. A cycloconverter for exciting the secondary excitation circuit of the generator / motor 1 for a variable frequency equivalent to the slip, 6 a speed detector for detecting the actual rotational speed N of the hydraulic machine, and 7 a slip phase detector for power generation. / primary that slips phase angle equal to the difference between the secondary side rotational phase of the first generator / motor in terms of voltage phase and the electrical angle of the electric power system of the motor 1 theta detecting the S. The rotor of the slip phase detector is provided with a three-phase winding connected in parallel with the primary winding of the generator / motor 1, and the stator side of the slip phase detector has a position different by π / 2 in electrical angle on the stator side. One Hall Converter
Pieces be provided, the signal voltage phase of the power system as viewed from the secondary side of the generator / motor 1 match is detected from the Hall converter, it is converted into slips phase angle theta S. N 0 is a set speed that determines a steady speed during the idling operation of the hydraulic machine. 30 is an adder for this N 0 and the actual rotation speed N
To derive the difference ε Nb . 31 is the speed deviation ε described above
A speed control unit that constantly sets the deviation ε Nb to zero with Nb as an input and gives an active power command p × 1 to the generator / motor so as to ensure the stability of the speed control system of the hydraulic machine. is there. f is the frequency of the power system which the generator / motor is connected, f 0 is the rated frequency Δf indicates the deviation of f and f 0. 24 is decreased to the inexact differential circuit gain k 1 time constant T 1 at irregular change rate arithmetic unit. Numeral 25 denotes a dead zone element that increases or decreases in accordance with these overshoots when the speed change rate output from the speed change rate calculation unit 24 becomes higher than a predetermined value on the plus side or lower than a predetermined value on the minus side. The active power command p × 2 is output. Note that this p × 2 acts to increase the drive output of the generator / motor (load when viewed from the power system) when f rises sharply and Δf rises sharply, and on the contrary, it decreases the drive output when f falls sharply. It acts to help stabilize the power system. FIG. 3 shows an alternative to the circuit of the part from Δf to p × 2. In this case, simply when the frequency deviation Δf itself becomes more than a plus predetermined value or becomes less than a minus predetermined value, it depends on the overshoot amount. To respond. FIG. 2 is a block diagram showing details of the speed control unit 31. 31b is for controlling St. the output of the generator / motor to pull back the N continues to grow the output p × 1 in the desired direction if I remaining connexion deviation epsilon Nb i.e. N in the integral element even slightly N 0 . 31a is a proportional element for improving the stability of the N control system. Reference numeral 41 denotes a dead band element for detecting the overshoot amount when N attempts to overshoot beyond the upper limit or lower limit of the variable speed band without producing any output as long as N stays within the variable speed band. Element. Reference numeral 42 denotes an N kickback gain unit for generating a p × 3 active power command correction signal in accordance with the overshoot amount detected in the 41 dead band element. That is, the N kickback circuit consisting of 41 and 42 corrects the effective power when N tries to deviate from the variable speed band (to prevent further runaway of N. PΣ in FIG. 1). As is clear from FIG.
, P × 2 and a composite signal of the above-mentioned active power correction signal p × 3. Reference numeral 16 denotes a power detector for detecting an actual drive output p of the generator / motor 1. 15 is an adder where the deviation ε between PΣ and P
p is required. APR (output control device) 17 provides a direct-axis current command I q with respect to the excitation current control device 37 in accordance with this power deviation epsilon p. To the exciting current control device 37 is a fourth view of a known example similar horizontal axis current command I d and the direct-axis current command I q, the actual three-phase exciting windings of the rotor and enter the slips phase angle theta S described above Determine the voltage command. V 0 is the set value of the voltage of the generator / motor, 33 is the reactive power controller AQR, and the voltage set value V 0 is corrected by this output ΔV 0 . VΣ is a composite signal of V 0 and ΔV 0 , V is the actual voltage of the generator / motor, and 35 is an adder for calculating the deviation ε v between VΣ and V. The AVR 36 calculates the horizontal axis current I d according to the voltage deviation ε v
It is a voltage control device which determines. In the above, PΣ → 15 →
The control loop of ε p → APR → I q → 37 → 3 → 1 → 16 → P → 15 can be called an active power control system. The stability and speed of the active power system are appropriately set by the gain of the integral element and the proportional element in the APR (output control device) 17. On the other hand, the control loop of VΣ → 35 → ε v → 36 → I d → 37 → 3 → 1 → voltage detector not shown → V → 35 is a voltage control system, and the stability and responsiveness of this voltage control system is AVR36. It is set appropriately by the integral element and the proportional element gain in the (voltage controller). The control loop of N 0 → 30 → ε Nb → 31 → p × 1 → 27 → active power control system described above → 6 → N → 30 is a speed control system. The responsiveness and stability of the speed control system are set to desired levels by adjusting the gains of the proportional element 31a and the integral element 31b in the speed control unit 31. By the way, in the present invention, the point is to allow a temporary following fluctuation of the active power p when the fluctuation of the power system frequency f is large during the idling operation. Therefore, it is necessary to take care not to make the gain of the proportional element 31a or the integral element 31b in the speed control unit 31 excessive. That is, if the response speed of the speed control system is excessively increased, even if p × 2 occurs temporarily, it acts to make it disappear quickly by the inverse fluctuation of p × 1. By the way, as a result of suppressing the response speed of the speed control system, temporary fluctuation of the rotation speed N is inevitable. However, since it is a variable speed machine as described above, normal operation can be continued as long as N is within the variable speed band. However, when N tries to jump out of the variable speed band, the variable speed band should be given priority over the above-mentioned f response function, and this is achieved by the above-described N kickback circuit. The gain also needs to be quite high. The present invention can be easily applied to a variable speed system in which a power converter is provided on the primary side of a generator / motor. Hereinafter, the normal operation can be continued with reference to FIG. FIG. 5 is an explanatory diagram of the operation of the variable speed hydraulic machine of the present invention and the electric power system to which it is connected. .DELTA.k W of (a) shows a sudden demand imbalance power generated electric power system, the sum of the supply power is the same in this case such as to the power system load with elsewhere on the same power system is cut off This means that the total load of the power system has increased. As a result, the frequency f of the power system rises as shown in (b). As a result, the frequency f of the power system rises as shown in (b). Then, the f-response function of the hydraulic machine of the present invention connected to the power system operates, and the active power command p × 2 changes as shown in (c). On the other hand, each power plant connected to the same power system by the action of the AFC (self power frequency control device) or the like should reduce its output in accordance with the fluctuation of f. The sum of the decrease in the power supply at each of these power plants is the solid line in (d). Active power command p × 2
The actual drive output (motoring) p of the generator / motor of the variable speed hydraulic machine fluctuates in accordance with the fluctuation of As a result, the rotational speed N of the hydraulic machine is accelerated as shown in (f), and upon detection of this, the above-described speed control system responds, and the active power command p × 1 responds as shown in (e) to decrease the rotational speed N. I do. However, since the response speed of the speed control system is relatively low as described above, p
Immediately after this disturbance, the sum of × 2 and p × 1 is almost dominated by p × 2, and the response is almost (c). However subsequent sum of p × 2 reaches the time t b is has decreased naturally by the action of the time constant T 1 p × 2 and p × 1 is inverted from positive to negative, thereby rotating speed N is (the) And returns to the target rotation speed N 0 as shown in FIG. By the way, the active power control response (p
× 2−p × 1), the sum ΔK WX of the power supply and demand imbalance eliminating action of the same power system is the sum with the solid line in (d), and eventually becomes like the dotted line in (d). That is, the effect of the present invention resides in that the solid line in (d) is changed to a dotted line, that is, the power supply / demand imbalance is quickly eliminated to suppress the fluctuation of the power system frequency f. Of course, the effect of the present invention is limited to a short time immediately after the occurrence of the disturbance, as shown in the figure, and the system normally waits for the response of the original power source (various power plants, etc.). However, the response of the original power source cannot generally be easily made fast due to the restriction of each plant. Taking this into account, the role played by the present invention is by no means small. In other words, by having the hydraulic machine of the present invention, the active power response speed of the power system is improved and the fluctuation range of the power system frequency is reduced.
Also, it has the ability to follow a relatively fast, short-period power supply and demand imbalance that occurs in the power system. Conventionally, idling mode is used for power generation and pumping mode by opening the guide vane as soon as a command is given, or phase adjustment operation (rotation direction is both turbine direction and pump direction) for the purpose of improving the power factor of the power system. Although it has been adopted for the transitional waiting operation, the present invention enables these operations to be performed as usual while simultaneously exhibiting new functions. [Effects of the Invention] According to the variable speed hydraulic machine of the present invention, active power can be rapidly absorbed or released from the power system according to the frequency fluctuation of the power system, so that the active power adjustment capability of the variable speed hydraulic machine can be improved. It is possible to efficiently use the power supply / demand balance of the grid, and to increase the power supply / demand balance capability of the connected power grid.

【図面の簡単な説明】 第1図は本発明の実施例を示すブロツク図、第2図は
(図1の)31速度制御部の詳細を示すブロツク図であ
る。第3図は第1図のΔfからp×2に至る回路の代案
を示す図、第4図は従来技術の2軸励磁電流制御の説明
図である。第5図は本発明の水力機械とこれが連がつて
いる電力系統の動作説明図である。 17……APR、33……AQR、36……AVR。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing details of a 31 speed control unit (of FIG. 1). FIG. 3 is a diagram showing an alternative circuit from Δf to p × 2 in FIG. 1, and FIG. 4 is an explanatory diagram of a conventional biaxial exciting current control. FIG. 5 is an explanatory diagram of the operation of the hydraulic machine of the present invention and the electric power system to which it is connected. 17 ... APR, 33 ... AQR, 36 ... AVR.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−99677(JP,A) 発明協会公開技報公技番号第85− 14664 (58)調査した分野(Int.Cl.6,DB名) F03B 15/04 F03B 15/08──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-99677 (JP, A) Japan Institute of Invention and Innovation Technical Publication No. 85-14664 (58) Fields investigated (Int. Cl. 6 , DB name ) F03B 15/04 F03B 15/08

Claims (1)

(57)【特許請求の範囲】 1.水力機械と、該水力機械に直結された発電機又は電
動機と、該発電機/電動機の一次側または二次側に設け
られた電力変換器と、前記発電/電動機の一次側に接続
された電力系統の周波数の変動を検出する検出手段とを
備えて、可変速運転を行う可変速水力機械において、ラ
ンナ室の水面を押し下げて、ランナを空転運転する空転
運転モードにて、前記検出手段により検出された電力系
統の周波数が上昇した時は、前記水力機械の回転数を上
昇させ、電力系統の周波数が低下した時は、前記水力機
械の回転速度を低下させる制御手段を備えたことを特徴
とする可変速水力機械。 2.請求項第1項の可変速水力機械において、前記発電
/電動機の回転子の励磁電流の縦軸を有効電力制御信号
で、また横軸を無効電力信号で制御することを特徴とす
る可変速水力機械。 3.第1項又は第2項の可変速水力機械において、前記
発電電動機の回転速度司令値を与える速度司令手段と、
前記発電電動機の実回転速度を検出する速度検出手段と
を備え、前記制御装置は前記回転速度司令値と前記実回
転速度との偏差が最小になるように前記電力変換器を制
御することを特徴とする可変速水力機械。
(57) [Claims] A hydraulic machine, a generator or a motor directly connected to the hydraulic machine, a power converter provided on a primary side or a secondary side of the generator / motor, and an electric power connected to a primary side of the generator / motor Detecting means for detecting fluctuations in the frequency of the system, in a variable-speed hydraulic machine that performs variable-speed operation, in the idle running mode in which the water surface of the runner chamber is depressed and the runner runs idle, the detection is performed by the detecting means. When the frequency of the power system is increased, the rotation speed of the hydraulic machine is increased, and when the frequency of the power system is decreased, a control unit is configured to decrease the rotation speed of the hydraulic machine. Variable speed hydraulic power machine. 2. 2. The variable speed hydraulic machine according to claim 1, wherein a vertical axis of an exciting current of the rotor of the generator / motor is controlled by an active power control signal, and a horizontal axis of the exciting current is controlled by a reactive power signal. machine. 3. The variable speed hydraulic machine according to claim 1 or 2, wherein a speed command means for giving a rotation speed command value of the generator motor;
Speed detection means for detecting an actual rotation speed of the generator motor, wherein the control device controls the power converter so that a deviation between the rotation speed command value and the actual rotation speed is minimized. And variable speed hydraulic machine.
JP62318845A 1987-12-18 1987-12-18 Idling control method for variable speed hydraulic machine Expired - Lifetime JP2858748B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62318845A JP2858748B2 (en) 1987-12-18 1987-12-18 Idling control method for variable speed hydraulic machine
JP10134828A JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62318845A JP2858748B2 (en) 1987-12-18 1987-12-18 Idling control method for variable speed hydraulic machine
JP10134828A JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10134828A Division JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Publications (2)

Publication Number Publication Date
JPH01163472A JPH01163472A (en) 1989-06-27
JP2858748B2 true JP2858748B2 (en) 1999-02-17

Family

ID=59580718

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62318845A Expired - Lifetime JP2858748B2 (en) 1987-12-18 1987-12-18 Idling control method for variable speed hydraulic machine
JP10134828A Expired - Lifetime JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP10134828A Expired - Lifetime JP2993930B2 (en) 1987-12-18 1998-05-18 Variable speed induction motor system

Country Status (1)

Country Link
JP (2) JP2858748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148947B (en) * 2019-06-13 2020-10-02 河海大学 Method for correcting actual injection power of induction motor of each node of power grid in dynamic power flow analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
発明協会公開技報公技番号第85−14664

Also Published As

Publication number Publication date
JPH01163472A (en) 1989-06-27
JP2993930B2 (en) 1999-12-27
JPH10295042A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
US4625125A (en) Method and apparatus for controlling variable-speed hydraulic power generating system
US4694189A (en) Control system for variable speed hydraulic turbine generator apparatus
EP0243937B1 (en) Variable-speed pumped-storage power generating system
KR940009966B1 (en) Control system for variable speed generator apparatus
JP2585220B2 (en) Variable speed pumping equipment
JPH07184400A (en) Pumped storage power generator with variable speed
JP2858748B2 (en) Idling control method for variable speed hydraulic machine
JP2004040987A (en) Gas turbine power generation system and control method therefor
JPS61173699A (en) Controller of variable speed water wheel generator
JPH0634625B2 (en) Variable speed turbine generator
JPS6271497A (en) Controller for variable-speed hydraulic turbine generator
JP3515275B2 (en) Variable speed generator motor
JP2631373B2 (en) Operation control device of variable speed pumped storage power generation system
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP2753239B2 (en) Variable speed power plant
JP2771474B2 (en) Variable speed generator
JP3091567B2 (en) Power control device for wound induction machine
JP2858139B2 (en) Variable speed generator
JP3495140B2 (en) Voltage control device for wound induction machine
JP2680009B2 (en) Variable speed generator
JPH0636680B2 (en) Variable speed generator
JPS6055879A (en) Secondary side winding slip controlling method of wound-rotor type generator motor
JPH01163474A (en) Control method for operation of variable speed water turbine
JPH0570370B2 (en)
JPH01243896A (en) Frequency controller for variable-speed generator motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071204

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10