JPH01161107A - Three-dimensional image analyzing device - Google Patents

Three-dimensional image analyzing device

Info

Publication number
JPH01161107A
JPH01161107A JP31840087A JP31840087A JPH01161107A JP H01161107 A JPH01161107 A JP H01161107A JP 31840087 A JP31840087 A JP 31840087A JP 31840087 A JP31840087 A JP 31840087A JP H01161107 A JPH01161107 A JP H01161107A
Authority
JP
Japan
Prior art keywords
laser light
dimensional
laser beam
dimensional object
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31840087A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIKUKADOU KK
Original Assignee
KIKUKADOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIKUKADOU KK filed Critical KIKUKADOU KK
Priority to JP31840087A priority Critical patent/JPH01161107A/en
Publication of JPH01161107A publication Critical patent/JPH01161107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a three-dimensional image with high accuracy and to enable size measurement by irradiating a three-dimensional body with laser light stepwise. CONSTITUTION:Laser light from a rotating laser light source 17 is reflected by a concave surface mirror 15 to become a linear light beam, which illuminates the three-dimensional body mounted on a table 19. Then the relative positions between laser light irradiating devices 2-6 and the three-dimensional body are varied stepwise and the laser light is projected to photograph a size contour image curved by the three-dimensional body by a camera 21. Then the relative position between the laser light source 17 and three-dimensional body is moved along X, Y and Z axes and the image is photographed with size contours in the respective directions. Consequently, the three-dimensional image is measured with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に曲面を有する物体の採寸を非接触にて効
率的に行う装置に関するもので、さらに詳しく言えば、
線状のレーザビームを三次元方向から物体に照射して得
た軌跡をフィルム上等に露光して寸法を測定、解析する
三次元像解析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for efficiently measuring an object having a curved surface in a non-contact manner.
The present invention relates to a three-dimensional image analysis device that measures and analyzes dimensions by exposing a trajectory obtained by irradiating a linear laser beam onto an object from a three-dimensional direction onto a film or the like.

〔従来の技術〕[Conventional technology]

三次元物体を図面化する等の目的で寸法を測定するには
、従来よりステレオ写真等の技術が知られている。これ
ば、異なる角度より撮影された画像を解析して三次元物
体の寸法を測定するもので、一般に測定精度を高めるこ
とが難しく、また、精密な解析には、高度で繁雑な画像
解析処理及びコンピュータ処理が必要とされる。
2. Description of the Related Art Techniques such as stereo photography are conventionally known for measuring the dimensions of a three-dimensional object for the purpose of drawing, etc. This method measures the dimensions of a three-dimensional object by analyzing images taken from different angles, and it is generally difficult to improve measurement accuracy, and precise analysis requires advanced and complicated image analysis processing and processing. Computer processing is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来方式では測定精度を高めることが難しく、解析
に時間がかかると共に、精密な解析には、高度で繁雑な
画像解析処理及びコンピュータ処理が必要とされるとい
う問題がある。
This conventional method has problems in that it is difficult to improve measurement accuracy, analysis takes time, and accurate analysis requires sophisticated and complicated image analysis processing and computer processing.

本発明はこのような点に鑑みて創作されたもので、簡易
な構成で極めて高精度に計測、採寸が可能な三次元像解
析装置を提供することを目的としている。
The present invention was created in view of these points, and an object of the present invention is to provide a three-dimensional image analysis device that has a simple configuration and is capable of measuring and measuring with extremely high accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の三次元像解析装置は、三次元物体を載せるテー
ブルと、該三次元物体のX、Y及びZ軸に沿って移動し
て直線状(点線状を含む意である)の光を放射するレー
ザ光照射装置と、前記レーザ光の照射により形成された
反射光を記録するためのカメラ(ビデオカメラを含む)
とを備え、前記三次元物体に対する前記レーザ光の照射
がステップ状に行われることで、前記三次元物体の等寸
法線が前記カメラに記録される。本発明におけるレーザ
光照射装置ば、回動するレーザ光源とそのレーザ光を反
射する凹面鏡とから成る。
The three-dimensional image analysis device of the present invention includes a table on which a three-dimensional object is placed, and a table that moves along the X, Y, and Z axes of the three-dimensional object and emits linear (including dotted) light. a camera (including a video camera) for recording reflected light formed by the laser beam irradiation;
By irradiating the three-dimensional object with the laser light in a stepwise manner, the isometric line of the three-dimensional object is recorded on the camera. The laser light irradiation device according to the present invention includes a rotating laser light source and a concave mirror that reflects the laser light.

〔作  用〕[For production]

回動するレーザ光源からのレーザ光は、凹面鏡によって
反射され、直線状の光線となって三次元物体に照射され
る。
Laser light from a rotating laser light source is reflected by a concave mirror, becomes a linear light beam, and is irradiated onto a three-dimensional object.

レーザ光照射装置と三次元物体との相対的位置をステッ
プ状に変化させてレーザ光を照射することで、三次元物
体により湾曲された等寸法線像がカメラで撮影される。
By irradiating the laser beam while changing the relative position of the laser beam irradiation device and the three-dimensional object in steps, a camera captures an isometric line image curved by the three-dimensional object.

レーザ光源と三次元物体との相対的位置の移動は、X、
Y及びZ軸に沿って行われ、それぞれの方向における等
寸法線による像が撮影される。
The movement of the relative position between the laser light source and the three-dimensional object is
This is carried out along the Y and Z axes, and images are taken along equal dimensions in each direction.

〔実施例〕〔Example〕

第1図は本発明の実施例の機構図である。同図において
1は枠体であって、これにX、YないしZ軸に沿って移
動するレーザ光照射装置2〜6が設置される。レーザ光
照射装置2は枠体1の上面に配置され、X軸方向に移動
する。7は枠体1の上辺8.9間に渡されたフレームで
、その両端は屈曲され、上辺8.9に設けられたガイド
レール10に沿って摺動可能にされる。フレーム7の中
程にはナンド11が設置され、そこに、上辺12.13
間に渡されたネジシャフト14がネジ込まれている。ネ
ジシャフト14はパルスモータ−14aによって回転駆
動され、以てナンド11を介してフレーム7がネジシャ
フト14に沿って、即ち、X軸方向に移動する。フレー
ム7には、内方に向く幅狭の凹面鏡15(放物線面を鏡
面研磨して成る)をサンドインチした挟持板16が固定
される。17は挟持板16に設置されたレーザ発振器で
、凹面鏡15に向けて点状のレーザ光を発する。レーザ
発振器17には揺動モーター18が取り付けられ、レー
ザ光が凹面鏡15に沿って振られるようになっている。
FIG. 1 is a mechanical diagram of an embodiment of the present invention. In the figure, reference numeral 1 denotes a frame, on which are installed laser beam irradiation devices 2 to 6 that move along the X, Y, or Z axes. The laser beam irradiation device 2 is arranged on the upper surface of the frame 1 and moves in the X-axis direction. Reference numeral 7 denotes a frame extending between the upper sides 8.9 of the frame body 1, both ends of which are bent so as to be slidable along guide rails 10 provided on the upper sides 8.9. A Nando 11 is installed in the middle of the frame 7, and the upper side 12.13
A screw shaft 14 passed between them is screwed. The screw shaft 14 is rotationally driven by a pulse motor 14a, so that the frame 7 moves along the screw shaft 14 via the NAND 11, that is, in the X-axis direction. A clamping plate 16 in which a narrow concave mirror 15 (made by mirror-polishing a parabolic surface) facing inward is sandwiched is fixed to the frame 7 . A laser oscillator 17 is installed on the holding plate 16 and emits point-shaped laser light toward the concave mirror 15. A swing motor 18 is attached to the laser oscillator 17 so that the laser beam is swung along the concave mirror 15.

凹面鏡15は放物線形で、第2図に示すように、照射さ
れたすべてのレーザ光を平行に反射する。従って、被測
定物体(三次元物体)に対しては直線状のレーザ光が照
射されることになる。フレーム7はパルスモータ−14
aの作用でステップ状に移動するので、上記直線状照射
光も定間隔置きに被測定物体に照射される。
The concave mirror 15 has a parabolic shape and, as shown in FIG. 2, reflects all the irradiated laser light in parallel. Therefore, the object to be measured (three-dimensional object) is irradiated with a straight laser beam. Frame 7 is a pulse motor 14
Since the linear irradiation light moves in a stepwise manner due to the action of a, the object to be measured is also irradiated with the linear irradiation light at regular intervals.

レーザ光照射装置3〜6もレーザ光照射装置2と同様に
構成される。但し、レーザ光照射装置5.6は、三次元
物体を載置するテーブル19を挾んで対置し、同期させ
て奥行方向(Z軸方向)へ移動させる。また、レーザ光
照射装置3.4ば、フレーム7の屈曲部7aを延長する
ことにより、レーザ光照射装置5.6の外側に配置し、
同期させて上下方向(Y軸方向)へ移動させる。
The laser beam irradiation devices 3 to 6 are also configured similarly to the laser beam irradiation device 2. However, the laser beam irradiation device 5.6 is opposed to the table 19 on which the three-dimensional object is placed, and is moved in the depth direction (Z-axis direction) in synchronization. Further, the laser beam irradiation device 3.4 is arranged outside the laser beam irradiation device 5.6 by extending the bent portion 7a of the frame 7,
Synchronize and move in the vertical direction (Y-axis direction).

テーブル19は、通例パルスモータ−20によって例え
ば90度宛回転可能にし、以て被測定物体く三次元物体
)の両側面及び背面も撮影するようにする。21はカメ
ラ(ビデオカメラを含む)であって、被測定物体の奥行
方向にステップ状に移動可能に構成される。そうするこ
とにより、テーブル19上の被測定物体の被写体深度に
対応した位置にカメラ21を移動でき、焦点深度の浅い
状態で撮影しても、正確な結果が得られる。
The table 19 is usually rotatable by a pulse motor 20, for example, by 90 degrees, so that both sides and the back of the object to be measured (three-dimensional object) can also be photographed. Reference numeral 21 denotes a camera (including a video camera), which is configured to be movable in steps in the depth direction of the object to be measured. By doing so, the camera 21 can be moved to a position corresponding to the depth of field of the object to be measured on the table 19, and accurate results can be obtained even when photographing with a shallow depth of focus.

装置を小型軽量化及び安価に構成するためには、レーザ
光源の出力光を制限する必要があるので、小出力の光源
を用いて撮影を行うには、カメラ21のシャッターを開
放にする必要がある。このような場合、焦点深度が非常
に浅(なるので、カメラ21の位置をステップ状に変化
できると都合が良い。
In order to make the device smaller, lighter, and less expensive, it is necessary to limit the output light of the laser light source, so the shutter of the camera 21 must be opened to take pictures using a low-output light source. be. In such a case, the depth of focus becomes very shallow, so it is convenient if the position of the camera 21 can be changed in steps.

第3図は、本発明に係る装置によって撮影した三次元物
体のレーザ光による撮像である(陰陽を逆に表現しであ
る)。同図に示されるように、レーザ光の間隔が任意に
設定できるので、1つの間隔あたりの距離を任意に設定
できる。
FIG. 3 is a laser beam image of a three-dimensional object photographed by the apparatus according to the present invention (Yin and Yang are expressed in reverse). As shown in the figure, since the intervals between the laser beams can be set arbitrarily, the distance per interval can be set arbitrarily.

物体上に描かれた連続する綿は、同一軸における光源よ
りの照射光を示すものである。X、Y及びZ軸の光源か
らの光の交点は、三次元物体の形状をコンピュータにて
解析するための位置の座標を与えてくれる。この交点の
情報を用いてコンピュータ解析し、三次元物体の図面を
作成することは容易であり、また、時間も少なくて済む
The continuous lines drawn on the object represent the irradiation light from the light source on the same axis. The intersection of the light from the X, Y, and Z axes provides coordinates of position for computer analysis of the shape of a three-dimensional object. It is easy to create a drawing of a three-dimensional object by computer analysis using information on this intersection, and it also takes less time.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、簡易な構成で
極めて高精度に計測、採寸が可能な三次元像解析装置が
得られ、その解析データから容易に図面を作成し得る効
果がある。
As described above, according to the present invention, it is possible to obtain a three-dimensional image analysis device that is capable of extremely high precision measurement and measurement with a simple configuration, and has the effect of easily creating drawings from the analysis data. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の機構図、第2図はレーザ光照
射装置の構成を示す図、第3図は本発明に係る装置によ
って撮影した三次元物体のレーザ光による撮像例を示す
図である。 符号の説明 1−枠体、2〜6−レーザ光照射装置、15・−凹面鏡
、17−・−レーザ発振器、19−テーブル、21−カ
メラ 第2図 第3図
Fig. 1 is a mechanical diagram of an embodiment of the present invention, Fig. 2 is a diagram showing the configuration of a laser beam irradiation device, and Fig. 3 is an example of an image taken by a laser beam of a three-dimensional object photographed by the device according to the present invention. It is a diagram. Explanation of symbols 1-frame body, 2-6-laser beam irradiation device, 15--concave mirror, 17--laser oscillator, 19-table, 21-camera Fig. 2 Fig. 3

Claims (3)

【特許請求の範囲】[Claims] (1)三次元物体の寸法を非接触で解析するための装置
であって、三次元物体を載せるテーブルと、前記三次元
物体のX、Y及びZ軸に沿って移動し、回動するレーザ
光源からのレーザ光を凹面鏡で直線状にして放射するレ
ーザ光照射装置と、前記レーザ光の照射により形成され
る線状の軌跡を記録するためのカメラとを備え、前記三
次元物体に対する前記レーザ光の照射が所定の間隔毎に
行われる三次元像解析装置。
(1) A device for non-contact analysis of the dimensions of a three-dimensional object, which includes a table on which the three-dimensional object is placed, and a laser that moves and rotates along the X, Y, and Z axes of the three-dimensional object. A laser beam irradiation device that emits a laser beam from a light source in a straight line using a concave mirror, and a camera that records a linear locus formed by the irradiation of the laser beam, and the laser beam is directed toward the three-dimensional object. A three-dimensional image analysis device that irradiates light at predetermined intervals.
(2)テーブルが回転することを特徴とする特許請求の
範囲第1項記載の三次元像解析装置。
(2) The three-dimensional image analysis device according to claim 1, wherein the table rotates.
(3)カメラが物体の奥行方向にステップ状に移動可能
に構成されることを特徴とする特許請求の範囲第1項記
載の三次元像解析装置。
(3) The three-dimensional image analysis device according to claim 1, wherein the camera is configured to be movable stepwise in the depth direction of the object.
JP31840087A 1987-12-16 1987-12-16 Three-dimensional image analyzing device Pending JPH01161107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31840087A JPH01161107A (en) 1987-12-16 1987-12-16 Three-dimensional image analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31840087A JPH01161107A (en) 1987-12-16 1987-12-16 Three-dimensional image analyzing device

Publications (1)

Publication Number Publication Date
JPH01161107A true JPH01161107A (en) 1989-06-23

Family

ID=18098731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31840087A Pending JPH01161107A (en) 1987-12-16 1987-12-16 Three-dimensional image analyzing device

Country Status (1)

Country Link
JP (1) JPH01161107A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471285B1 (en) * 2002-11-28 2005-03-09 현대자동차주식회사 Three dimensional measuring system and method using magnetic power
EP2113790A1 (en) * 2008-04-18 2009-11-04 BAE Systems PLC Improvements in LIDARs
WO2009136184A2 (en) 2008-04-18 2009-11-12 Bae Systems Plc Improvements in lidars
EP2221638A1 (en) * 2009-02-19 2010-08-25 Northrop Grumman Space & Mission Systems Corporation Light detection and ranging apparatus
US8278666B1 (en) 2009-09-25 2012-10-02 Northrop Grumman Systems Corporation Method and apparatus for growing high purity 2H-silicon carbide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471285B1 (en) * 2002-11-28 2005-03-09 현대자동차주식회사 Three dimensional measuring system and method using magnetic power
EP2113790A1 (en) * 2008-04-18 2009-11-04 BAE Systems PLC Improvements in LIDARs
WO2009136184A2 (en) 2008-04-18 2009-11-12 Bae Systems Plc Improvements in lidars
WO2009136184A3 (en) * 2008-04-18 2010-05-06 Bae Systems Plc Improvements in lidars
AU2009245508B2 (en) * 2008-04-18 2013-05-16 Bae Systems Plc Improvements in LIDARs
US8744741B2 (en) 2008-04-18 2014-06-03 Bae Systems Plc Lidars
EP2221638A1 (en) * 2009-02-19 2010-08-25 Northrop Grumman Space & Mission Systems Corporation Light detection and ranging apparatus
US8120754B2 (en) 2009-02-19 2012-02-21 Northrop Grumman Systems Corporation Light detection and ranging apparatus
US8278666B1 (en) 2009-09-25 2012-10-02 Northrop Grumman Systems Corporation Method and apparatus for growing high purity 2H-silicon carbide

Similar Documents

Publication Publication Date Title
JP5226480B2 (en) 3D shape measuring device
US4443705A (en) Method for locating points on a three-dimensional surface using light intensity variations
JPH05332731A (en) Form measuring device
JPS61500185A (en) Multidimensional measurement method and device for objects
JPH01161107A (en) Three-dimensional image analyzing device
JPH03500934A (en) Calibration system for output correlation plane of optical correlator
CN110487192A (en) A kind of sample thickness measuring device, measurement method and sample thickness calculation method
EP0116561A1 (en) Method and apparatus for performing operations on three-dimensional surfaces
JPH0534603B2 (en)
JP3088516B2 (en) X-ray diffraction measurement method and apparatus
JPS61292509A (en) Non-contacting roughness measuring apparatus
JPH0550681B2 (en)
CN210603206U (en) Sample thickness measuring device
US3366794A (en) Scanning apparatus for aiding in the determination of point co-ordinates of paths of charged particles as recorded on photographic film
Altschuler et al. Laser electro-optic system for three-dimensional (3D) topographic mensuration
US4681415A (en) Multiple image photography system
JPH06109437A (en) Measuring apparatus of three-dimensional shape
JPS63289406A (en) Three-dimensional configuration measuring instrument
US20020033819A1 (en) Apparatus and method for three-dimensional scanning of a subject, fabrication of a model therefrom, and the model produced thereby
US3244065A (en) Camera apparatus for producing a plane pictorial representation of a three dimensional surface
KR100903900B1 (en) Align method for multi laser vision system and align apparatus thereof
JP3375439B2 (en) Three-dimensional measuring device for object by light section method
JPS6189505A (en) Forming method and apparatus of solid body
JPH04164205A (en) Three dimensional image analysis device
JP3966800B2 (en) Surface inspection device