JPH01162550A - Method for continuously casting cast slab having excellent cross sectional size accuracy and internal quality - Google Patents

Method for continuously casting cast slab having excellent cross sectional size accuracy and internal quality

Info

Publication number
JPH01162550A
JPH01162550A JP32133887A JP32133887A JPH01162550A JP H01162550 A JPH01162550 A JP H01162550A JP 32133887 A JP32133887 A JP 32133887A JP 32133887 A JP32133887 A JP 32133887A JP H01162550 A JPH01162550 A JP H01162550A
Authority
JP
Japan
Prior art keywords
slab
cast
billet
internal quality
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32133887A
Other languages
Japanese (ja)
Inventor
Hisao Yamazaki
久生 山崎
Yutaka Shinjo
新庄 豊
Kenji Saito
健志 斎藤
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32133887A priority Critical patent/JPH01162550A/en
Publication of JPH01162550A publication Critical patent/JPH01162550A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a round billet having excellent roundness and internal quality by specifying surface temp. of a cast billet in front of pinch rolls and average cooling speed on the surface of the cast billet. CONSTITUTION:In the cast of continuously casting molten steel, the surface of the cast billet is in order forcedly cooled along casting direction from position between 2-15m in front of the most end part of casting direction in the remained molten steel pool to the position of the most end part of the pool, and the solidified shell in the cast billet is shrunk to more than the corresponding rate of the volume shrinkage rate caused by solidified shrinkage, to reduce the cross sectional area of the cast billet and cast. Then, the surface temp. of the cast slab in front of the pinch rolls 3 for drawing the cast billet is made to <=850 deg.C and the average cooling speed for the surface of the cast slab is held to >=30 deg.C/min and cast. By this method, the cast billet having good dimensional accuracy and excellent internal quality with only a little center segregation and center porosity can be obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、シームレスパイプ、線棒用素材として供給さ
れる寸法精度と内部品質とに優れた鋳片の連続鋳造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a continuous casting method for slabs with excellent dimensional accuracy and internal quality, which are supplied as raw materials for seamless pipes and wire rods.

〈従来の技術〉 従来の丸ビレツト連続鋳造法を第5図にしたがって説明
する。
<Prior Art> A conventional round billet continuous casting method will be explained with reference to FIG.

円形モールド8に注入された溶鋼は、モールドおよび・
その下方に位置する二次冷却帯1で冷却され軸心に向か
って凝固しながら二次冷却帯の下流側に設けられた複数
基のピンチロール3によって引抜かれる。このピンチロ
ールは油圧シリンダー5で丸ビレットに押付けられ、そ
こで生じる摩擦力によって丸ビレットを引き抜く。ピン
チロールの押付は力が大きすぎると11.丸ビレットが
変形し、目標の真円度〔(最大径−公称径)/公称径〕
×100(%)が得られない、鋳造速度が早くピンチロ
ール位置で鋳片内の未凝固領域が広い時、もしくは二次
冷却の度合が弱くピンチロール位置で鋳片内部温度が高
い時にこの現象が生じやすい、つまり、ピンチロール位
置で鋳片の変形抵抗が小さいほど変形は大きい。ここで
、ピンチロールにょる押付は力を極力小さくすることが
望まれるが、あまりに押付は力が小さいと、鋳片が鋳込
方向に急激に落下し、ブレークアウトなどのトラブルが
生ずる0以上のことを防止する方法として、ピンチロー
ルヲカリバー形状としてピンチロールの押付けによる変
形を抑制する方法がある(鉄と鋼70゜1984.52
07)。この方法を採用すれば確かに丸ビレットの変形
は抑制されるが、数種類の丸ビレツト径を同一のカリバ
ーロールで鋳造するときには、その形状設定が難かしく
なる。一方、この問題点を改善するために、個々の丸ビ
レツト径にあったカリバー形状のビ、ンチロールを用意
すると、コスト的にも高くなるばかりか1.、ロールの
交換に過大な時間を費やすことになる。
The molten steel injected into the circular mold 8 is
It is cooled in the secondary cooling zone 1 located below and solidified toward the axis, and then pulled out by a plurality of pinch rolls 3 provided downstream of the secondary cooling zone. This pinch roll is pressed against the round billet by a hydraulic cylinder 5, and the round billet is pulled out by the frictional force generated therein. 11. If the pinch roll is pressed with too much force. The round billet is deformed and the target roundness [(maximum diameter - nominal diameter) / nominal diameter]
This phenomenon occurs when ×100 (%) cannot be obtained, when the casting speed is high and the unsolidified area inside the slab is large at the pinch roll position, or when the degree of secondary cooling is weak and the internal temperature of the slab is high at the pinch roll position. In other words, the smaller the deformation resistance of the slab at the pinch roll position, the greater the deformation. Here, it is desirable to minimize the pressing force with the pinch rolls, but if the pressing force is too small, the slab will fall suddenly in the casting direction, causing problems such as breakout. As a method to prevent this, there is a method of suppressing deformation due to the pressing of the pinch roll by using a pinch roll Wokaliver shape (Tetsu to Hagane 70゜1984.52).
07). If this method is adopted, deformation of the round billet is certainly suppressed, but when casting several types of round billet diameters using the same caliber roll, it becomes difficult to set the shape. On the other hand, in order to improve this problem, if a caliber-shaped steel roll is prepared that matches the diameter of each round billet, it will not only increase the cost but also increase the cost. , an excessive amount of time is spent replacing the rolls.

上記丸ビレットにおいては、前述したようにその内部品
質の健全さも要求される。
As mentioned above, the round billet is also required to have sound internal quality.

すなわち、丸ビレツト軸心部の中央偏析やセンターポロ
シティ−は、硬度むら、もしくは空孔のため造管時にパ
イプ内面のヘゲ状疵(内面カブレ)をもたらし、著しい
中心偏析は、軸受鋼の転勤疲労寿命の悪化、硬鋼線材の
伸線時破断などの問題を生じる。
In other words, center segregation or center porosity in the shaft center of a round billet causes uneven hardness or pores that cause cracks on the inner surface of the pipe (inner surface curvature) during pipe manufacturing, and significant center segregation causes transfer of bearing steel. This causes problems such as deterioration of fatigue life and breakage of hard steel wire during wire drawing.

鋳片の軸心部を健全に保つ方法として、鋳型内電磁撹拌
などにより、軸心部を等軸晶化にする技術が例えば特公
昭51−42572号公報な、どで公知となっている。
As a method for keeping the axial center of a slab in good condition, a technique for equiaxed crystallizing the axial center by electromagnetic stirring within a mold is known, for example, as disclosed in Japanese Patent Publication No. 42572/1983.

しかしtM1撹拌を用いると、大きな偏析帯としての中
心偏析は軽減するものの、島状のいわゆるセミマクロ偏
析が依然として残存し、特に本発明の対象とする最終製
品に近い寸法、形状であるニアネットシエイプの素材に
おいてはその後の加工度が小さいために、このようなセ
ミマクロ偏析であっても重大な鋳片欠陥となるという問
題があった。
However, when tM1 stirring is used, although the central segregation as a large segregation band is reduced, island-like so-called semi-macro segregation still remains, and in particular near-net shape, which has a size and shape close to the final product targeted by the present invention. Since the degree of subsequent working of the material is small, there is a problem in that even such semi-macro segregation can result in serious slab defects.

〈発明が解決しようとする問題点〉 本発明は、前述のような問題点を解決し、寸法精度と内
部品質とに優れた鋳片、とくに真円度と内部品質に優れ
た丸ビレットを製造する連続鋳造方法を提供するために
なされたものである。
<Problems to be Solved by the Invention> The present invention solves the above-mentioned problems and produces slabs with excellent dimensional accuracy and internal quality, especially round billets with excellent roundness and internal quality. This was developed to provide a continuous casting method.

く問題点を解決するための手段〉 本発明者らは、寸法精度、内部品質のよい鋳片の連続鋳
造方法について鋭意研究、実験を重ねた結果、ピンチロ
ール手前における一定条件の強制冷却によって目的を達
成できるとの知見をえ、この知見にもとづいて本発明を
なすに至った。
Means for Solving the Problems〉 As a result of intensive research and repeated experiments on a continuous casting method for slabs with good dimensional accuracy and internal quality, the present inventors have found that the objective can be achieved by forced cooling under certain conditions before the pinch rolls. Based on this knowledge, the present invention was completed.

本発明は、溶鋼の連続鋳造において溶湯プールの鋳込方
向最先端より手前2〜15mの位置からプール最先端位
置まで、鋳片の液芯核の凝固の進行に伴い、鋳片表面を
鋳込方向に沿って逐次強制冷却してその凝固収縮による
体積収縮量相当量以上に鋳片凝固殻を収縮せしめ、鋳片
断面を減面して鋳造するとともに、鋳片を引抜くための
ピンチロール部手前における鋳片表面温度を850℃以
下、鋳片表面の平均冷却速度を30°C/ m以上に保
持して鋳造することを特徴とする断面寸法精度と内部品
質とに優れた鋳片の連続鋳造方法である。
In continuous casting of molten steel, the surface of the slab is cast from a position 2 to 15 m before the leading edge of the molten metal pool in the pouring direction to the leading edge of the pool as the liquid core core of the slab progresses. A pinch roll part is used to shrink the solidified slab shell by an amount equivalent to the volumetric shrinkage due to the solidification shrinkage by sequential forced cooling along the direction, reduce the cross section of the slab, and then pull out the slab. A series of slabs with excellent cross-sectional dimensional accuracy and internal quality, characterized by casting with the front surface temperature of the slab maintained at 850°C or lower and the average cooling rate of the slab surface at 30°C/m or higher. This is a casting method.

く作   用〉 中心偏析、センターポロシティ−生成機構はつぎのとお
りである。
The mechanism of center segregation and center porosity generation is as follows.

■中心偏析:凝固の進行中に排出された溶質濃化溶鋼が
最終凝固領域の凝固収縮による吸引、流動により軸心に
堆積する。
■Center segregation: Solute-enriched molten steel discharged during solidification is deposited on the shaft center due to suction and flow due to solidification contraction in the final solidification region.

■センターポロシティー:最終凝固領域において凝固界
面の不均一が生成し、クレータ−先端から上方で完全凝
固し、その部分より下方にとじこめられた未凝固鋼が凝
固する時にその体積収縮分だけ空孔を生じる。
■Center porosity: Non-uniform solidification interface is generated in the final solidification region, complete solidification occurs above the crater tip, and when the unsolidified steel trapped below that area solidifies, pores are created by the volumetric shrinkage. occurs.

したがって、中心偏析、センターポロシティ−を少なく
するには、凝固収縮を補償することにより低減されると
考えられる。
Therefore, center segregation and center porosity can be reduced by compensating for solidification shrinkage.

2.7m/winの鋳込速度で鋳造された175mmφ
の鋳片径であるビレット軸心部の偏析分布を第6図に示
した。
175mmφ cast at a casting speed of 2.7m/win
Figure 6 shows the segregation distribution at the center of the billet shaft, which has a slab diameter of .

これより中央偏析とこれに、隣接した負偏析帯とが鮮明
に認められる。この図から負偏析の発生し始める領域は
軸心から40−の範囲である。すなわち軸心を中心とし
た80鵬の幅の領域でバルクの溶質移動があることが分
る。この溶質移動が生じている領域は該ビレ7トを鋳造
した実際の鋳造条件の下で、鋳込方向に沿う鋳片位置で
見ると、ビレット内残溶鋼プール最先端(クレータエン
ド)がら手前8〜10mから溶鋼プール最先端に至る間
の位置に相当している。さらにこのような範囲はビレッ
ト断面寸法、鋳造速度あるいは冷却条件などが変れば当
然変化するものであるが、実際の連続鋳造条件の下では
溶鋼プール最先端から手前2〜15mから溶鋼プール最
先端に至る範囲に相当している。またセンターポロシテ
ィについても溶質の移動が生じる領域内で生成している
This clearly shows the central segregation and the adjacent negative segregation zone. From this figure, the region where negative segregation begins to occur is in the range of 40-degrees from the axis. That is, it can be seen that there is bulk solute movement in a region with a width of 80 mm centered on the axis. Under the actual casting conditions in which this billet was cast, the area where this solute movement occurs is 8 points from the tip (crater end) of the residual molten steel pool in the billet when viewed from the slab position along the casting direction. This corresponds to the position between ~10m and the leading edge of the molten steel pool. Furthermore, this range will naturally change if billet cross-sectional dimensions, casting speed, cooling conditions, etc. change, but under actual continuous casting conditions, the range is from 2 to 15 m from the leading edge of the molten steel pool to the leading edge of the molten steel pool. It corresponds to the range. Center porosity is also generated within the region where solute movement occurs.

以上の結果から中心偏析、センターポロシティの原因と
なる凝固収縮を、とレット凝固殻の強制冷却による収縮
で補償し、これらの生成を抑制することにする。た・だ
し、強制冷却を行ない、凝固収縮を補償する領域は、濃
化、溶鋼の流動を生じる溶鋼プール先端より手前2〜1
5mの位置からプール先端位置までであり、その他の領
域で強制冷却を行なっても中心偏析、センターポロシテ
ィ低減に効果はない。
Based on the above results, we decided to suppress the formation of these by compensating for the solidification shrinkage that causes center segregation and center porosity by shrinkage due to forced cooling of the tomato solidified shell. However, the area where forced cooling is performed to compensate for solidification shrinkage is 2-1 points before the tip of the molten steel pool where concentration and molten steel flow occur.
This is from the 5 m position to the tip of the pool, and even if forced cooling is performed in other areas, it will not be effective in reducing center segregation and center porosity.

この方法により中心偏析を軽減するためには、スプレー
ノズルを配置した位置での凝固収縮量ならびに確保すべ
き表面温度を把握しなければならない、そこでまず、ビ
レットの伝熱解析を行いスプレー配置位置での凝固プロ
フィールから下記(1)式によって凝固収縮量を求めた
In order to reduce center segregation using this method, it is necessary to understand the amount of solidification shrinkage at the position where the spray nozzle is placed and the surface temperature that must be secured. Therefore, we first conduct a heat transfer analysis of the billet and The amount of solidification shrinkage was determined from the solidification profile using the following equation (1).

凝固シェル断面を第7図に模式的に示した。A cross section of the solidified shell is schematically shown in FIG.

■シェルプロフィールf、は回転放物体であると仮定す
る。
∎Assume that the shell profile f is a parabolic body of revolution.

■等固相率f L + f i +1のシェルプロフィ
ールは異なる固相率間で合同である。
■The shell profile with equal solid fraction f L + f i +1 is congruent between different solid fractions.

以上の仮定の下でビレットがXiからx!+1まですす
む間の体積収縮率lは、 ここで、 η:凝固時の体積収縮率 β:凝固収縮率 f、、?1番目の領域の固相率 v最:面Xi+ Xt、、、 fl、 fsiで囲まれ
た体積 W二メツシュ幅 D=メツシュ長 である。つぎにビレットの凝固殻を冷却し、凝固時の体
積収縮を補うためにはつぎの(2)式が成りたたなけれ
ばならない。
Under the above assumptions, the billet changes from Xi to x! The volumetric shrinkage rate l until +1 is, where: η: Volumetric shrinkage rate during solidification β: Solidification shrinkage rate f, ? The solid phase ratio v of the first region is the volume W2 surrounded by planes Xi+Xt, , fl, fsi, mesh width D=mesh length. Next, in order to cool the solidified shell of the billet and compensate for the volumetric contraction during solidification, the following equation (2) must hold true.

ηn1−η”’+1−ηn ・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・曲−・・・−・
・・・(2)ここで、 ηm:凝固殻の収縮率 ηnun層での凝固収縮率 ηn+、:n+1層での凝固収縮率 である。凝固収縮率ηmはつぎの(3)式で表わされ、
上記(1)弐で求めた各層の体積収縮率の差を代入する
ことにより、凝固殻の平均温度降下量ΔTを得る。
ηn1−η”'+1−ηn ・・・・・・・・・・・・
・・・・・・・・・・・・・・・ Song-・・・-・
...(2) Here, ηm: Solidification shrinkage rate ηn+ of the solidified shell, solidification shrinkage rate ηn+ of the solidified shell, : Solidification shrinkage rate of the n+1 layer. The solidification shrinkage rate ηm is expressed by the following equation (3),
The average temperature drop ΔT of the solidified shell is obtained by substituting the difference in the volumetric shrinkage rate of each layer obtained in (1) 2 above.

L:ビレット軸心からf、=1までの距離α:面膨張係
数 ΔT:凝固殻の平均温度降下量 である。上記(3)式で求めた凝固殻の平均温度とビレ
ット表面温度の関係は下記(4)式で表わされる(H,
S  CAR5LAW、  J、C,LAEGI!R:
”Conduction  of  he−at in
 5olids″、0xford tlniversi
ty Press+5econ−d edition 
1959 P、 99〜100)、さらに表面温度がT
1に保たれ、X/j!−1ではT、に保たれるとすると
温度プロフィールは下記(5)式のように近似される。
L: Distance from billet axis to f, = 1 α: Coefficient of surface expansion ΔT: Average temperature drop of the solidified shell. The relationship between the average temperature of the solidified shell and the billet surface temperature determined by the above equation (3) is expressed by the following equation (4) (H,
S CAR5LAW, J, C, LAEGI! R:
”Conduction of he-at-in
5olids'', 0xford tlniversi
ty Press+5econ-d edition
1959 P, 99-100), and the surface temperature is T
Keep it at 1, X/j! Assuming that T is maintained at -1, the temperature profile is approximated as shown in equation (5) below.

したがって、(5)式で求めたT、にビレット表面温度
を制御することにより中心偏析の原因となる凝固時の体
積収縮が補償される。
Therefore, by controlling the billet surface temperature to T determined by equation (5), volume shrinkage during solidification, which causes center segregation, can be compensated for.

l   π 1      n        1 exp (−k x”n”+ t / j!”)+X 
or ’ (X)’ sin     d X’ −−
−(4)! X2 π (Ta + To)  ・sin   X  ・! e x p (−k x ” ・t / l ” )、
 −−−−−−−−−(5)ここで、 T:凝固殻の平均温度 Tm、:Tを保つために必要な表面温度T0 :最初の
表面温度 T、:固相線温度 j!:fs−1から表面までの距離 X:凝固殻、の平均温度決定位置からf、=1までの距
離 に:熱伝導率 t:直線近似に要する時間 である。
l π 1 n 1 exp (-k x”n”+t/j!”)+X
or '(X)' sin d X' --
-(4)! X2 π (Ta + To) ・sin X ・! e x p (-k x ”・t/l ”),
−−−−−−−−(5) Here, T: Average temperature of solidified shell Tm, : Surface temperature T0 required to maintain T: Initial surface temperature T, : Solidus temperature j! : Distance from fs-1 to the surface.

ピンチロール押付は力による鋳片変形を防止するために
、変形を受けるピンチロールの手前に位置する丸ビレッ
トを強制冷却することにより、丸ビレツト表層部の剛性
度を向上させる。
In order to prevent slab deformation due to force, pinch roll pressing improves the rigidity of the round billet surface layer by forcibly cooling the round billet located in front of the pinch rolls that undergo deformation.

本発明の具体的方法を第1図にしたがって説明する。A specific method of the present invention will be explained with reference to FIG.

二次冷却帯1はチャンバー2の内側にあり、チャンバー
より後方のビレットは通常放冷され、ピンチロール3で
圧下されながら引き抜かれる。この時ピンチロール入側
でのビレット表面温度は約1000℃と高く、また未凝
固領域が存在するため変形抵抗が小さく、ピンチロール
による圧下で容易に変形する。そこで、丸ビレットが変
形を受けるピンチロール(圧下17kg10n”)直前
のビレット表面温度および表面温度降下速度を種々変化
させて最適な冷却条件を調査した。その結果を第3図、
第4図に示す、これよりピンチロール直前の表面温度が
850℃以下でかつ、その時の表面温度降下速度が30
°C/ mであれば、丸ビレットが許容真円度内に納ま
ることが判つた。また、中心偏析、センターポロシティ
についても、前述の(1)〜(4)式の計算から求まる
表面温度もしくは、それ以下に制御することにより、中
心偏析、センターポロシティが軽減される。
The secondary cooling zone 1 is located inside the chamber 2, and the billet at the rear of the chamber is normally allowed to cool and is pulled out while being compressed by pinch rolls 3. At this time, the billet surface temperature on the input side of the pinch rolls is as high as about 1000°C, and since there is an unsolidified region, the deformation resistance is low, and the billet is easily deformed under pressure by the pinch rolls. Therefore, we investigated the optimal cooling conditions by varying the billet surface temperature and surface temperature drop rate just before the pinch roll (reduction of 17 kg 10 n'') where the round billet undergoes deformation. The results are shown in Figure 3.
As shown in Figure 4, the surface temperature immediately before the pinch roll is 850°C or less, and the surface temperature drop rate at that time is 30°C.
It was found that the round billet was within the permissible roundness if the temperature was °C/m. Furthermore, center segregation and center porosity can be reduced by controlling the surface temperature to be at or below the surface temperature determined from the calculations of equations (1) to (4) described above.

〈実施例〉 (実施例1) 本発明例1としてC: 0.25重量%(以下%と略す
) 、 St ; 0.26%、 Mn : 1.30
%、  P :0.010%。
<Example> (Example 1) As Example 1 of the present invention, C: 0.25% by weight (hereinafter abbreviated as %), St: 0.26%, Mn: 1.30
%, P: 0.010%.

S : o、oos%、 l! :0.03%の組成で
あるシームレス用素材を175閣φの鋳片径に2.3m
/minの鋳込速度で鋳造し、第1図に示したスプレー
ノズルを設置してピンチロール直前の表面温度を830
℃,かつピンチロール手前の平均冷却速度32”C/m
で鋳片冷却を行った。ピンチロールの冷却帯長は3mで
ある。比較例1としては、ピンチロール手前、および凝
固収縮を補償する冷却とも行わない場合、比較例2とし
ては、ビンチロ、−ル手前の冷却帯において20℃/m
の平均冷却速度で冷却を行った。
S: o, oos%, l! : Seamless material with a composition of 0.03% is made into a slab diameter of 175mm and 2.3m.
The spray nozzle shown in Fig. 1 was installed to maintain the surface temperature just before the pinch roll at 830°C.
℃, and the average cooling rate before the pinch roll is 32"C/m
The slab was cooled. The cooling zone length of the pinch roll is 3 m. Comparative Example 1 is a case in which cooling is not performed before the pinch roll and cooling to compensate for solidification shrinkage, and Comparative Example 2 is a cooling zone of 20°C/m before the pinch roll.
Cooling was performed at an average cooling rate of .

以上3例の冷却条件で鋳造した鋳片の真円度を測定する
と共にビレット軸心部の偏析調査、さらにビレット軸心
を含んだ40mm口X200mmj!の角材を切り出し
、比重測定を行いセンターポロシティ−を評価した。
We measured the roundness of the slabs cast under the three cooling conditions mentioned above, and also investigated the segregation of the billet shaft center. A square piece of wood was cut out, specific gravity was measured, and center porosity was evaluated.

その結果を第1表に示す。この表から鋳片の真円度向上
、中心偏析率の低下、およびセンターポロシティ−減少
に対し、本発明例が存効であることが認められる0本発
明例は、ピンチロールと凝固収縮を補償する冷却領域が
接近していたため見掛は上連続的な強制冷却となった。
The results are shown in Table 1. From this table, it can be seen that the example of the present invention is effective in improving the roundness of the slab, decreasing the center segregation rate, and reducing the center porosity.The example of the present invention compensates for pinch rolls and solidification shrinkage. Because the cooling areas were close together, it appeared to be continuous forced cooling.

第2図は、本発明例1と比較例1.2の鋳片表面温度を
放射温度計にて測定した結果である。
FIG. 2 shows the results of measuring the surface temperature of the slabs of Inventive Example 1 and Comparative Examples 1.2 using a radiation thermometer.

第    1    表 (実施例2) C: 0.46%、St:0.3%、 Mn : 0.
93%、P:o、ois%、  S : 0.007%
、 I/! :o、ooz%の組成であるシームレスパ
イプ用素材を175閣φ鋳片径で3.0m/minで鋳
造した。
Table 1 (Example 2) C: 0.46%, St: 0.3%, Mn: 0.
93%, P: o, ois%, S: 0.007%
, I/! A material for a seamless pipe having a composition of :o, ooz% was cast at a rate of 3.0 m/min with a slab diameter of 175 mm.

本鋳片をビンチロール前方3mと凝固収!il量を補償
する領域6mに対し強制冷却した本発明例2と、ピンチ
ロール手前3mのみ本発明例2と同様に冷却した場合(
比較例3)で比較した。その冷却帯位置を模式的に第8
図に示す、ここでピンチロール入側温度は842°C1
平均冷却速度は34℃/mであった。こうして鋳造した
鋳片の真円度、中心偏析およびセンターポロシティ−を
比較した結果を第2表に示す。これからも、ピンチロー
ル前方冷却および凝固末期の凝固収縮を補償する冷却の
併用で中心偏析、センターポロシティ−および真円度の
優れた鋳片を得る事が明確となった。
This slab is solidified 3m in front of the vinyl roll! Example 2 of the present invention in which a 6 m area for compensating the amount of il was forcibly cooled, and a case in which only 3 m in front of the pinch roll was cooled in the same manner as Example 2 of the present invention (
A comparison was made in Comparative Example 3). The location of the cooling zone is schematically shown at No. 8.
As shown in the figure, the temperature at the input side of the pinch roll is 842°C1
The average cooling rate was 34°C/m. Table 2 shows the results of comparing the roundness, center segregation, and center porosity of the slabs thus cast. From now on, it has become clear that a slab with excellent center segregation, center porosity, and roundness can be obtained by combining forward cooling with pinch rolls and cooling that compensates for solidification shrinkage at the final stage of solidification.

なお、強制冷却したビレット表面には、冷却の影響と推
定される割れは全く認められなかった。
It should be noted that no cracks were observed on the surface of the forcedly cooled billet, which was presumed to be caused by the cooling.

第    2    表 〈発明の効果〉 本発明に係る連続鋳造方法によると、寸法精度がよく、
かつ中心偏析、センターポロシティの少ない内部品質に
優れた鋳片の製造が可能となった。
Table 2 <Effects of the invention> According to the continuous casting method according to the present invention, dimensional accuracy is good;
Moreover, it has become possible to produce slabs with excellent internal quality and less center segregation and center porosity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を説明するための模式図、第2図
は、本発明方法と比較例の鋳片表面温度変化を示すグラ
フ、第3図は、ピンチロール直前のビレット表面温度と
真円度との関係を示すグラフ、第4図は、ピンチロール
直前の表面温度降下速度と真円度との関係を示すグラフ
、第5図は、従来法を説明するための模式図、第6図は
、丸ビレツト軸心部の偏析分布を示す特性図、第7図は
、鋳片凝固シェル断面の模式図、第8図は本発明実施例
を説明するための模式図である。 1・・・二次冷却帯、 2・・・二次冷却帯用チャンバー、 3・・・ピンチロール、 4・・・スプレーノズル、5
・・・油圧シリンダー、6・・・鋳片、7・・・溶鋼プ
ール、  8・・・モールド。 特許出願人    Jll i4製鉄株式会社第1図 第2図 第3図 ピンチロール直前のビレット表面!  (℃)ピンチロ
ール直前の冷却帯における表面温度降下速度 (℃/m
)第5図 第6図 丸ビレット輪0・からの距離 (mm)第7図
Figure 1 is a schematic diagram for explaining the method of the present invention, Figure 2 is a graph showing changes in billet surface temperature in the method of the present invention and a comparative example, and Figure 3 is a graph showing the billet surface temperature immediately before pinch rolls. Figure 4 is a graph showing the relationship between the roundness and the rate of surface temperature drop just before the pinch roll, and Figure 5 is a schematic diagram for explaining the conventional method. FIG. 6 is a characteristic diagram showing the segregation distribution in the axial center of a round billet, FIG. 7 is a schematic diagram of a cross section of a solidified slab shell, and FIG. 8 is a schematic diagram for explaining an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Secondary cooling zone, 2... Chamber for secondary cooling zone, 3... Pinch roll, 4... Spray nozzle, 5
...Hydraulic cylinder, 6. Slab, 7. Molten steel pool, 8. Mold. Patent applicant Jll i4 Steel Co., Ltd. Figure 1 Figure 2 Figure 3 Billet surface just before the pinch roll! (℃) Surface temperature drop rate in the cooling zone immediately before the pinch roll (℃/m
) Figure 5 Figure 6 Distance from round billet ring 0 (mm) Figure 7

Claims (1)

【特許請求の範囲】[Claims] 溶鋼の連続鋳造方法において、残溶湯プールの鋳込方向
最先端より手前2〜15mの位置からプール最先端位置
まで、鋳片の液芯核の凝固の進行に伴い、鋳片表面を鋳
込方向に沿って逐次強制冷却してその凝固収縮による体
積収縮量相当量以上に鋳片凝固殻を収縮せしめ、鋳片断
面を減面して鋳造すると共に、鋳片を引抜く、ためのピ
ンチロール部手前における鋳片表面温度を850℃以下
、鋳片表面の平均冷却速度を30℃/m以上に保持して
鋳造することを特徴とする断面寸法精度と内部品質とに
優れた鋳片の連続鋳造方法。
In a continuous casting method for molten steel, the slab surface is moved in the casting direction from a position 2 to 15 m before the leading edge of the remaining molten metal pool in the casting direction to the pool's leading edge as the liquid core core of the slab solidifies. A pinch roll part for sequentially forced cooling along the solidified slab to shrink the solidified slab shell by an amount equivalent to the volumetric shrinkage due to the solidification shrinkage, reduce the cross section of the slab, cast it, and pull out the slab. Continuous casting of slabs with excellent cross-sectional dimensional accuracy and internal quality, characterized by maintaining the front surface temperature of the slab at 850°C or lower and the average cooling rate of the slab surface at 30°C/m or higher. Method.
JP32133887A 1987-12-21 1987-12-21 Method for continuously casting cast slab having excellent cross sectional size accuracy and internal quality Pending JPH01162550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32133887A JPH01162550A (en) 1987-12-21 1987-12-21 Method for continuously casting cast slab having excellent cross sectional size accuracy and internal quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32133887A JPH01162550A (en) 1987-12-21 1987-12-21 Method for continuously casting cast slab having excellent cross sectional size accuracy and internal quality

Publications (1)

Publication Number Publication Date
JPH01162550A true JPH01162550A (en) 1989-06-27

Family

ID=18131474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32133887A Pending JPH01162550A (en) 1987-12-21 1987-12-21 Method for continuously casting cast slab having excellent cross sectional size accuracy and internal quality

Country Status (1)

Country Link
JP (1) JPH01162550A (en)

Similar Documents

Publication Publication Date Title
US2956320A (en) Casting of metal
US5293927A (en) Method and apparatus for making strips, bars and wire rods
JP3090188B2 (en) Cooling drum for thin cast slab casting
JPH01162550A (en) Method for continuously casting cast slab having excellent cross sectional size accuracy and internal quality
JPH08238550A (en) Method for continuously casting steel
JP5018441B2 (en) Method of drawing slab after completion of casting in continuous casting
JP2947098B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe material
JPH0550201A (en) Light rolling reduction method in continuous casting
JPH0628789B2 (en) Continuous casting method
JP3319379B2 (en) Continuous casting method of steel billet
JP3351375B2 (en) Continuous casting method
JPH07108358A (en) Method for reducing center porosity of continuously cast round cast billet
JP3405490B2 (en) Method for improving slab quality in continuous casting
JP2982622B2 (en) Cooling method of slab in continuous casting
JP3402250B2 (en) Manufacturing method of round billet slab by continuous casting
JP3082834B2 (en) Continuous casting method for round slabs
JP3149818B2 (en) Manufacturing method of round billet slab by continuous casting
JP7273307B2 (en) Steel continuous casting method
JP5691949B2 (en) Continuous casting method for large-section slabs
JPH078421B2 (en) Continuous casting method
JPH08197194A (en) Method for continuous casting of round billet
JPH0242575B2 (en)
JP3063533B2 (en) Continuous casting of wide thin cast slabs
JP3348667B2 (en) Manufacturing method of round billet slab by continuous casting
JP2001150104A5 (en)