JPH01161880A - Superconductor element - Google Patents

Superconductor element

Info

Publication number
JPH01161880A
JPH01161880A JP62318789A JP31878987A JPH01161880A JP H01161880 A JPH01161880 A JP H01161880A JP 62318789 A JP62318789 A JP 62318789A JP 31878987 A JP31878987 A JP 31878987A JP H01161880 A JPH01161880 A JP H01161880A
Authority
JP
Japan
Prior art keywords
current density
weak coupling
oxide superconductor
critical current
coupling part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62318789A
Other languages
Japanese (ja)
Inventor
Koichi Kubo
光一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62318789A priority Critical patent/JPH01161880A/en
Publication of JPH01161880A publication Critical patent/JPH01161880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconductor element having a Josephson junction wherein the dimension of a weak coupling part can be sufficiently realize by a present fine working art, by a method wherein oxide superconductor having large anisotropy of critical current density is used, and a Josephson junction is constituted in the manner in which a weak coupling part is sandwiched between two bank parts, the weak coupling part having a current direction in the axial direction of small critical current density, the bank parts having a current direction in the axial direction of large critical current density. CONSTITUTION:On SrTiO3 (100) crystal conductor 1, a YBa2Cu3O7-delta film 3 as a superconductor thin film is epitaxially grown, and these are patternized in two bank parts 31, 32 and a weak coupling part 33 to connect the bank parts. On a substrate 1, an inclined surface 2 is previously formed by anisotropic etching, at a part where the weak coupling part 33 is to be formed. As a result, when the YBa2Cu3O7-delta film 3 is epitaxially grown thereon, the crystal orientation of flat part differs from that of the inclined surface. When a pattern is formed, the current direction in the bank parts 31, 32, becomes an axial direction of large critical current density, and the current direction in the weak coupling part 33 becomes an axial direction of small critical current density.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、量子力学的弱結合部を有するジョセフソン接
合をもつ超電導素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting device having a Josephson junction having a quantum mechanical weak coupling portion.

(従来の技術) 高温超電導体として、希土類元素を含有するある種の酸
化物超電導体が注目されている。これらの酸化物超電導
体の多くは、ペロブスカイト構造を有する酸化物である
ことが確認されている。
(Prior Art) A certain type of oxide superconductor containing rare earth elements has been attracting attention as a high-temperature superconductor. It has been confirmed that many of these oxide superconductors are oxides having a perovskite structure.

これ・らの酸化物超電導体は、液体窒素温度以上で超電
導状態に転移する。このため、高価な液体ヘリウムに代
って安価な液体窒素を用いて、超高速の超電導素子が実
現できる可能性が指摘されている。
These oxide superconductors transition to a superconducting state at temperatures above liquid nitrogen temperature. For this reason, it has been pointed out that it is possible to realize ultrahigh-speed superconducting elements by using inexpensive liquid nitrogen instead of expensive liquid helium.

しかしながら、酸化物超電導体は従来の金属化合物超電
導体とは異なる特殊性を有するため、具体的な素子応用
にはいくつかの困難がある。例えば、酸化物超電導体は
800℃以上の高温での熱処理が必要である。また酸化
物超電導体はコヒーレンス長が非常に小さい。これらの
理由から、例えばジョセフソン接合を構成する酸化物超
電導体/絶縁体/酸化物超電導体のトンネル接合を制御
性よく形成することが困難である。そこで、酸化物超電
導体膜のパターンによって、二つの超電導体バンク部と
これらを量子力学的に弱結合する弱結合部を構成する、
弱結合ジョセフソン素子が考えられる。しかしこの場合
にも、ジョセフソン接合の弱結合部を形成するためには
、数100Å以下の微細加工技術が必要であり、現在の
りソグラフィ技術では不可能である。
However, since oxide superconductors have special characteristics different from conventional metal compound superconductors, there are some difficulties in applying them to specific devices. For example, oxide superconductors require heat treatment at a high temperature of 800° C. or higher. Also, oxide superconductors have a very small coherence length. For these reasons, it is difficult to form, for example, an oxide superconductor/insulator/oxide superconductor tunnel junction constituting a Josephson junction with good controllability. Therefore, the pattern of the oxide superconductor film constitutes the two superconductor bank parts and a weak coupling part that weakly couples them quantum mechanically.
A weakly coupled Josephson element can be considered. However, in this case as well, in order to form a weak Josephson junction, a microfabrication technique of several hundred angstroms or less is required, which is impossible with current lithography techniques.

(発明が解決しようとする問題点) 以上のように酸化物超電導体は、超高速素子を安価に実
現できるものとして注目されながら、実際には材料特性
による制約から、ジョセフソン接合を構成することが難
しい、という問題があった。
(Problems to be Solved by the Invention) As described above, oxide superconductors are attracting attention as a material that can realize ultrahigh-speed devices at low cost, but in reality, due to restrictions due to material properties, it is difficult to form Josephson junctions. The problem was that it was difficult.

本発明は、上記の問題を解決した、弱結合ジョセフソン
接合をもつ超電導素子を提供することを目的とする。
An object of the present invention is to provide a superconducting element having a weakly coupled Josephson junction that solves the above problems.

L発明の構成] (問題点を解決するための手段) 本発明は、酸化物超電導体が一般に臨界電流密度の異方
性が大きいという点に着目し、ジョセフソン接合を構成
する二つのバンク部は臨界電流密度の大きい軸(以下、
第1の軸)方向が電流方向となり、これらバンク部の間
に挟まれる弱結合部は臨界電流密度の小さい軸(以下、
第2の軸)方向が電流方向となるように、ジョセフソン
接合を構成する酸化物超電導体結晶の配向と電流方向と
を選択する。臨界電流密度の小さい第2の軸方向には、
酸化物超電導結晶の構造自体がジョセフソン接合的にな
っているので、弱結合部の幅をそれ程小さくすることな
く、所望の弱結合ジョセフソン接合が得られるのである
Structure of the Invention] (Means for Solving the Problems) The present invention focuses on the fact that oxide superconductors generally have a large anisotropy of critical current density, and the present invention has been developed by is the axis with large critical current density (hereinafter,
The direction (first axis) is the current direction, and the weak coupling part sandwiched between these bank parts is the axis (hereinafter referred to as
The orientation of the oxide superconductor crystal constituting the Josephson junction and the current direction are selected so that the second axis) direction is the current direction. In the second axis direction where the critical current density is small,
Since the structure of the oxide superconducting crystal itself is a Josephson junction, the desired weakly coupled Josephson junction can be obtained without reducing the width of the weakly coupled portion to a large extent.

本発明における酸化物超電導体としては、希土類元素を
含むペロブスカイト構造の各種酸化物を用い得る。酸化
物超電導体を薄膜としてジョセフソン接合を構成する場
合は、塞板にSr T103等を用い、弱結合部の電流
方向が第2の軸方向と平行になるように、酸化物超電導
体膜の結晶配向を制御する。
As the oxide superconductor in the present invention, various oxides having a perovskite structure containing rare earth elements can be used. When constructing a Josephson junction using a thin film of oxide superconductor, use Sr T103 or the like for the closing plate, and insert the oxide superconductor film so that the current direction in the weak coupling part is parallel to the second axis direction. Control crystal orientation.

(作用) 本発明によれば、弱結合部をそれ程微細寸法とすること
なく、ジョセフソン接合を構成することができる。また
極めて薄いトンネル絶縁膜を用いる必要がないから、酸
化物超電導体に必要な熱処理にも耐えることができる。
(Function) According to the present invention, a Josephson junction can be constructed without making the weak coupling portion so small in size. Furthermore, since it is not necessary to use an extremely thin tunnel insulating film, it can withstand the heat treatment required for oxide superconductors.

従って現在の微細加工技術により実現できる実用的なジ
ョセフソン接合素子が得られる。
Therefore, a practical Josephson junction element that can be realized using current microfabrication technology is obtained.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、一実施例の弱結合ジョセフソン素子を示す。FIG. 1 shows one embodiment of a weakly coupled Josephson device.

(a)は平面図であり、(b)はそのA−A−断面図で
ある。Sr T103  (100)結晶基板1上に酸
化物超電導体薄膜としてY B a2C03Ot−a膜
3がエピタキシャル成長により形成され、これが図のよ
うに二つのバンク部3、.32とこれらをつなぐ弱結合
部33とにパターン形成されている。ここで基板1は、
弱結合部33が形成される部分に予め異方性エツチング
により傾斜面2が形成されている。この結果、この上に
Y B a2c uso t−a膜3をエピタキシャル
成長させたときに平坦部と傾斜面上で結晶配向が異なり
、図示のようにパターン形成した時、バンク部3.,3
2では、電流方向が臨界電流密度の大きいmlの軸方向
になり、弱結合部33では電流方向が臨界電流密度が小
さい第2の軸方向になる。
(a) is a plan view, and (b) is its AA cross-sectional view. A YBa2C03Ot-a film 3 is formed as an oxide superconductor thin film on a Sr T103 (100) crystal substrate 1 by epitaxial growth, and this forms two bank portions 3, . 32 and a weak coupling portion 33 connecting these are patterned. Here, the substrate 1 is
The inclined surface 2 is previously formed by anisotropic etching at the portion where the weak coupling portion 33 is to be formed. As a result, when the YB a2c uso ta film 3 is epitaxially grown on this, the crystal orientation is different between the flat part and the inclined surface, and when the pattern is formed as shown in the figure, the bank part 3. ,3
2, the current direction is in the ml axial direction where the critical current density is high, and in the weak coupling part 33, the current direction is the second axial direction where the critical current density is low.

具体的なY B a2Cu3O t−a膜3の形成法は
、Ar102=1/1の雰囲気中で、基板を600℃に
加熱した状態でスパッタリングを行う。膜形成後、80
0℃、8時間の熱処理および400℃、1時間の熱処理
を行う。形成されたY B a2Cu、o 7−a膜3
は、EBレジストを用いて塩素ガスを含むドライエツチ
ングにより図示のようにパターン形成される。
A specific method for forming the YBa2Cu3O ta film 3 is to perform sputtering in an atmosphere of Ar102=1/1 with the substrate heated to 600°C. After film formation, 80
Heat treatment is performed at 0°C for 8 hours and at 400°C for 1 hour. Formed YBa2Cu,o7-a film 3
A pattern is formed using an EB resist by dry etching containing chlorine gas as shown in the figure.

第2図は、このように構成された弱結合ジョセフソン素
子の電流−電圧特性である。図に示すように弱いながら
ジョセフソン接合特性が現われている。
FIG. 2 shows the current-voltage characteristics of the weakly coupled Josephson element constructed in this manner. As shown in the figure, Josephson junction characteristics appear, albeit weakly.

第3図は、他の実施例の平面図である。この実施例では
、平坦なSr T103基板11上に先の実施例と同様
にしてエピタキシャル成長させたY B a2CLIi
O7−J膜のパターンにより、直流スクイド(dcs 
QU I D)を構成している。即ちY B a2CL
I3O7−4膜により超電導リング12を形成し、その
リングのなかで電流の向きと結晶の向きとの関係で臨界
電流密度が最も小さくなる2箇所に、細いパターンの弱
結合部13t、132を形成している。例えばY B 
a2c umo□−6膜の膜厚は約4000人とし、超
電導リングの幅は50μm1弱結合部1Bt、132で
はその幅を3μmとする。これにより、二つのジョセフ
ソン接合を超電導リング内にもつdcsQUIDが構成
される。
FIG. 3 is a plan view of another embodiment. In this example, YB a2CLIi was epitaxially grown on a flat Sr T103 substrate 11 in the same manner as in the previous example.
The pattern of the O7-J film allows direct current SQUID (dcs
QUID). That is, Y B a2CL
A superconducting ring 12 is formed using an I3O7-4 film, and weak coupling portions 13t and 132 in thin patterns are formed at two locations in the ring where the critical current density is the smallest depending on the relationship between the current direction and the crystal orientation. are doing. For example, YB
The thickness of the a2c umo□-6 film is approximately 4000, and the width of the superconducting ring is 50 μm.The width of the weak coupling portion 1Bt and 132 is 3 μm. This constitutes a dcsQUID having two Josephson junctions within the superconducting ring.

第4図は、この実施例によるdcsQUIDの、印加磁
界Φと臨界電流密度Jcの関係を示している。図示のよ
うに、dcsQUIDの干渉パターンが得られている。
FIG. 4 shows the relationship between the applied magnetic field Φ and the critical current density Jc of the dcsQUID according to this example. As shown in the figure, a dcsQUID interference pattern has been obtained.

本発明は上記実施例に限られるものではない。例えば酸
化物超電導体薄膜として、一般にA B a2Cu3O
7−J  (Aは、Y、Yb、Ho、Dy。
The present invention is not limited to the above embodiments. For example, as an oxide superconductor thin film, generally A B a2Cu3O
7-J (A is Y, Yb, Ho, Dy.

E u +  E r + T m * L uから選
ばれた一種)で表わされる欠陥ペロブスカイト型酸化物
を用いることができる。また、(S rr−xLa )
 2 Cu o4−。
A defective perovskite type oxide represented by E u + E r + T m *L u) can be used. Also, (S rr-xLa )
2 Cu o4-.

(但し、SrをBa、Caで置換したものを含む)で表
わされる層状ペロブスカイト型酸化物を用いることもで
きる。
(However, layered perovskite-type oxides represented by oxides such as those in which Sr is replaced with Ba or Ca) can also be used.

その池水発明は、その趣旨を逸脱しない範囲で種々変形
して実施することができる。
The pond water invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、酸化物超電導体膜を
用い、その臨界電流密度の異方性を利用することにより
、弱結合部の寸法を現在の微細加工技術で十分実現でき
る大きさとしたジョセフソン接合をもつ超電導素子を得
ることができる。
[Effects of the Invention] As described above, according to the present invention, by using an oxide superconductor film and utilizing the anisotropy of its critical current density, the dimensions of the weak bond can be reduced using current microfabrication technology. A superconducting element having a Josephson junction of a sufficiently large size can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の一実施例のジョセフソン
接合素子を示す平面図とそのA−A”断面図、第2図は
その素子の電流−電圧特性を示す図、第3図は他の実施
例のdcsQUIDを示す平面図、第4図はその臨界電
流密度と印加磁界の関係を示す図である。 1・・・5rT103結晶基板、2・・・傾斜面、3・
・・Y B a2 Cui Ot−a膜、3..32・
・・バンク部、33・・・弱結合部、11・・・5rT
iO結晶基板、12− YBa2CuiOt−6超電導
リング、131.132・・・弱結合部。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 14図
1(a) and 1(b) are a plan view and a sectional view taken along line A-A'' of a Josephson junction device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the current-voltage characteristics of the device. Fig. 3 is a plan view showing the dcsQUID of another example, and Fig. 4 is a diagram showing the relationship between the critical current density and the applied magnetic field.1...5rT103 crystal substrate, 2...inclined surface, 3...
... Y B a2 Cui Ot-a film, 3. .. 32・
...Bank part, 33...Weak coupling part, 11...5rT
iO crystal substrate, 12- YBa2CuiOt-6 superconducting ring, 131.132... weak coupling part. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 14

Claims (7)

【特許請求の範囲】[Claims] (1)臨界電流密度の異方性が大きい酸化物超電導体を
用いて構成され、臨界電流密度の大きい軸方向を電流方
向とした二つのバンク部の間に、臨界電流密度の小さい
軸方向を電流方向とした弱結合部を挾んでジョセフソン
接合を構成したことを特徴とする超電導素子。
(1) Constructed using an oxide superconductor with high anisotropy of critical current density, the axial direction with low critical current density is connected between two bank parts with the axial direction of high critical current density as the current direction. A superconducting element characterized in that a Josephson junction is formed by sandwiching a weak coupling part in the current direction.
(2)前記バンク部と弱結合部は、所定の基板上に形成
された酸化物超電導体膜のパターンにより形成されてい
る特許請求の範囲第1項記載の超電導素子。
(2) The superconducting element according to claim 1, wherein the bank portion and the weak coupling portion are formed by a pattern of an oxide superconductor film formed on a predetermined substrate.
(3)前記基板は、一部に所定角度の傾斜面を有し、前
記酸化物超電導体膜はこの基板上にエピタキシャル成長
させたものであって、前記傾斜面上の部分を弱結合部と
し、その両側の平坦面上の部分をバンク部としてパター
ン形成されている特許請求の範囲第2項記載の超電導素
子。
(3) The substrate partially has an inclined surface at a predetermined angle, the oxide superconductor film is epitaxially grown on the substrate, and the portion on the inclined surface is a weak bonding part, The superconducting element according to claim 2, wherein the portions on the flat surfaces on both sides are patterned as bank portions.
(4)前記基板は平坦であり、前記酸化物超電導体膜は
この基板上で略リング状にパターン形成され、そのリン
グの臨界電流密度の最も小さい2箇所に細いパターンの
弱結合部を構成した二つのジョセフソン接合を有する特
許請求の範囲第1項記載の超電導素子。
(4) The substrate was flat, and the oxide superconductor film was patterned in a substantially ring shape on the substrate, and weak coupling portions with thin patterns were formed at two locations of the ring where the critical current density was lowest. A superconducting device according to claim 1, having two Josephson junctions.
(5)前記チタン酸ストロンチウムであり、前記酸化物
超電導体膜は希土類元素を含むペロブスカイト型酸化物
である特許請求の範囲第2項記載の超電導素子。
(5) The superconducting element according to claim 2, wherein the strontium titanate is the strontium titanate, and the oxide superconductor film is a perovskite-type oxide containing a rare earth element.
(6)前記酸化物超電導体は、ABa_2Cu_3O_
7_−_δ(Aは、Y、Yb、Ho、Dy、Eu、Er
、Tm、Luから選ばれた一種)で表わされる欠陥ペロ
ブスカイト型酸化物である特許請求の範囲第1項記載の
超電導素子。
(6) The oxide superconductor is ABa_2Cu_3O_
7_-_δ (A is Y, Yb, Ho, Dy, Eu, Er
, Tm, and Lu).
(7)前記酸化物超電導体薄膜は、 (Sr_1_−_xLa_x)_2CuO_4_−_y
で表わされる層状ペロブスカイト型酸化物である特許請
求の範囲第1項記載の超電導素子。
(7) The oxide superconductor thin film is (Sr_1_-_xLa_x)_2CuO_4_-_y
The superconducting element according to claim 1, which is a layered perovskite type oxide represented by:
JP62318789A 1987-12-18 1987-12-18 Superconductor element Pending JPH01161880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62318789A JPH01161880A (en) 1987-12-18 1987-12-18 Superconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318789A JPH01161880A (en) 1987-12-18 1987-12-18 Superconductor element

Publications (1)

Publication Number Publication Date
JPH01161880A true JPH01161880A (en) 1989-06-26

Family

ID=18102959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318789A Pending JPH01161880A (en) 1987-12-18 1987-12-18 Superconductor element

Country Status (1)

Country Link
JP (1) JPH01161880A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149885A (en) * 1989-11-07 1991-06-26 Nippon Telegr & Teleph Corp <Ntt> Oxide semiconductor device and manufacture thereof
JPH03234071A (en) * 1990-02-09 1991-10-18 Sharp Corp Josephson element
JPH0653561A (en) * 1992-07-28 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Superconducting thin film grain boundary junction element and manufacture thereof
JPH08228029A (en) * 1995-02-20 1996-09-03 Hitachi Ltd Superconducting transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065583A (en) * 1983-09-20 1985-04-15 Nippon Telegr & Teleph Corp <Ntt> Josephson junction element and manufacture thereof
JPS6415988A (en) * 1987-07-10 1989-01-19 Nippon Telegraph & Telephone Superconducting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065583A (en) * 1983-09-20 1985-04-15 Nippon Telegr & Teleph Corp <Ntt> Josephson junction element and manufacture thereof
JPS6415988A (en) * 1987-07-10 1989-01-19 Nippon Telegraph & Telephone Superconducting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149885A (en) * 1989-11-07 1991-06-26 Nippon Telegr & Teleph Corp <Ntt> Oxide semiconductor device and manufacture thereof
JPH03234071A (en) * 1990-02-09 1991-10-18 Sharp Corp Josephson element
JPH0653561A (en) * 1992-07-28 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Superconducting thin film grain boundary junction element and manufacture thereof
JPH08228029A (en) * 1995-02-20 1996-09-03 Hitachi Ltd Superconducting transistor

Similar Documents

Publication Publication Date Title
JP2907832B2 (en) Superconducting device and manufacturing method thereof
US5278140A (en) Method for forming grain boundary junction devices using high Tc superconductors
WO1997034327A1 (en) Wide josephson junction with asymmetric control lines
US20020180006A1 (en) Ferroelectric-superconductor heterostructures in solid state quantum computing systems
JPH05160449A (en) Josephson junction structure
JPH01161880A (en) Superconductor element
JPH0745874A (en) Anisotropic superconductive element and its manufacturing method and fluxon device using it
US20080146449A1 (en) Electrical device and method of manufacturing same
JP2644284B2 (en) Superconducting element
JPH07235700A (en) Superconductive super-lattice crystal device
JPH0783144B2 (en) Jyosefson device using oxide superconductor
KR20010050950A (en) SQUID elements
JPH09121064A (en) High temperature superconducting josephson junction device
JP2761504B2 (en) Oxide superconducting device and manufacturing method thereof
JPH04332180A (en) Josephson element
JPH0629583A (en) Superconducting device
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP2909455B1 (en) Superconducting element
JP2856577B2 (en) Superconducting element
JP2768276B2 (en) Oxide superconducting junction element
JPH01161785A (en) Superconducting device
JPH01161786A (en) Superconducting device
JP2883493B2 (en) Superconducting element
JP2821605B2 (en) Three-terminal superconducting element
JPH05291632A (en) Superconductive junction structure