JPH01163060A - High bending absorption energy steel pipe - Google Patents

High bending absorption energy steel pipe

Info

Publication number
JPH01163060A
JPH01163060A JP62323309A JP32330987A JPH01163060A JP H01163060 A JPH01163060 A JP H01163060A JP 62323309 A JP62323309 A JP 62323309A JP 32330987 A JP32330987 A JP 32330987A JP H01163060 A JPH01163060 A JP H01163060A
Authority
JP
Japan
Prior art keywords
steel pipe
ribs
energy absorption
energy
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62323309A
Other languages
Japanese (ja)
Inventor
Toru Okazawa
岡沢 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62323309A priority Critical patent/JPH01163060A/en
Publication of JPH01163060A publication Critical patent/JPH01163060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To easily and inexpensively obtain high bending absorption energy by using a material enhanced in buckling strength, high in use frequency and having tensile strength of 60kgf/mm<2>, by filling a steel pipe having ribs provided to the inner surface thereof with a synthetic resin. CONSTITUTION:Ribs 3 enhancing buckling strength are provided to a steel pipe 2. When a steel pipe having no ribs is prepared using a usual hot coil having tensile strength of 60kgf/mm<2>, energy absorption quantity of about 130kgf/m is shown but, by providing the ribs, the energy absorption quantity is drastically increased to reach about 200kgf/m. Next, steel pipe 2 is filled with a lightweight low cost polyurethane resin 4 to enhance energy absorption quantity. Since the polyurethane resin 4 shows high energy absorption rate in the order of high temp. curable type medium temp. curable type low temp. curable type, said resin is properly used according to a use purpose and sufficient effect is obtained by filling under atmospheric pressure and no pressurization is required.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主に補強材や緩衝材の素材として用いられる
高曲げ吸収エネルギー鋼管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high bending absorption energy steel pipe mainly used as a material for reinforcing materials and cushioning materials.

〔従来の技術〕[Conventional technology]

車両関係においてはオイルショック以後、部品を軽量化
して燃費低減を図る傾向が増々強くなってきている。こ
の軽量化によって構造が一部弱くなるおそれがあるが、
強度が要求される箇所においては補強材等を取り付けて
強度低下を補ぎなうようにしている。特に軽量化が進ん
でいる乗用車においては、側面構造が他の箇所に比べて
弱く、衝突でも起れば大破しかねない。
In the vehicle-related field, since the oil crisis, there has been an increasing trend to reduce the weight of parts and reduce fuel consumption. This weight reduction may weaken some parts of the structure, but
In areas where strength is required, reinforcing materials and the like are installed to compensate for the decrease in strength. Particularly in passenger cars, where weight reduction is progressing, the side structures are weaker than other parts, and if a collision occurs, there is a risk of serious damage.

そこで、補強材をドア内部の空間に設置して衝突、の際
のエネルギーを吸収し、運転者や同乗者を衝撃から保護
するようにしている。エネルギー吸収が大きい程高い安
全性が得られるところから、通常高張力鋼板を折り曲げ
てスポット溶接したハニカム構造のものが多く用いられ
ているが、最近においては、鋼管を組み立てたものも用
いられるようになってきている。鋼管においては、−a
に管径が大きく、肉厚が厚いほど、エネルギー吸収量も
大きい。
Therefore, reinforcing materials are installed in the space inside the door to absorb the energy in the event of a collision and protect the driver and passengers from the impact. The higher the energy absorption, the higher the safety, so honeycomb structures made of bent high-tensile steel plates and spot welding are often used, but recently, structures made of assembled steel pipes have also been used. It has become to. In steel pipes, -a
The larger the pipe diameter and the thicker the wall, the greater the amount of energy absorbed.

しかし、乗用車においては、ドアスペースが限られてい
る関係もあって管径が制限され、また軽量化の要望も強
いので、肉厚を厚くすることができない。この形状制限
によってエネルギー吸収量も減少するが、減少部は引張
強さを高めることによって補ぎなうようにしている。一
般に所定の安全基準を得るには10.0〜120kgf
 7mm2の引張強さが必要であると云われている。通
常、0.30%Cを含む鋼管を焼入れした後、低温焼な
ましをして上記引張強さを得るようにしている。
However, in passenger cars, the pipe diameter is limited due to limited door space, and there is also a strong desire to reduce the weight, so it is not possible to increase the wall thickness. This shape restriction also reduces the amount of energy absorbed, but this reduction is compensated for by increasing the tensile strength. Generally, it is 10.0 to 120 kgf to meet the specified safety standards.
It is said that a tensile strength of 7 mm2 is required. Usually, after quenching a steel pipe containing 0.30% C, it is annealed at a low temperature to obtain the above tensile strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

その一方において、各部品の低廉化も強く要求されてい
る。これは国際競争力の強化を狙ったものであるが、従
来の補強材用鋼管は、熱処理を行なうため、コスト的に
も高くつく傾向がみられる。
On the other hand, there is also a strong demand for cheaper parts. Although this is aimed at strengthening international competitiveness, conventional steel pipes for reinforcing materials tend to be expensive in terms of cost as they require heat treatment.

そこで、熱処理を必要としない高張力鋼管の製造法が求
められており、日夜研究もされている。−例として、高
張力鋼板を素材として電縫鋼管を製造する試みもなされ
ているが、現在のところ、80kgf/mm”止まりで
もあるため、実用化するに至っていない。
Therefore, there is a need for a method for manufacturing high-strength steel pipes that does not require heat treatment, and research is being carried out day and night. - For example, attempts have been made to manufacture electric resistance welded steel pipes using high-strength steel plates as raw materials, but as of now, they have not been put into practical use because the yield is only 80 kgf/mm''.

そこで、本発明の目的は、低コスト化を図った高曲げ吸
収エネルギー鋼管を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is therefore to provide a steel pipe with high bending absorption energy and reduced cost.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明は、管内面にリブを有
する鋼管の内部に合成樹脂を充填してなることを特徴と
する。
In order to achieve the above object, the present invention is characterized in that the inside of a steel pipe having ribs on the inner surface of the pipe is filled with a synthetic resin.

合成樹脂は分類の仕方によって熱可塑性、熱硬化性、あ
るいは硬質、軟質に区別されるが、本発明においては合
成樹脂を充填して鋼管の座屈を防ぎながら変形量を大き
くし、吸収エネルギーを大きくする必要があるから、硬
質でもろいものよりも、鋼管の変形に追従するやや軟質
な合成樹脂の方が望しい。この種の合成樹脂にはポリウ
レタン、軟質塩化ビニル樹脂、シリコン樹脂、ナイロン
等がある。また、発泡、非発泡の区別もあるが、更に軽
量化を進めるならば、発泡型のものを用いてもよい。
Synthetic resins are classified into thermoplastic, thermosetting, hard, and soft depending on how they are classified, but in the present invention, synthetic resin is filled to prevent buckling of the steel pipe while increasing the amount of deformation and absorbing energy. Since it needs to be large, it is better to use a slightly soft synthetic resin that can follow the deformation of the steel pipe rather than something hard and brittle. This type of synthetic resin includes polyurethane, soft vinyl chloride resin, silicone resin, nylon, and the like. Although there is a distinction between foamed and non-foamed materials, foamed materials may be used if further weight reduction is desired.

〔作 用〕[For production]

電縫鋼管は、電気抵抗溶接法により帯鋼を素材として連
続的に製造されるものであるから製造コストが安価であ
る。その電縫鋼管においては80kgf/mm2程度の
ものしか得られていないが、本発明においてはそれ以下
の60 kg f 7mm”程度であってもリブ及び合
成樹脂により座屈強度が高められるから、引張強さ10
0〜120kgf 7mm”に匹敵した効果が低コスト
で得られる。
ERW steel pipes are manufactured continuously from steel strips by electric resistance welding, and are therefore inexpensive to manufacture. The resistance welded steel pipe has only been obtained with a strength of about 80 kgf/mm2, but in the present invention, even if it is less than that, about 60 kgf/mm2, the buckling strength can be increased by the ribs and synthetic resin, so the tensile strength can be increased. strength 10
Effects comparable to those of 0-120kgf 7mm" can be obtained at low cost.

〔実施例〕〔Example〕

以下、図面を参照して実施例を説明する。 Examples will be described below with reference to the drawings.

第1図に示す高曲げ吸収エネルギー鋼管1は乗用車のド
ア内に配置する補強用鋼管として生産されたものである
。この種の補強用鋼管2においては、ドアスペースや軽
量化の要望もあって外径31.8mmφ、肉厚2.4 
mm を程度のものが多く用いられている。鋼管2の製
造法は特に限定するものではないが、低コストの要望も
強く、本発明においては特に引張強さの高いものを必要
としないから、生産性の高い電気抵抗溶接法により製造
することが望しい。この方法では連続的に電縫管が製造
されるためコスト的にも安くつく。
A high bending energy absorption steel pipe 1 shown in FIG. 1 is produced as a reinforcing steel pipe to be placed inside the door of a passenger car. This type of reinforcing steel pipe 2 has an outer diameter of 31.8 mmφ and a wall thickness of 2.4 mm due to demands for door space and weight reduction.
A diameter of about mm is often used. The manufacturing method of the steel pipe 2 is not particularly limited, but there is a strong demand for low cost, and the present invention does not require a material with particularly high tensile strength, so it is preferable to manufacture the steel pipe 2 by electric resistance welding, which is highly productive. is desirable. In this method, the electric resistance welded tube is manufactured continuously, so the cost is also low.

通常、乗用車のドア内に配される補強用鋼管には、20
0〜246kgf /rnm”のエネルギー吸収が必要
であると云われている。これを電縫鋼管で得ようとする
と、引張強さ100〜120 kg f /mn+2の
ものが必要となる。電縫管は前述したように引張強さ8
0 kg f 7mm”までしか実現されておらず、し
たがって通常の円形断面では、高い曲げ吸収エネルギー
が得られない。また、従来は焼入れした後、低温焼なま
しをして100〜120kgf/mm”の範囲に納まる
ようにしていたが、熱処理が加わることにもなるので、
コスト的にも高くついていた。
Normally, reinforcing steel pipes placed inside the doors of passenger cars contain 20
It is said that an energy absorption of 0 to 246 kgf/rnm is required.If this is to be achieved with an ERW steel pipe, a tensile strength of 100 to 120 kgf/mn+2 is required.ERW welded pipe As mentioned above, the tensile strength is 8
0 kgf/mm", and therefore a normal circular cross section cannot obtain high bending absorption energy. In addition, conventionally, after quenching, low-temperature annealing is performed to achieve a bending strength of 100 to 120 kgf/mm". I tried to keep it within the range of , but since heat treatment would also be added,
It was also expensive.

本発明は、上記熱処理を不要として低コスト化を図るも
ので、図にもみられるように鋼管2内には座屈強度を高
めるリブ3が設けられている。図では、鋼管20円円形
面を2分する方向にリブ3が配向されているが、これは
側面衝突の変形方向を考慮して一方向にのみエネルギー
吸収率を高めるようにしたものである。したがって、2
方向以上においてエネルギー吸収率を高める必要がある
ときは、その方向に合わせてリプ形状も変えることが望
しい。例えば、鋼管内に内接多角形のリブを設けて対応
させることができる。
The present invention aims to reduce costs by eliminating the need for the heat treatment described above, and as can be seen in the figure, ribs 3 are provided in the steel pipe 2 to increase buckling strength. In the figure, the ribs 3 are oriented in a direction that bisects the 20-yen circular surface of the steel pipe, but this is done to increase the energy absorption rate in only one direction, taking into account the direction of deformation in a side impact. Therefore, 2
When it is necessary to increase the energy absorption rate in more than one direction, it is desirable to change the lip shape according to that direction. For example, an inscribed polygonal rib can be provided within the steel pipe to accommodate this.

ところで、通常使用されることが多く、コスト的にも安
い、引張強さ60 kg f 7mm2のホットコイル
を用いて、リブ無し、リブ有りの鋼管を製造した場合、
前者においては130kgf/m程度しかエネルギー吸
収量を示さないが、後者においては飛躍的に増大し、2
00kgf/m程度に達する。
By the way, when steel pipes without ribs and with ribs are manufactured using a hot coil with a tensile strength of 60 kg f 7 mm2, which is often used and is inexpensive,
In the former case, the energy absorption amount is only about 130 kgf/m, but in the latter case, it increases dramatically, and 2
It reaches about 00kgf/m.

この値はほぼ基準値に近い値を示しているが、人命を尊
ぶならばエネルギー吸収量は更に高い方が望しい。最も
手っ取り早い方法は肉厚を厚くすることであるが、あま
り厚いと軽量化の要望と逆行し、場合によっては生産能
率の高い電気抵抗溶接法の使用を妨げるもとにもなりか
ねない。
This value is close to the standard value, but if human life is to be respected, it is desirable that the energy absorption amount be even higher. The quickest way is to make the wall thicker, but if it is too thick, it goes against the desire for weight reduction, and in some cases may even prevent the use of electric resistance welding, which has high production efficiency. .

そこで、本発明は合成樹脂例えば、軽量かつコスト的に
も安いポリウレタン樹脂4を鋼管2内に充填し、更にエ
ネルギー吸収量を高めるようにしている。ポリウレタン
樹脂4には高温硬化型、中温硬化型、常温硬化型の3種
類があるが、本発明においてはいずれを使用してもよい
。ただし、高温硬化型−中温硬化型−低温硬化型の順に
高いエネルギー吸収率を示すから、用途により使い分け
ることが望しい。充填は、大気圧でも十分な効果が得ら
れるから加圧する必要はない。
Therefore, in the present invention, the steel pipe 2 is filled with a synthetic resin, such as a polyurethane resin 4 that is lightweight and inexpensive, to further increase the amount of energy absorption. There are three types of polyurethane resin 4: high temperature curing type, medium temperature curing type, and room temperature curing type, and any of them may be used in the present invention. However, since the energy absorption rate is higher in the order of high temperature curing type, medium temperature curing type and low temperature curing type, it is desirable to use them properly depending on the purpose. There is no need to pressurize the filling, as sufficient effects can be obtained even at atmospheric pressure.

次いでリブ3付き鋼管2の製造法を第2図〜第6図を参
照して説明する。リブ付き鋼管は、通常の電縫鋼管製造
ラインの成形工程にリブ成形行程を単に追加するのみで
、ホットコイルHCを素材として連続的に安価に製造す
ることができる。まず、第2図にみられるホットコイル
HCをリブ成形用の上ロールと下ロールによりホットコ
イルHCの端部から管内径に相当する位置で折り曲げて
リブ3を形成する(第3図参照)。続いて鋼管2の成形
工程において胴部を円形形状に成形してゆく。第4図は
エツジベンディング法により成形してゆく過程を示した
ものであるが、これに限るものではなく、例えば、セン
タベンディング法やサーキュラベンディング法を用いて
成形してもよい。
Next, a method of manufacturing the steel pipe 2 with ribs 3 will be explained with reference to FIGS. 2 to 6. Ribbed steel pipes can be manufactured continuously at low cost using hot coil HC as a raw material by simply adding a rib forming process to the forming process of a normal electric resistance welded steel pipe manufacturing line. First, the hot coil HC shown in FIG. 2 is bent using an upper roll and a lower roll for forming ribs from the end of the hot coil HC at a position corresponding to the inner diameter of the pipe to form the rib 3 (see FIG. 3). Subsequently, in the process of forming the steel pipe 2, the body is formed into a circular shape. Although FIG. 4 shows the process of molding by the edge bending method, the process is not limited to this, and for example, the center bending method or the circular bending method may be used.

胴部のリブ側端部は上記成形工程により、突き合わされ
る(第5図参照)が、その突き合わせ1111に第6図
にみられるようにコンタクトチップ5゜5を介して高周
波電流iを流し、一般の電縫鋼管と同様に突き合わせ溶
接を行う。溶接電流iの一部はリブ3側にも流れるが、
それはリブ端部と鋼管の溶接に利用される。この溶接は
仮付程度であるが、使用性能上十分と考えられる。また
図示例は抵抗方式を用いたものとなっているが、誘導方
式でもよい。外面ビードBは一般の電縫鋼管と同様に削
除する。
The rib side ends of the body are butted together in the above molding process (see FIG. 5), and a high frequency current i is applied to the butt 1111 through the contact tip 5°5 as shown in FIG. Butt welding is performed in the same way as general electric resistance welded steel pipes. A part of the welding current i also flows to the rib 3 side,
It is utilized for welding rib ends and steel pipes. Although this welding is only temporary welding, it is considered to be sufficient for usability. Further, although the illustrated example uses a resistance method, an induction method may also be used. External bead B is removed in the same way as for general electric resistance welded steel pipes.

次いで電縫鋼管2を800mmの長さに切断し、その中
空部にポリウレタン樹脂又は発泡ポリウレタン樹脂4を
充填する。ポリウレタン樹脂4は、高温硬化型のものが
タチネートL−2705の商品名で、中温硬化型のもの
がハイプレンQ−588の商品名で、常温硬化型のもの
がタチネー)XL−M30Aの商品名で、発泡ポリウレ
タンは東洋ゴム工業(横のソフランーRの商品名でそれ
ぞれ販売されているから、それらを用いることができる
。硬化剤には、それぞれMOCA、ハイブレンM C−
623、タチネートX L−1130Bの商品名で販売
されているから、それらが用いられる。
Next, the electric resistance welded steel pipe 2 is cut into a length of 800 mm, and the hollow part thereof is filled with polyurethane resin or foamed polyurethane resin 4. Polyurethane resin 4 is a high temperature curing type with the trade name Tachinate L-2705, a medium temperature curing type with the trade name Hypren Q-588, and a room temperature curing type with the trade name Tachinate XL-M30A. , polyurethane foams are sold under the trade names of Toyo Tire & Rubber Industries (Yokono Soflan-R), so they can be used.The curing agents include MOCA and Hyblen MC-, respectively.
623 and Tatinate XL-1130B are used because they are sold under the trade names.

上記ポリウレタン樹脂のうち、高温硬化型では120℃
、中温硬化型では60℃の加熱が必要となるが、その充
填手段は第7図に示す処理行程にしたがって行なわれる
。図中、二点鎖線の枠で示した工程は、高温加熱型樹脂
の充填の際にとる必要工程を示したものである。ポリウ
レタン樹脂の注入は大気圧下で行ない、特に加圧する必
要もない。
Among the above polyurethane resins, the high temperature curing type has a temperature of 120°C.
The medium-temperature curing type requires heating at 60°C, and the filling method is carried out according to the processing steps shown in FIG. In the figure, the steps indicated by the two-dot chain line frame are necessary steps to be taken when filling the high-temperature heating type resin. The polyurethane resin is injected under atmospheric pressure, and there is no need to apply any particular pressure.

上記のようにして製造した本発明に係るドア補強用高曲
げ吸収エネルギー鋼管の性能を確かめるため、第8図に
示す試験装置6を用いてエネルギー吸収量を測定したと
ころ第1表に示す結果が得られた。また、比較のため、
ポリウレタン樹脂無し、リブ無し、更に一般鋼管につい
ても測定を行った。供試材は各20、半径305mmの
押し具7を用いて供試材MをH=150mmたわませ、
そのとき必要としたエネルギーを測定した。本発明に係
る高曲げ吸収エネルギー鋼管は方向性があるので、溶接
部を曲げの外又は内に置いて行った。測定スパンLは6
00mmである。
In order to confirm the performance of the high bending energy absorption steel pipe for door reinforcement according to the present invention manufactured as described above, the amount of energy absorbed was measured using the test device 6 shown in FIG. 8, and the results are shown in Table 1. Obtained. Also, for comparison,
Measurements were also carried out on pipes without polyurethane resin, without ribs, and in general steel pipes. The test materials were 20 each, and the test material M was bent by H=150 mm using a pushing tool 7 with a radius of 305 mm.
The energy required at that time was measured. Since the high bending energy absorption steel pipe according to the present invention has directionality, the welded portion was placed outside or inside the bend. Measurement span L is 6
00mm.

その結果、高温型のポリウレタン樹脂の充填においては
、平均255kgf−m、中温型で、同246kgf−
m、常温型で同226kgf−m、発泡ポリウレタンで
同221kgf−mのエネルギーが必要であった。一方
、リブ付鋼管では平均196kgf−m、リブなしの通
常鋼管が平均129kgf−mであるから、リブ付き、
ポリウレタン樹脂の充填は、軽量かつ安価にして破壊に
対し、十分な効果があることが判る。なお、熱処理を施
した従来鋼管は平均194kgf−mである。
As a result, when filling with high-temperature type polyurethane resin, an average of 255 kgf-m was used, and 246 kgf-m was used when filling with medium-temperature type polyurethane resin.
The room temperature type required 226 kgf-m of energy, and the polyurethane foam required 221 kgf-m of energy. On the other hand, the average strength of ribbed steel pipes is 196 kgf-m, and the average strength of regular steel pipes without ribs is 129 kgf-m.
It has been found that filling with polyurethane resin is lightweight and inexpensive, and has a sufficient effect against breakage. Note that the average strength of conventional steel pipes subjected to heat treatment is 194 kgf-m.

なお、本発明に係る高曲げ吸収エネルギー鋼管は乗用車
のドア補強材以外にも使用することが可能である。
Note that the high bending energy absorption steel pipe according to the present invention can be used for purposes other than door reinforcing materials for passenger cars.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によれば、ドア補強用鋼
管として、使用頻度の高い引張強さ60kgf/mm”
材を用いて必要とする高い曲げ吸収エネルギーを軽量か
つ安価に得ることができる。この高い曲げ吸収エネルギ
ーは従来熱処理により得るようにしていたが、本発明に
おいてはその必要がない。
As explained above, according to the present invention, a steel pipe with a tensile strength of 60 kgf/mm, which is frequently used as a steel pipe for reinforcing doors.
The required high bending absorption energy can be obtained with light weight and low cost. Conventionally, this high bending absorption energy was obtained by heat treatment, but this is not necessary in the present invention.

製造においては、従来の電縫鋼管製造ラインをわずかに
手直しする程度で済むから、大量生産が可能であり、コ
スト低廉化が図れる。また、ポリウレタン樹脂等の合成
樹脂を充填するだけで更に曲げ吸収エネルギーの向上が
見込めるから、軽量化にも貢献する。
In manufacturing, only slight modifications to the conventional electric resistance welded steel pipe manufacturing line are required, making mass production possible and reducing costs. In addition, simply filling with synthetic resin such as polyurethane resin can further improve the bending absorption energy, contributing to weight reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した斜視図、第2図〜第
6図は鋼管の製造工程を示したもので、第2図はホント
コイルの斜視図、第3図はリブ形成を示した斜視図、第
4図は成形工程を示した説明図、第5図は突き合わせ状
態を示した説明図、第6図は溶接状態を示した斜視図、
第7図はポリウレタン樹脂の充填工程を示したブロック
図、第8図は曲げエネルギーの測定で使用される試験装
置の正面図である。 ■・・・高曲げ吸収エネルギー鋼管、2・・・鋼管、3
・・・リブ、4・・・合成樹脂。 第1図 第2図 第3図 第4図 第5図 第6図
Fig. 1 is a perspective view showing an embodiment of the present invention, Figs. 2 to 6 show the manufacturing process of the steel pipe, Fig. 2 is a perspective view of a real coil, and Fig. 3 is a rib formation. FIG. 4 is an explanatory view showing the forming process, FIG. 5 is an explanatory view showing the butt state, FIG. 6 is a perspective view showing the welding state,
FIG. 7 is a block diagram showing the polyurethane resin filling process, and FIG. 8 is a front view of a test device used for measuring bending energy. ■...High bending absorption energy steel pipe, 2...Steel pipe, 3
...Rib, 4...Synthetic resin. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)管内面にリブを有する鋼管の内部に合成樹脂を充
填してなることを特徴とする高曲げ吸収エネルギー鋼管
(1) A steel pipe with high bending absorption energy, which is made by filling a synthetic resin inside a steel pipe having ribs on the inner surface of the pipe.
JP62323309A 1987-12-21 1987-12-21 High bending absorption energy steel pipe Pending JPH01163060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62323309A JPH01163060A (en) 1987-12-21 1987-12-21 High bending absorption energy steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323309A JPH01163060A (en) 1987-12-21 1987-12-21 High bending absorption energy steel pipe

Publications (1)

Publication Number Publication Date
JPH01163060A true JPH01163060A (en) 1989-06-27

Family

ID=18153347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323309A Pending JPH01163060A (en) 1987-12-21 1987-12-21 High bending absorption energy steel pipe

Country Status (1)

Country Link
JP (1) JPH01163060A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276039A (en) * 2006-04-05 2007-10-25 Kobe Steel Ltd Grooving method by water jet, heat exchanging member and heat exchanger
CN112092263A (en) * 2020-09-09 2020-12-18 周宗银 Intelligent processing equipment for filling polyurethane into steel pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829071B1 (en) * 1970-01-24 1973-09-06
JPS5715808U (en) * 1980-06-30 1982-01-27
JPS57148647A (en) * 1981-03-10 1982-09-14 Hitachi Shipbuilding Eng Co Supporting material for load

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829071B1 (en) * 1970-01-24 1973-09-06
JPS5715808U (en) * 1980-06-30 1982-01-27
JPS57148647A (en) * 1981-03-10 1982-09-14 Hitachi Shipbuilding Eng Co Supporting material for load

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276039A (en) * 2006-04-05 2007-10-25 Kobe Steel Ltd Grooving method by water jet, heat exchanging member and heat exchanger
CN112092263A (en) * 2020-09-09 2020-12-18 周宗银 Intelligent processing equipment for filling polyurethane into steel pipe
CN112092263B (en) * 2020-09-09 2022-06-03 湖南鼎辰管业有限公司 Intelligent processing equipment for steel pipe filled polyurethane

Similar Documents

Publication Publication Date Title
US4978562A (en) Composite tubular door beam reinforced with a syntactic foam core localized at the mid-span of the tube
US7815247B2 (en) Reinforcing member for vehicle center pillar
US8641129B2 (en) Twelve-cornered strengthening member
US5255487A (en) Door reinforcement tube
US6371540B1 (en) Bumper beam for motor vehicles
JP4288162B2 (en) Beam material
JP5894081B2 (en) B pillar for vehicles
EP2504185B1 (en) Vehicle door reinforcing beam
US20060005503A1 (en) Reinforced structural member and method for its manufacture
US20060249342A1 (en) Vehicle structural element serving to absorb certain shocks by plastic deformation
US20040130166A1 (en) Profile for an automobile structural element and corresponding chassis
JPH08216684A (en) Door guard beam for automobile
EA033819B1 (en) Molded member and manufacturing method thereof
US9815352B2 (en) Impact beam for vehicle side door intrusion resistance
JPH1148780A (en) Tubular structural member of body for vehicle and reinforcement thereof
JP2006044651A (en) Motor vehicle body
JPH1029482A (en) Impact energy absorbing member
US20050138812A1 (en) Method of elongated bumper bar with sections twisted rotationally about the axis of elongation
JPH11321318A (en) Impact beam of automotive door
KR20180125707A (en) Manufacturing method of door impact beam by roll forming
JPH01163060A (en) High bending absorption energy steel pipe
JPH0834302A (en) Shock absorbing bumper
JPH07205655A (en) Automobile door reinforcing member and automobile door
JPS6339149Y2 (en)
JP2003139180A (en) Bending strength member