JPH0116205B2 - - Google Patents

Info

Publication number
JPH0116205B2
JPH0116205B2 JP54102998A JP10299879A JPH0116205B2 JP H0116205 B2 JPH0116205 B2 JP H0116205B2 JP 54102998 A JP54102998 A JP 54102998A JP 10299879 A JP10299879 A JP 10299879A JP H0116205 B2 JPH0116205 B2 JP H0116205B2
Authority
JP
Japan
Prior art keywords
tension
rolling
torque arm
torque
stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54102998A
Other languages
Japanese (ja)
Other versions
JPS5626618A (en
Inventor
Yoshiharu Hamazaki
Hideharu Togano
Okinori Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP10299879A priority Critical patent/JPS5626618A/en
Publication of JPS5626618A publication Critical patent/JPS5626618A/en
Publication of JPH0116205B2 publication Critical patent/JPH0116205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/06Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring tension or compression

Description

【発明の詳細な説明】 この発明は連続圧延において圧延材のスタンド
間張力を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting tension between stands of a rolled material during continuous rolling.

従来のスタンド間張力検出方法に、各スタンド
において圧延トルク、圧延力および後方張力より
前方張力を求める方法がある。これを第1図に示
す連続圧延装置について説明する。第1図におい
て1は被圧延材、2は第iスタンド、3は第(i
+1)スタンドであり、Ti-1は第iスタンド後方
張力、Tiは第iスタンド前方張力、Giは第iスタ
ンドの圧延トルク、Piは第iスタンドの圧延力で
ある。このとき圧延トルクGiを次式で示す。
A conventional inter-stand tension detection method includes a method of determining front tension from rolling torque, rolling force, and rear tension in each stand. This will be explained with reference to the continuous rolling apparatus shown in FIG. In Fig. 1, 1 is the material to be rolled, 2 is the i-th stand, and 3 is the (i-th
+1) stand, T i-1 is the i-th stand rear tension, T i is the i-th stand front tension, G i is the rolling torque of the i-th stand, and P i is the rolling force of the i-th stand. At this time, the rolling torque G i is expressed by the following formula.

Gi=ai・Pi+bi・Ti-1−ci・Ti ………(1) (1)式においてai、bi、ciは一つの圧延条件によ
つて決まる定数でありai、bi、ciをそれぞれトル
クアーム、後方張力トルクアーム、前方張力トル
クアームと呼ぶことにする。(1)式により前方張力
Tiは、 Ti=(ai・Pi−Gi+bi・Ti-1)/ci ………(2) と求めることができる。(2)式において圧延力Pi
圧延トルクGiは直接検出できるし、後方張力Ti-1
は上流より順次スタンド間張力を求めてくること
により知ることができる。
G i =a i・P i +b i・T i-1 −c i・T i ………(1) In equation (1), a i , b i , and c i are constants determined by one rolling condition. Here, a i , b i , and c i will be referred to as a torque arm, a rear tension torque arm, and a front tension torque arm, respectively. The forward tension is determined by equation (1).
T i can be calculated as T i =(a i ·P i −G i +b i ·T i-1 )/c i (2). In equation (2), rolling force P i ,
The rolling torque G i can be directly detected, and the backward tension T i-1
can be determined by sequentially determining the inter-stand tension starting from the upstream.

一方、ai、bi、ciは一つの圧延条件によつて決
まる定数であり、従来では bi=ci=Ri ………(3) Riは第iスタンドのロール半径である、と一定
とし、トルクアームaiについては圧延中の変動を ai=aL i+Δai ………(4) として基準トルクアームaL iを前方張力Ti=0のと
き、すなわち被圧延材1が第(i−1)スタンド
3に噛込まれる直前に aL i=(GL i−Ri−TL i-1)/Pi L ………(5) として演算される。このタイミングをロツクオン
タイミングと呼ぶ。なお(5)式においてサフイツク
ス“L”はロツクオン時の値を意味する。ロツク
オン後のトルクアーム変動量Δaiは、 Δai=Δai(ΔHi、Δhi、ΔRi′、 Δkni、ΔTi-1、ΔTi) ………(6) として求める。但し(6)式においてΔHi、Δhi
ΔRi′、Δkni、ΔTi-1、ΔTiはそれぞれ入側板厚、
出側板厚、偏平ロール径、平均変形抵抗、後方張
力、前方張力の変動量である。以上述べたように
従来スタンド間張力Tiを求めるためには後方張力
トルクアームbi及び前方張力トルクアームciは一
定でありほぼロール半径Riに等しいとして、トル
クアームについてのみ圧延中の条件の変動に応じ
て(4)式および(6)式に示すような方法で圧延中に変
化させることにより(2)式を用いて前方張力を求め
ていた。
On the other hand, a i , b i , and c i are constants determined by one rolling condition, and conventionally, b i = c i = R i (3) R i is the roll radius of the i-th stand. , and for the torque arm a i , the fluctuation during rolling is a i = a L i +Δa i ......(4), and the reference torque arm a L i is set when the front tension T i = 0, that is, when the rolled Immediately before the material 1 is bitten by the (i-1)th stand 3, it is calculated as a L i =(G L i −R i −T L i-1 )/P i L (5). This timing is called lock-on timing. In equation (5), the suffix "L" means the value at lock-on. The amount of torque arm fluctuation Δa i after lock-on is obtained as Δa i =Δa i (ΔH i , Δh i , ΔR i ′, Δk ni , ΔT i-1 , ΔT i ) (6). However, in equation (6), ΔH i , Δh i ,
ΔR i ′, Δk ni , ΔT i-1 and ΔT i are the entry side plate thickness, respectively.
These are the amount of variation in the exit plate thickness, flat roll diameter, average deformation resistance, rear tension, and front tension. As mentioned above, in order to obtain the tension T i between conventional stands, it is assumed that the rear tension torque arm b i and the front tension torque arm c i are constant and approximately equal to the roll radius R i , and only the torque arm is set under the conditions during rolling. The forward tension was determined using equation (2) by changing it during rolling according to the fluctuations in equations (4) and (6).

しかしながら上述した従来の方式では前方張力
誤差を生ずることが圧延理論の解析と試験の結果
判明した。すなわち圧延トルク及び圧延力に関す
る圧延理論モデルの解析によると Giai(Hi、hi、Ri′)・Pi+bi(Hi、hi、Ri′)・Ti
-1
−ci(Hi、hi、Ri′)・Ti………(7) となり張力トルクアームbi、ciは入側板厚Hi、出
側板厚hi、偏平ロール径Ri′の関数であることが
判明した。すなわち張力トルクアームbi、ciは従
来ロール半径として一定と考えていたが張力検出
精度を向上させるためにはトルクアームと同様に
圧延条件の変動と共に変えてやる必要がある。
However, as a result of rolling theory analysis and testing, it has been found that the conventional method described above causes forward tension errors. That is, according to the analysis of the rolling theoretical model regarding rolling torque and rolling force, G i a i (H i , h i , R i ′)・P i +b i (H i , h i , R i ′)・T i
-1
−c i (H i , h i , R i ′)・T i ......(7) Therefore, the tension torque arm b i , c i is the inlet side plate thickness H i , the outlet side plate thickness h i , and the flat roll diameter It turns out that it is a function of R i ′. That is, the tension torque arms b i and c i were conventionally considered to be constant as the roll radius, but in order to improve the tension detection accuracy, it is necessary to change them as the rolling conditions change, similar to the torque arms.

本発明は前述の如き演算式に基づいて前方張力
を検出する張力検出において、検出精度を高くす
ることを目的とする。
An object of the present invention is to improve the detection accuracy in tension detection in which forward tension is detected based on the above-mentioned arithmetic expression.

次に本発明を実施する1つの装置構成を第2図
に示し、これを参照して本発明の実施例を説明す
る。(7)式において、偏平ロール径Ri′と圧延力Pi
入出側板厚Hi、hiの関係は、 Ri′=Ri′(Pi、Hi、hi) ………(8) と予め判つているので bi=bi(Hi、hi、Pi) ………(9) ci=ci(Hi、hi、Pi) ………(10) と前後方張力トルクアームは入側、出側板厚と圧
延力で求めることができる。前述したように従来
のトルクアームをロツクオンし(6)式のようにロツ
クオン後のトルクアーム変動量Δaiを求める方式
を、前後方張力トルクアームbi、ciに対しても採
用して下式で求めうる。
Next, one apparatus configuration for implementing the present invention is shown in FIG. 2, and an embodiment of the present invention will be described with reference to FIG. In equation (7), the flat roll diameter R i ′ and the rolling force P i ,
The relationship between the entrance and exit side plate thicknesses H i and h i is known in advance as R i ′ = R i ′ (P i , H i , h i ) (8), so b i = b i (H i , h i , P i ) ......(9) c i = c i (H i , h i , P i ) ......(10) and the front and rear tension torque arms are determined by the input and exit plate thicknesses and rolling force. You can ask for it. As mentioned above, the conventional method of locking on the torque arm and calculating the amount of torque arm variation Δa i after locking on as shown in equation (6) can be applied to the front and rear tension torque arms b i and c i as well. It can be found by the formula.

Δbi=Δbi(ΔHi、Δhi、ΔPi、ΔSi、………) ………(11) Δci=Δci(ΔHi、Δhi、ΔPi、ΔSi、………) ………(12) 従つて、入側板厚Hi、出側板厚hi、圧延力Pi
入力としてトルクアーム演算装置5により(4)、
(5)、(6)式で圧延中のトルクアームを演算し、後方
張力トルクアーム演算装置6で(8)式と(9)式又は(9)
式と(11)式に基づいて圧延中の後方張力トルクアー
ムを演算し、前方張力トルクアーム演算装置7で
(8)式と(10)式又は(10)式と(12)式に基づいて圧延中の

方張力トルクアームを演算する。得られたトルク
アーム、後方前方張力トルクアームを用いて(2)式
にもとづいて前方張力演算装置4により圧延中の
前方張力を求める。なお、ロール間隙Sと出側板
厚、圧延力との間には広く一般に知られているよ
うに h=S+F/M、M;ミル定数 の関係があるのでその関係を考慮しながら出側板
厚hiの代りにロー間隙Sを用いても同じであるこ
とは明らかである。
Δb i = Δb i (ΔH i , Δh i , ΔP i , ΔS i , ………) ………(11) Δc i = Δc i (ΔH i , Δh i , ΔP i , ΔS i , ………) ......(12) Therefore, using the input side plate thickness H i , exit side plate thickness h i , and rolling force P i as input, the torque arm calculation device 5 calculates (4)
The torque arm during rolling is calculated using equations (5) and (6), and the rear tension torque arm calculation device 6 calculates equations (8) and (9) or (9).
The rear tension torque arm during rolling is calculated based on the formula and (11), and the front tension torque arm calculation device 7 calculates the rear tension torque arm during rolling.
The front tension torque arm during rolling is calculated based on equations (8) and (10) or equations (10) and (12). Using the obtained torque arm and rear front tension torque arm, the front tension during rolling is determined by the front tension calculating device 4 based on equation (2). It should be noted that, as is widely known, there is a relationship between the roll gap S, the exit side plate thickness, and the rolling force of h=S+F/M, M; Mill constant, so the exit side plate thickness h is determined while taking this relationship into consideration. It is clear that the same result can be obtained by using the low gap S instead of i .

以上の通り本発明においては、圧延スタンドi
で圧延中にロツクオン後のトルクアームai、後方
張力アームbiおよび前方張力アームciを求めて、
これに基づいて所定の演算式で前記張力を検出す
るので、従来の、ai、biおよびciをロツクオン後
固定とするよりも、前方張力検出精度が大幅に高
くなる。
As described above, in the present invention, the rolling stand i
Find the torque arm a i , rear tension arm b i and front tension arm c i after locking on during rolling.
Since the tension is detected using a predetermined calculation formula based on this, the forward tension detection accuracy is significantly higher than the conventional method in which a i , b i , and c i are fixed after lock-on.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧延スタンド2における後方張力
Ti-1、前方張力Ti、圧延トルクGiおよび圧延力Pi
の関係を示す側面図、第2図は、本発明の実施に
使用する1つの装置構成を示すブロツク図であ
る。 1:圧延材、2,3:圧延スタンド、4:前方
張力演算装置、5:トルクアーム演算装置、6:
後方張力トルクアーム演算装置、7:前方張力ト
ルクアーム演算装置。
Figure 1 shows the rear tension at rolling stand 2.
T i-1 , forward tension T i , rolling torque G i and rolling force P i
FIG. 2 is a block diagram showing the configuration of one device used to implement the present invention. 1: Rolled material, 2, 3: Rolling stand, 4: Front tension calculation device, 5: Torque arm calculation device, 6:
Rear tension torque arm calculation device, 7: Front tension torque arm calculation device.

Claims (1)

【特許請求の範囲】[Claims] 1 圧延スタンドiにおいて、圧延トルクGiと、
トルクアームaiと圧延力Piの積と、後方張力トル
クアームbiと後方張力Ti-1の積と、前方張力トル
クアームciと、に基づいて所定の演算式で前方張
力Tiを求める、連続圧延におけるスタンド間張
力の検出において、入側板厚、出側板厚および圧
延力の変動に応じてこれらの変動に対応する変動
分トルクアームai、前方張力トルクアームciおよ
び後方張力トルクアームbiを変更することを特徴
とする、連続圧延におけるスタンド間張力の検出
方法。
1 At rolling stand i, rolling torque Gi and
In continuous rolling, the front tension Ti is calculated using a predetermined calculation formula based on the product of torque arm ai and rolling force Pi, the product of rear tension torque arm bi and rear tension Ti -1 , and front tension torque arm ci. When detecting tension between stands, the torque arm AI, front tension torque arm ci, and rear tension torque arm bi are changed according to changes in the inlet side plate thickness, outlet side plate thickness, and rolling force. A method for detecting tension between stands in continuous rolling.
JP10299879A 1979-08-11 1979-08-11 Detecting method for interstand tension in continuous rolling work Granted JPS5626618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10299879A JPS5626618A (en) 1979-08-11 1979-08-11 Detecting method for interstand tension in continuous rolling work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10299879A JPS5626618A (en) 1979-08-11 1979-08-11 Detecting method for interstand tension in continuous rolling work

Publications (2)

Publication Number Publication Date
JPS5626618A JPS5626618A (en) 1981-03-14
JPH0116205B2 true JPH0116205B2 (en) 1989-03-23

Family

ID=14342346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10299879A Granted JPS5626618A (en) 1979-08-11 1979-08-11 Detecting method for interstand tension in continuous rolling work

Country Status (1)

Country Link
JP (1) JPS5626618A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394248A (en) * 1977-01-28 1978-08-18 Mitsubishi Electric Corp Tension controlling method of continuous rolling mill
JPS53108057A (en) * 1978-03-15 1978-09-20 Hitachi Ltd Method and apparatus for tension control in tandem rolling mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394248A (en) * 1977-01-28 1978-08-18 Mitsubishi Electric Corp Tension controlling method of continuous rolling mill
JPS53108057A (en) * 1978-03-15 1978-09-20 Hitachi Ltd Method and apparatus for tension control in tandem rolling mill

Also Published As

Publication number Publication date
JPS5626618A (en) 1981-03-14

Similar Documents

Publication Publication Date Title
GB1575571A (en) Method of controlling the tension in a workpiece in a rolling mill
JPH0116205B2 (en)
JPH0460723B2 (en)
JPH0545325B2 (en)
JP3545541B2 (en) Meandering control method in plate rolling
JPH0569021A (en) Method and device for controlling rolling mill
JPH09239418A (en) Velocity compensating arithmetic unit of continuous rolling mill
JPS6236765B2 (en)
JPS6264414A (en) Method for measuring deformation resistance of rolling plate
JPH05337527A (en) Method for rolling steel strip
JPS6147604B2 (en)
JPH05104123A (en) Hot continuous rolling method
JP3553552B2 (en) On-line identification method of strip width deformation model in hot finishing mill
JPS6335327B2 (en)
JPH08141613A (en) Method for controlling thickness in hot rolling
JPH055747A (en) Measuring method of advancing ratio of hot strip mill
JPH04284909A (en) Method for controlling hot continuous rolling mill
JPS58163514A (en) Method and device for controlling tension in rolling mill
JPS591133B2 (en) Rolled material length measuring device
JPH08252620A (en) Method for calculating elongation percentage
JP2593266B2 (en) Rolling control device
JPS60195413A (en) Coil diameter measuring device
JP2728269B2 (en) Method of measuring flat shape of metal plate during rolling
JPS5839002B2 (en) Strip width control rolling method for continuous hot rolling mill
JPH0472604B2 (en)