JPH01163209A - Production of thermoplastic resin - Google Patents

Production of thermoplastic resin

Info

Publication number
JPH01163209A
JPH01163209A JP32110487A JP32110487A JPH01163209A JP H01163209 A JPH01163209 A JP H01163209A JP 32110487 A JP32110487 A JP 32110487A JP 32110487 A JP32110487 A JP 32110487A JP H01163209 A JPH01163209 A JP H01163209A
Authority
JP
Japan
Prior art keywords
polymer
monomer
refractive index
meth
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32110487A
Other languages
Japanese (ja)
Other versions
JPH0819199B2 (en
Inventor
Tsugio Asakawa
浅川 次男
Katsuro Omura
大村 勝郎
Hisao Nagai
永井 久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP62321104A priority Critical patent/JPH0819199B2/en
Publication of JPH01163209A publication Critical patent/JPH01163209A/en
Publication of JPH0819199B2 publication Critical patent/JPH0819199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels
    • B60K28/165Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels acting on elements of the vehicle drive train other than the propulsion unit and brakes, e.g. transmission, clutch, differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • B60W2510/1045Output speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/465Detecting slip, e.g. clutch slip ratio
    • F16H2059/467Detecting slip, e.g. clutch slip ratio of torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H2059/506Wheel slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/56Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the main clutch

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Graft Or Block Polymers (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)

Abstract

PURPOSE:To obtain the title resin having excellent transparency, weather resistance and impact resistance, by subjecting monomers consisting of a (meth) acrylic acid ester and another vinyl monomer to graft copolymerization in the presence of a specific rubber-like polymer. CONSTITUTION:(B) Monomers consisting of a (meth)acrylic acid ester (preferably methyl acrylate) having >=50 deg.C glass transition temperature in formation of a homopolymer and another vinyl monomer (e.g., acrylonitrile) copolymerizable with the (meth)acrylic acid ester are subjected to graft copolymerization in the presence of (A) a rubber-like polymer prepared by hydrogenating a block copolymer consisting of an aromatic vinyl compound (preferably styrene) and a conjugated diene compound (preferably butadiene or isoprene) to give the aimed resin. Preferably the composition of the monomers B is selected in such a way that the difference between the refractive index of the polymer A and that of a polymer obtained by polymerizing only the monomer mixture B is <=0.01.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明は優れた透明性、耐候性、耐衝撃性を有する熱可
塑性樹脂の製造方法に関する。さらに詳しくは、芳香族
ビニル化合物と共役ジエン化合物からなるブロック共重
合体を水素添加したゴム状重合体の存在下に、(メタ)
アクリル酸エステルおよびこれと共重合可能な他のビニ
ル単量体からなる単量体を、上記ゴム状重合体と実質的
に等しい屈折率を有する重合体となるようその組成を選
択し、グラフト重合することを特徴とする熱可塑性樹脂
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to a method for producing a thermoplastic resin having excellent transparency, weather resistance, and impact resistance. More specifically, (meth)
The composition of a monomer consisting of an acrylic ester and another vinyl monomer copolymerizable with the acrylic ester is selected so as to have a refractive index substantially equal to that of the rubbery polymer, and the composition is graft-polymerized. The present invention relates to a method for producing a thermoplastic resin.

b、従来の技術 一般に、ポリメタクリル酸メチル樹脂またはメタクリル
酸メチルを主成分とした樹脂は、透明性、光沢、耐候性
などの優れた特性から、自動車部品、電気関係部品、デ
イスプレーなどの広い分野で使用されているが、衝撃強
度が低いという欠点がある。この衝撃強度を改良する方
法として、ポリブタジェンなどのジエン系ゴムの存在下
にメタクリル酸メチル、スチレンおよびアクリロニトリ
ルなどからなるビニル系単量体混合物を、ジエン系ゴム
の屈折率とビニル系単量体混合物を単独で重合して得ら
れる重合体の屈折率が実質的に一致するようにビニル系
単量体混合物の組成を選択して重合する方法が知られて
いる。例えば該方法によって得られたメタクリル酸メチ
ル−ブタジェン−スチレン共重合体樹脂やメタクリル酸
メチル−ブタジェン−スチレン−アクリロニトリル共重
合体樹脂などが種々の分野に使用されている。しかしこ
れら樹脂は、分子主鎖に不飽和二重結合を含有するため
、紫外線や空気中の酸素によって劣化し、変色や耐衝撃
性の低下など、いわゆる耐候性が悪いという致命的な欠
点がある。
b. Conventional technology In general, polymethyl methacrylate resins or resins containing methyl methacrylate as a main component are widely used in automobile parts, electrical parts, display displays, etc. due to their excellent properties such as transparency, gloss, and weather resistance. Although it is used in the field, it has the disadvantage of low impact strength. As a method to improve this impact strength, a vinyl monomer mixture consisting of methyl methacrylate, styrene, acrylonitrile, etc. is added in the presence of a diene rubber such as polybutadiene, and the refractive index of the diene rubber and the vinyl monomer mixture are mixed. A method is known in which the composition of a vinyl monomer mixture is selected so that the refractive indices of the polymers obtained by polymerizing the vinyl monomers alone are substantially the same. For example, methyl methacrylate-butadiene-styrene copolymer resins and methyl methacrylate-butadiene-styrene-acrylonitrile copolymer resins obtained by this method are used in various fields. However, since these resins contain unsaturated double bonds in their molecular main chains, they are degraded by ultraviolet rays and oxygen in the air, causing discoloration and reduced impact resistance, which is a fatal drawback of poor weather resistance. .

この耐候性を改良する方法として、ジエン系ゴムの代わ
りに、分子主鎖が実質的に飽和なゴム状重合体を用い、
これに種々のビニル系単量体をグラフト重合する方法が
提案されている。しかしながらこのゴム状重合体は、ジ
エン系ゴムのように二重結合をもたず、ラジカル活性が
低いため、ビニル単量体がグラフト重合せずに単にゴム
状重合体とビニル重合体樹脂とのブレンド物になること
が多い。このため得られた樹脂は、射出成形した場合、
表面にムラが見られ、光沢や透明性も著しく低く、また
耐衝撃性、引張り強度などの緒特性も悪いという欠点が
ある。
As a method to improve this weather resistance, a rubber-like polymer whose molecular main chain is substantially saturated is used instead of diene rubber.
Methods have been proposed in which various vinyl monomers are graft-polymerized to this. However, unlike diene rubbers, this rubber-like polymer does not have double bonds and has low radical activity, so the vinyl monomer does not undergo graft polymerization and simply combines the rubber-like polymer and vinyl polymer resin. Often a blend. Therefore, when the resin obtained is injection molded,
It has the drawbacks of unevenness on the surface, extremely low gloss and transparency, and poor mechanical properties such as impact resistance and tensile strength.

C1本発明が解決しようとする問題点 こうした問題点に関し、本発明者らは鋭意検討した結果
、芳香族ビニル化合物と共役ジエン化合物からなるブロ
ック共重合体を水素添加したゴム状重合体の存在下に、
(メタ)アクリル酸エステルを主成分として含有し、か
つ特定の条件を満足するビニル系単量体をグラフト重合
することにより、上記目的に十分合致した熱可塑性樹脂
が得られることを見出し、本発明に到達した。
C1 Problems to be Solved by the Present Invention Regarding these problems, the present inventors have made extensive studies and found that in the presence of a rubber-like polymer obtained by hydrogenating a block copolymer consisting of an aromatic vinyl compound and a conjugated diene compound, To,
It has been discovered that a thermoplastic resin fully meeting the above purpose can be obtained by graft polymerizing a vinyl monomer containing (meth)acrylic acid ester as a main component and satisfying specific conditions, and the present invention reached.

d0問題点を解決する手段 すなわち本発明は、芳香族ビニル化合物と共役ジエン化
合物からなるブロック共重合体を水素添加したゴム状重
合体(a)の存在下に、単独重合体にしたときのガラス
転移温度が50℃以上である(メタ)アクリル酸エステ
ルおよびこれと共重合可能な他のビニル単量体からなる
単量体(b)をグラフト共重合することを特徴とする熱
可塑性樹脂の製造方法を提供するものである。
A means for solving the d0 problem, that is, the present invention, is a glass that is made into a homopolymer in the presence of a rubbery polymer (a) obtained by hydrogenating a block copolymer consisting of an aromatic vinyl compound and a conjugated diene compound. Production of a thermoplastic resin characterized by graft copolymerization of a monomer (b) consisting of a (meth)acrylic acid ester having a transition temperature of 50°C or higher and another vinyl monomer copolymerizable with the same. The present invention provides a method.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明で使用される芳香族ビニル化合物と共役ジエンか
らなるブロック共重合体の水素添加物としては、例えば
スチレンとブタジェンのブロック共重合体に代表される
ブロック共重合体に水素添加し、これを共役ジエン化合
物に基づく脂肪族二重結合を飽和させオレフィン性重合
体に変換させたものである。
As a hydrogenated product of a block copolymer composed of an aromatic vinyl compound and a conjugated diene used in the present invention, for example, a block copolymer typified by a block copolymer of styrene and butadiene is hydrogenated. The aliphatic double bonds based on a conjugated diene compound are saturated and converted into an olefinic polymer.

芳香族ビニル化合物としては、スチレン、α−メチルス
ヂレン、ビニルトルエンなどがあり、中でもスチレンが
好ましい。また共役ジエンとしては、ブタジェン、イソ
プレン、1.3−ペンタジェン、2゜3−ジメチル−1
,3−ブタジェンなどがあり、中でもブタジェン、イソ
プレンおよびこれらの組合せが好ましい。
Examples of the aromatic vinyl compound include styrene, α-methylstyrene, and vinyltoluene, with styrene being preferred. Conjugated dienes include butadiene, isoprene, 1,3-pentadiene, 2゜3-dimethyl-1
, 3-butadiene, among others, butadiene, isoprene, and combinations thereof are preferred.

芳香族ビニルと共役ジエンの割合は、特に規定するもの
ではないが、樹脂とした場合の耐衝撃性を維持するため
には、芳香族ビニル/共役ジエンは5〜60/95〜4
0重量%が好ましく、特に好ましくは10〜50/90
〜50である。
The ratio of aromatic vinyl to conjugated diene is not particularly specified, but in order to maintain impact resistance when used as a resin, the ratio of aromatic vinyl to conjugated diene should be 5 to 60/95 to 4.
0% by weight is preferred, particularly preferably 10-50/90
~50.

このブロック共重合体の分子構造は、直鎖状、分岐状、
放射状あるいはこれらの組合せのいずれでもよく、さら
にブロック構造としてはジブロック、トリブロック、ま
たはマルチブロックおよびこれらの組合せのいずれでも
良い。またこれらブロック共重合体の水蒸気添加率は、
50%以上が必要であり、好ましくは65%以上、特に
好ましくは80%以上である。
The molecular structure of this block copolymer is linear, branched,
The block structure may be radial or a combination thereof, and the block structure may be diblock, triblock, multiblock, or a combination thereof. In addition, the water vapor addition rate of these block copolymers is
It is required to be at least 50%, preferably at least 65%, particularly preferably at least 80%.

50%以下であると、耐候性を低下させる傾向にあるの
で好ましくない。
If it is less than 50%, it tends to reduce weather resistance, which is not preferable.

これら水添ブロック共重合体の製造方法は、−船釣な方
法を用いることができる。代表的な方法としては、例え
ば特公昭42−8704号、同43−6636号などの
公報に記載された方法がある。このような水素添加ブロ
ック共重合体としては、市販のポリマーであるKRAT
ON−G (シェルケミカル社製商品名)等を使用でき
る。
As a method for producing these hydrogenated block copolymers, a boat-based method can be used. Typical methods include those described in Japanese Patent Publications No. 42-8704 and Japanese Patent Publication No. 43-6636. As such a hydrogenated block copolymer, KRAT, a commercially available polymer, is used.
ON-G (trade name manufactured by Shell Chemical Company) etc. can be used.

本発明において、水素添加ブロック共重合体ゴムにグラ
フト重合するビニル単量体は、(メタ)アクリル酸エス
テルおよびこれと共重合可能な他の単泄体を併用するこ
とが必要である。
In the present invention, as the vinyl monomer to be graft-polymerized to the hydrogenated block copolymer rubber, it is necessary to use (meth)acrylic acid ester and other monomers copolymerizable therewith in combination.

上記(メタ)アクリル酸アルキルエステルとしては、そ
れ単独で重合体にしたとき、その重合体のガラス転移温
度(示差走査熱量計(DSC)で測定)が50℃以上で
あるもので、アルキルとして炭素数1〜10のものが好
ましく、さらに好ましくは1〜6、特に好ましくは1〜
4のものである。メタクリル酸エステルとアクリル酸エ
ステルの中ではメタクリル酸エステルの方が好ましい。
The above-mentioned (meth)acrylic acid alkyl ester is one whose glass transition temperature (measured by differential scanning calorimeter (DSC)) is 50°C or higher when made into a polymer by itself, and where the alkyl is carbon Numbers 1 to 10 are preferable, more preferably 1 to 6, particularly preferably 1 to 10.
4. Among methacrylic esters and acrylic esters, methacrylic esters are preferred.

これらの例としては、メタクリル酸メチル、メタクリル
酸エチル、メタクリル酸シクロヘキシル、メタクリル酸
ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、
メタクリル酸t−ブチルシクロヘキシル、メタクリル酸
ブチル、メタクリル酸ヘキシル、次式で示される(メタ
)アクリルエステル (nはO〜3、Rは水素またはアルキル基、mは3〜4
)などが挙げられ、これらの1種以上が使用できる。
Examples of these include methyl methacrylate, ethyl methacrylate, cyclohexyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate,
t-Butylcyclohexyl methacrylate, butyl methacrylate, hexyl methacrylate, (meth)acrylic ester represented by the following formula (n is O-3, R is hydrogen or an alkyl group, m is 3-4
), and one or more of these can be used.

これらの中ではメタクリル酸メチル、メタクリル酸エチ
ルが好ましく、さらに好ましいのはメタクリル酸メチル
である。
Among these, methyl methacrylate and ethyl methacrylate are preferred, and methyl methacrylate is more preferred.

共重合可能な他のビニル単量体としては、例えばスチレ
ン、α−メチルスチレン、ビニルトルエンなどの芳香族
ビニル系単量体;アクリロニトリル、メタクリロニトリ
ルなどのシアン化ビニル系単量体;アクリル酸メチル、
アクリル酸エチル、アクリル酸プロピル、アクリル酸ブ
チル、アクリル酸ヘキシル、メタクリル酸プロピル、メ
タクリル酸ブチル、メタクリル酸ヘキシル、アクリル酸
シクロヘキシル、メタクリル酸シクロヘキシルなどの前
記(メタ)アクリル酸アルキルエステルで使用した以外
の(メタ)アクリル酸アルキルエステル系単量体;無水
マレイン酸、無水イタコン酸などの不飽和酸無水物;ア
クリル酸、メタクリル酸などの不飽和酸;N−フェニル
マレイミド、N−シクロヘキシルマレイミドなどのα、
β不飽和ジカルボン酸のイミド化合物などが挙げられる
Examples of other copolymerizable vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, and vinyltoluene; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; acrylic acid. methyl,
Other than those used in the above (meth)acrylic acid alkyl esters such as ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, etc. (Meth)acrylic acid alkyl ester monomer; Unsaturated acid anhydrides such as maleic anhydride and itaconic anhydride; Unsaturated acids such as acrylic acid and methacrylic acid; α such as N-phenylmaleimide and N-cyclohexylmaleimide ,
Examples include imide compounds of β-unsaturated dicarboxylic acids.

(メタ)アクリル酸エステルと上記共重合可能な単量体
とを使用するにあたっては、ゴム状重合体(a)の屈折
率と単量体混合物(b)の屈折率との差が0.01以下
、好ましくは0.005以下となるように単量体混合物
の組成を適宜選択してグラフト重合を行うのが好ましい
。ここで両者の屈折率差が0.O)を越える場合には、
熱可塑性樹脂の透明性が低下する。なお単量体混合物(
blのみからなるマトリックス樹脂の屈折率は、理論式
から計算または予めその組成からなる単量体混合物を重
合して得た樹脂の屈折率を測定することにより知ること
ができる。
When using the (meth)acrylic acid ester and the above copolymerizable monomer, the difference between the refractive index of the rubbery polymer (a) and the refractive index of the monomer mixture (b) is 0.01. Hereinafter, it is preferable to carry out graft polymerization by appropriately selecting the composition of the monomer mixture so that the ratio is preferably 0.005 or less. Here, the refractive index difference between the two is 0. If it exceeds O),
Transparency of thermoplastic resin decreases. In addition, the monomer mixture (
The refractive index of a matrix resin consisting only of bl can be determined by calculating from a theoretical formula or by measuring the refractive index of a resin obtained by polymerizing a monomer mixture having this composition in advance.

(メタ)アクリル酸エステルと他のビニル単量体との使
用割合は特に制限はなく、ゴム状重合体(alの屈折率
に応じて適宜法めることができるが、好ましくは30〜
98/70〜2重量%であり、さらに好ましくは50〜
95150〜5重量%であり、特に好ましくは60〜9
0/40〜10重量%である。
The ratio of the (meth)acrylic acid ester to the other vinyl monomer is not particularly limited, and can be determined as appropriate depending on the refractive index of the rubbery polymer (al), but is preferably 30 to 30%.
98/70 to 2% by weight, more preferably 50 to 2% by weight
95150-5% by weight, particularly preferably 60-9%
It is 0/40 to 10% by weight.

本発明の熱可塑性樹脂を製造する際のゴム状重合体(a
lの含有量は、目的に応じて任意に選ぶことができるが
、樹脂の耐衝撃性、成形性や透明性を満足するために、
その範囲は5〜35重量%、好ましくは10〜30重量
%である。ゴム含有量が5重量%未満では耐衝撃性の不
十分な樹脂しか得られず、また35重量%を越えると表
面硬度の成形性が低下するため好ましくない。したがっ
て、マトリックス樹脂となる単量体混合物(b)は残部
の含有量となる。
The rubbery polymer (a) used in producing the thermoplastic resin of the present invention
The content of l can be arbitrarily selected depending on the purpose, but in order to satisfy the impact resistance, moldability and transparency of the resin,
The range is 5-35% by weight, preferably 10-30% by weight. If the rubber content is less than 5% by weight, a resin with insufficient impact resistance will be obtained, and if it exceeds 35% by weight, the moldability of the surface hardness will decrease, which is not preferable. Therefore, the monomer mixture (b) that becomes the matrix resin has the remaining content.

本発明の熱可塑性樹脂を製造するための重合方法として
は、溶液重合法、懸濁重合法、塊状重合法および乳化重
合法など公知の方法が採用できるが、なかでも溶液重合
法および懸濁重合法が好ましい。
As the polymerization method for producing the thermoplastic resin of the present invention, known methods such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization can be adopted. Preferably legal.

かくして得られる本発明の熱可塑性樹脂は、透明性、耐
候性、耐衝撃性が優れており、これら特性を生かした種
々の用途に広く利用することができる。
The thermoplastic resin of the present invention thus obtained has excellent transparency, weather resistance, and impact resistance, and can be widely used in various applications that take advantage of these properties.

またこの熱可塑性樹脂は、目的に応じてメタクリル酸エ
ステル重合体、スチレン−メタクリル酸メチル共重合体
、スチレン−メタクリル酸メチル−アクリロニトリル共
重合体など他の重合体と配合することができる。ただし
配合する他の重合体は、本発明で得られる熱可塑性樹脂
とその屈折率差が0.01以下、好ましくは0.005
以下の範囲にあるものが好ましく、この条件を満足しな
い場合には、透明な組成物を得ることができない。
Moreover, this thermoplastic resin can be blended with other polymers such as methacrylic acid ester polymer, styrene-methyl methacrylate copolymer, and styrene-methyl methacrylate-acrylonitrile copolymer depending on the purpose. However, the difference in refractive index between the other polymers and the thermoplastic resin obtained in the present invention is 0.01 or less, preferably 0.005.
The following ranges are preferred; if these conditions are not met, a transparent composition cannot be obtained.

なお、本発明の熱可塑性樹脂およびこれを用いた組成物
に対し、ヒンダードフェノール系、リン系、および硫黄
系などの酸化防止剤や、光安定剤、紫外線吸収剤、滑剤
、着色剤、難燃剤、補強剤など通常用いられる添加剤を
、その透明性を阻害しない範囲で添加することができる
In addition, the thermoplastic resin of the present invention and the composition using the same may contain antioxidants such as hindered phenol, phosphorus, and sulfur, light stabilizers, ultraviolet absorbers, lubricants, colorants, and Commonly used additives such as fuel agents and reinforcing agents can be added to the extent that they do not impede the transparency.

e、実施例 以下、実施例により本発明をさらに詳細に説明するが、
例文中の「部」 「%」はすべて重量基準である。
e. Examples The present invention will be explained in more detail by Examples below.
All "parts" and "%" in the example sentences are based on weight.

なお各種物性試験法は、下記要領に従って測定した。In addition, various physical property test methods were measured according to the following procedures.

(1)屈折率:アツベ屈折計により25℃で測定した。(1) Refractive index: Measured at 25°C using an Atsube refractometer.

(4)耐候性:カーボンアークを光源とするサンシャイ
ンウェザオメーターに1000時間曝露し、アイゾツト
衝撃強度を測定。ブランクパネル温度63±3°C1水
のシャワリングは2時間毎に18分とした。
(4) Weather resistance: Exposure to a sunshine weatherometer using a carbon arc as a light source for 1000 hours, and measure the Izot impact strength. Blank panel temperature: 63±3° C. Water showering was performed for 18 minutes every 2 hours.

実施例−1 パドル型攪拌装置を備えた内容積101のステンレス製
オートクレーブに、予め均一溶液にした屈折率1.50
7の水素添加ブロック共重合体KRATON G−16
50(シェルケミカル社製5RBS) 10部、スチレ
ン10.8部、トルエン100部、t−ドデシルメルカ
プタン0.1部を仕込み、攪拌しながら昇温し、50℃
にてメタクリル酸メチル79.2部、t−ブチルパーオ
キシイソプロピルカーボネート0.5部を添加した。系
内を窒素置換したのち、さらに90℃まで昇温し、この
温度で重合転化率が74%になるまで攪拌下で重合を継
続した。
Example-1 A homogeneous solution with a refractive index of 1.50 was prepared in advance in a stainless steel autoclave with an internal volume of 101 and equipped with a paddle type stirring device.
7 hydrogenated block copolymer KRATON G-16
50 (5RBS manufactured by Shell Chemical Company), 10.8 parts of styrene, 100 parts of toluene, and 0.1 part of t-dodecyl mercaptan were added, and the temperature was raised while stirring to 50°C.
79.2 parts of methyl methacrylate and 0.5 part of t-butylperoxyisopropyl carbonate were added. After the inside of the system was purged with nitrogen, the temperature was further raised to 90°C, and polymerization was continued at this temperature with stirring until the polymerization conversion rate reached 74%.

重合転化率が74%に達した時点で重合を停止し、老化
防止剤を加えたのち、オートクレーブより取り出し、水
蒸気蒸留により未反応単量体、溶媒を除去した。この物
を細かく粉砕し乾燥したのち1.401)Iφベント付
押出機にてペレット化した。得られたグラフト共重合体
のゴム含有量は13%であり、単量体混合物のみからな
る共重合樹脂の屈折率は1.5068であった。
When the polymerization conversion rate reached 74%, the polymerization was stopped, an antiaging agent was added, and the mixture was taken out of the autoclave and unreacted monomers and solvent were removed by steam distillation. This material was finely ground and dried, and then pelletized using a 1.401) Iφ vented extruder. The rubber content of the obtained graft copolymer was 13%, and the refractive index of the copolymer resin consisting only of the monomer mixture was 1.5068.

上記方法で得たグラフト共重合体ペレットを射出成形機
にて試験片を成形し、物性を測定した。結果を表−1に
示した。
The graft copolymer pellets obtained by the above method were molded into test pieces using an injection molding machine, and the physical properties were measured. The results are shown in Table-1.

実施例−2 屈折率1.5105の水素添加ブロック共重合体KRA
TONG−1701X(シェルケミカル社製5EP) 
15部、スチレン12.8部、メタクリル酸メチル72
.2部とし、実施例−1と同様の方法で重合反応を行っ
た。重合転化率が70%に達した時点で重合を停止した
のち、実施例−1と同様の方法で後処理し、グラフト共
重合体を得た。得られたグラフト共重合体のゴム含有量
は20%であり、単量体混合のみからなる共重合樹脂の
屈折率は1.51)3であった。
Example-2 Hydrogenated block copolymer KRA with refractive index of 1.5105
TONG-1701X (Shell Chemical Co., Ltd. 5EP)
15 parts, 12.8 parts of styrene, 72 parts of methyl methacrylate
.. 2 parts, and a polymerization reaction was carried out in the same manner as in Example-1. After the polymerization was stopped when the polymerization conversion rate reached 70%, post-treatment was carried out in the same manner as in Example-1 to obtain a graft copolymer. The rubber content of the obtained graft copolymer was 20%, and the refractive index of the copolymer resin consisting only of a monomer mixture was 1.51)3.

このグラフト共重合体を射出成形し、物性測定した結果
を表−1に示した。
This graft copolymer was injection molded and the physical properties were measured. The results are shown in Table 1.

実施例−3 実施例−2における単量体組成をスチレン12部、メタ
クリル酸メチル68部、アクリロニトリル5部とした以
外は同様の方法で重合、後処理し、評価した。
Example 3 Polymerization, post-treatment, and evaluation were performed in the same manner as in Example 2, except that the monomer composition was changed to 12 parts of styrene, 68 parts of methyl methacrylate, and 5 parts of acrylonitrile.

結果を表−1に示した。The results are shown in Table-1.

なお単量体混合物のみからなる共重合樹脂の屈折率は、
1.5122であった。
The refractive index of a copolymer resin consisting only of a monomer mixture is
It was 1.5122.

実施例−4 パドル型攪拌装置を備えた内容積3ONのステンレス製
オートクレーブ2基を連結した重合反応装置を用いて下
記条件にて重合を実施した。
Example 4 Polymerization was carried out under the following conditions using a polymerization reaction apparatus in which two stainless steel autoclaves each having an internal volume of 3ON and equipped with a paddle type stirring device were connected.

反応器への供給は反応器下部より行い、上部からオーバ
ーフローする形で2基連結した。第2反応器からオーバ
ーフローした重合溶液は一旦タンクに保持したのち、直
接65mφベント付押出機に導入し、揮発成分を分離除
去し、ベレット化した。
The reactor was supplied from the bottom of the reactor, and the two reactors were connected in such a way that they overflowed from the top. The polymerization solution overflowing from the second reactor was once held in a tank and then directly introduced into a 65 mφ vented extruder to separate and remove volatile components and form pellets.

得られたグラフト共重合体のゴム含有量は24.8部で
あり、単量体混合物のみからなる共重合樹脂の屈折率は
1 、5066であった。
The rubber content of the obtained graft copolymer was 24.8 parts, and the refractive index of the copolymer resin consisting only of the monomer mixture was 1.5066.

このグラフト共重合体を射出成形し、物性測定した結果
を表−1に示した。
This graft copolymer was injection molded and the physical properties were measured. The results are shown in Table 1.

比較例−1 〈ゴム状重合体の製造〉 パドル型撹拌装置を備えた内容積100!のステンレス
製オートクレーブにステアリン酸カリウム0.2部、ラ
ウリン酸カリウム1.5部、アルキルナフタレンスルホ
ン酸ナトリウム0.1部、水酸化カリウム0.1部、塩
化カリウム1.5部を含むイオン交換水90部を仕込み
、次にアクリル酸n−ブチル70部、スチレン30部を
添加した。窒素雰囲気下で9Orpmの攪拌下に昇温し
45℃に達した時点で過硫酸カリウムを添加し、以後4
5℃一定に保つように制御しながら重合反応を行い、重
合率が90%に達した時点でジエチルヒドロキシルアミ
ン0.1部を添加して反応を停止させ、水蒸気蒸留によ
り未反応モノマーを実質的に除去し、ゴム状重合体ラテ
ックスを得た。
Comparative Example-1 <Manufacture of rubber-like polymer> Internal volume 100 equipped with paddle type stirring device! In a stainless steel autoclave, add ion exchange water containing 0.2 parts of potassium stearate, 1.5 parts of potassium laurate, 0.1 part of sodium alkylnaphthalene sulfonate, 0.1 part of potassium hydroxide, and 1.5 parts of potassium chloride. Next, 70 parts of n-butyl acrylate and 30 parts of styrene were added. The temperature was raised under stirring at 9 rpm in a nitrogen atmosphere, and when it reached 45°C, potassium persulfate was added.
The polymerization reaction was carried out while being controlled to maintain a constant temperature of 5°C. When the polymerization rate reached 90%, 0.1 part of diethylhydroxylamine was added to stop the reaction, and unreacted monomers were substantially removed by steam distillation. was removed to obtain a rubbery polymer latex.

この重合体ラテックスをアクコールで沈澱、精製したの
ち乾燥を行い、ゴム状重合体を得た。
This polymer latex was precipitated with accol, purified, and then dried to obtain a rubbery polymer.

〈グラフト共重合体の製造〉 水素添加ブロック共重合体に代え、上記方法で得た屈折
率1.507のアクリル酸n−ブチル−スチレン共重合
弾性体を使用した。これ以外は実施例−1と同様の方法
で重合、後処理し、評価した。結果を表−1に示した。
<Production of Graft Copolymer> In place of the hydrogenated block copolymer, an n-butyl acrylate-styrene copolymer elastic body having a refractive index of 1.507 obtained by the above method was used. Other than this, polymerization and post-treatment were carried out in the same manner as in Example-1, and evaluation was performed. The results are shown in Table-1.

比較例−2 くゴム状重合体の製造〉 比較例−1における単量体組成をアクリル酸n−ブチル
50部、1.3−ブタジェン30部、スチレン20部と
した以外は同様の方法でゴム状重合体を得た。
Comparative Example-2 Production of rubbery polymer> Rubber was produced in the same manner as in Comparative Example-1 except that the monomer composition was changed to 50 parts of n-butyl acrylate, 30 parts of 1,3-butadiene, and 20 parts of styrene. A polymer was obtained.

くグラフト共重合体の製造〉 水素添加ブロック共重合体に代え、上記方法で得た屈折
率1.512のアクリル酸n−ブチル−1,3−ブタジ
ェン−スチレン共重合弾性体を使用した。
Production of Graft Copolymer> Instead of the hydrogenated block copolymer, an n-butyl acrylate-1,3-butadiene-styrene copolymer elastomer with a refractive index of 1.512 obtained by the above method was used.

これ以外は実施例−2と同様の方法で重合、後処理し、
評価した。結果を表−1に示した。
Other than this, polymerization and post-treatment were carried out in the same manner as in Example-2,
evaluated. The results are shown in Table-1.

比較例−3 実施例−1における単量体組成をスチレン22.5部、
メタクリル酸メチル67.5部とした以外は同様の方法
で重合、後処理し、評価した。結果を表−1に示した。
Comparative Example-3 The monomer composition in Example-1 was changed to 22.5 parts of styrene,
Polymerization, post-treatment and evaluation were conducted in the same manner except that 67.5 parts of methyl methacrylate was used. The results are shown in Table-1.

なお単量体混合物のみからなる共重合樹脂の屈折率は、
1.5196であった。
The refractive index of a copolymer resin consisting only of a monomer mixture is
It was 1.5196.

比較例−4 実施例−2における単量体組成をスチレン34部、メタ
クリル酸メチル51部とした以外は同様の方法で重合、
後処理し、評価した。結果を表−1に示した。
Comparative Example-4 Polymerization was carried out in the same manner as in Example-2 except that the monomer composition was changed to 34 parts of styrene and 51 parts of methyl methacrylate.
Post-processed and evaluated. The results are shown in Table-1.

なお単量体混合のみからなる共重合樹脂の屈折率は、1
.534であった。
Note that the refractive index of the copolymer resin consisting only of monomer mixtures is 1
.. It was 534.

比較例−5 実施例−1における単量体組成をスチレン54部、アク
リロニトリル36部とした以外は同様の方法で重合、後
処理し評価した。結果を表−1に示した。
Comparative Example-5 Polymerization, post-treatment and evaluation were conducted in the same manner as in Example-1 except that the monomer composition was changed to 54 parts of styrene and 36 parts of acrylonitrile. The results are shown in Table-1.

なお単量体混合物のみからなる共重合樹脂の屈折率は1
.5628であった。
Note that the refractive index of a copolymer resin consisting only of a monomer mixture is 1.
.. It was 5628.

比較例−6 ベースゴムを屈折率1.4855のエチレン−プロピレ
ン共重合ゴムJSREPOIP 10部、メタクリル酸
メチル81部、アクリル酸メチル9部とした以外は実施
例−1と同様の方法で重合、後処理し評価した。結果を
表−1に示した。
Comparative Example-6 Polymerization was carried out in the same manner as in Example-1 except that the base rubber was 10 parts of ethylene-propylene copolymer rubber JSREPOIP with a refractive index of 1.4855, 81 parts of methyl methacrylate, and 9 parts of methyl acrylate. processed and evaluated. The results are shown in Table-1.

なお単量体混合物のみからなる共重合樹脂の屈折率は1
.4887であった。
Note that the refractive index of a copolymer resin consisting only of a monomer mixture is 1.
.. It was 4887.

表−1に示す結果からみて、実施例−1〜4まではSl
l!BS、 SEPなど水添ブロック共重合体を用いる
ことで透明性、耐候性、耐衝撃性の優れた熱可塑性樹脂
が得られることが分かる。
Judging from the results shown in Table 1, Examples 1 to 4 were
l! It can be seen that thermoplastic resins with excellent transparency, weather resistance, and impact resistance can be obtained by using hydrogenated block copolymers such as BS and SEP.

比較例−1では、分子主鎖が飽和なゴム状重合体使用の
場合は耐衝撃性が著しく低いことが分かる。
In Comparative Example 1, it can be seen that impact resistance is extremely low when a rubbery polymer with a saturated molecular main chain is used.

比較例−2では、ゴム状重合体の分子主鎖に二重結合を
導入することにより耐衝撃性は発現するが、耐候性が悪
くなることが分かる。
In Comparative Example 2, impact resistance is developed by introducing a double bond into the molecular main chain of the rubber-like polymer, but it can be seen that weather resistance deteriorates.

また比較例−3,4によれば、ゴム状重合体の屈折率と
グラフト共重合する単量体混合物のみからなる共重合樹
脂の屈折率の差が0.Olを越えると、透明性が悪くな
ることがわかる。
Moreover, according to Comparative Examples 3 and 4, the difference between the refractive index of the rubbery polymer and the refractive index of the copolymer resin made only of the monomer mixture to be graft copolymerized was 0. It can be seen that when the temperature exceeds Ol, the transparency deteriorates.

f0発明の効果 以上から明らかなごとく、本発明によれば、芳香族ビニ
ル化合物と共役ジエン化合物からなるブロック共重合体
を水素添加したゴム状重合体の存在下に、メタクリル酸
メチルおよびこれと共重合可能な他のビニル単量体から
なる単量体混合物を、該ゴム状重合体と実質的に等しい
屈折率を有する重合体となるよう組成を選択しグラフト
重合することにより、透明性、耐衝撃性、耐候性の優れ
た熱可塑性樹脂が得られる。
f0 Effects of the Invention As is clear from the above, according to the present invention, methyl methacrylate and the copolymer thereof are produced in the presence of a rubbery polymer obtained by hydrogenating a block copolymer consisting of an aromatic vinyl compound and a conjugated diene compound. Transparency and durability can be improved by graft polymerizing a monomer mixture consisting of other polymerizable vinyl monomers with a composition selected so as to form a polymer having a refractive index substantially equal to that of the rubbery polymer. A thermoplastic resin with excellent impact resistance and weather resistance can be obtained.

本発明で得られた熱可塑性樹脂は、各種透明成形品にで
きるほか、黒色や各種の色に着色して深みのある鮮明な
色彩の成形品とすることができる。かかる熱可塑性樹脂
の用途としては、各種家庭電化製品、自動車部品、家庭
用品その他各種工業材料の他、レンズや光ディスクなど
の光学材料にも有用である。
The thermoplastic resin obtained in the present invention can be made into various transparent molded products, and can also be colored black or various colors to make molded products with deep and vivid colors. Such thermoplastic resins are useful in various home appliances, automobile parts, household goods, and various other industrial materials, as well as optical materials such as lenses and optical discs.

特許出願人   日本合成ゴム株式会社(ほか2名)Patent applicant: Japan Synthetic Rubber Co., Ltd. (and 2 others)

Claims (3)

【特許請求の範囲】[Claims] (1)芳香族ビニル化合物と共役ジエン化合物からなる
ブロック共重合体を水素添加したゴム状重合体(a)の
存在下に、単独重合体にしたときのガラス転移温度が5
0℃以上である(メタ)アクリル酸エステルおよびこれ
と共重合可能な他のビニル単量体からなる単量体(b)
をグラフト共重合することを特徴とする熱可塑性樹脂の
製造方法。
(1) When a block copolymer consisting of an aromatic vinyl compound and a conjugated diene compound is made into a homopolymer in the presence of hydrogenated rubbery polymer (a), the glass transition temperature is 5.
Monomer (b) consisting of a (meth)acrylic acid ester having a temperature of 0°C or higher and another vinyl monomer copolymerizable with the same
A method for producing a thermoplastic resin, which comprises graft copolymerizing.
(2)ゴム状重合体(a)の屈折率と、単量体混合物(
b)のみを重合してなる重合体の屈折率との差が0.0
1以下となるように単量体(b)の組成を選択すること
を特徴とする特許請求の範囲第(1)項記載の熱可塑性
樹脂の製造方法。
(2) The refractive index of the rubbery polymer (a) and the monomer mixture (
The difference in refractive index from the polymer obtained by polymerizing only b) is 0.0.
1. The method for producing a thermoplastic resin according to claim 1, wherein the composition of monomer (b) is selected so that the composition of monomer (b) is 1 or less.
(3)(a)成分の使用量が、(a)と(b)の合計量
に対し5〜35重量%であり、(b)成分中の上記(メ
タ)アクリル酸エステルの使用量が30〜98重量%で
ある特許請求の範囲第(1)項記載の熱可塑性樹脂の製
造方法。
(3) The amount of component (a) used is 5 to 35% by weight based on the total amount of (a) and (b), and the amount of the (meth)acrylic acid ester used in component (b) is 30% by weight. 98% by weight of the thermoplastic resin according to claim (1).
JP62321104A 1987-12-18 1987-12-18 Method for producing thermoplastic resin Expired - Lifetime JPH0819199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62321104A JPH0819199B2 (en) 1987-12-18 1987-12-18 Method for producing thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62321104A JPH0819199B2 (en) 1987-12-18 1987-12-18 Method for producing thermoplastic resin

Publications (2)

Publication Number Publication Date
JPH01163209A true JPH01163209A (en) 1989-06-27
JPH0819199B2 JPH0819199B2 (en) 1996-02-28

Family

ID=18128865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321104A Expired - Lifetime JPH0819199B2 (en) 1987-12-18 1987-12-18 Method for producing thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH0819199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356249A2 (en) * 1988-08-24 1990-02-28 Japan Synthetic Rubber Co., Ltd. Process for producing rubber-modified thermoplastic resin and a thermoplastic resin composition comprising the modified thermoplastic resin
US5306778A (en) * 1988-08-24 1994-04-26 Japan Synthetic Rubber Co., Ltd. Process for producing rubber-modified thermoplastic resin
DE19681342T1 (en) * 1995-04-14 1998-04-02 Asahi Chemical Ind Impact-resistant methacrylic resin
WO2002002691A1 (en) * 2000-07-06 2002-01-10 Lg Chemical Co., Ltd. Process for preparing thermoplastic transparent resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085695A (en) * 1973-11-30 1975-07-10
JPS6351477A (en) * 1986-08-21 1988-03-04 Mitsubishi Petrochem Co Ltd Resin composition for coating compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085695A (en) * 1973-11-30 1975-07-10
JPS6351477A (en) * 1986-08-21 1988-03-04 Mitsubishi Petrochem Co Ltd Resin composition for coating compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356249A2 (en) * 1988-08-24 1990-02-28 Japan Synthetic Rubber Co., Ltd. Process for producing rubber-modified thermoplastic resin and a thermoplastic resin composition comprising the modified thermoplastic resin
US5306778A (en) * 1988-08-24 1994-04-26 Japan Synthetic Rubber Co., Ltd. Process for producing rubber-modified thermoplastic resin
DE19681342T1 (en) * 1995-04-14 1998-04-02 Asahi Chemical Ind Impact-resistant methacrylic resin
DE19681342C2 (en) * 1995-04-14 2002-08-01 Asahi Chemical Ind Impact-resistant methacrylic resin
WO2002002691A1 (en) * 2000-07-06 2002-01-10 Lg Chemical Co., Ltd. Process for preparing thermoplastic transparent resin

Also Published As

Publication number Publication date
JPH0819199B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
US5306778A (en) Process for producing rubber-modified thermoplastic resin
US3700754A (en) Compositions of polymers of methyl methacrylate and polymers of ethylene
JPH0335048A (en) Impact-resistant thermoplastic resin composition
EP0356249B1 (en) Process for producing rubber-modified thermoplastic resin and a thermoplastic resin composition comprising the modified thermoplastic resin
JP4105879B2 (en) Rubber-reinforced thermoplastic resin and rubber-reinforced thermoplastic resin composition
JPH01163209A (en) Production of thermoplastic resin
JPS63268712A (en) Production of copolymer
JP3228448B2 (en) Rubber-modified thermoplastic resin and composition thereof
JPH01297413A (en) Production of rubber modified thermoplastic resin
AU6946001A (en) Transparent impact-resistant thermoplastic resin composition
TWI732307B (en) Vinylidene substituted aromatic monomer and cyclic (meth)acrylate ester polymers
JPH0372555A (en) Antistatic resin composition
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JP2643343B2 (en) Method for producing thermoplastic resin
JPS63258914A (en) Production of copolymer
JP4850323B2 (en) Rubber-modified thermoplastic resin
JPS63243156A (en) Thermoplastic resin composition
JP2780187B2 (en) Rubber-modified thermoplastic resin
JP4159899B2 (en) Thermoplastic resin composition and method for producing the same
JPH06345934A (en) Polymer composition
JP3992473B2 (en) Composition for injection molding
JP3934379B2 (en) Injection molding composition
JPH04146910A (en) Multilayer graft copolymer
JPH01236215A (en) Thermoplastic resin
JP2730182B2 (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term