JPH01160491A - Continuous production of oxide - Google Patents

Continuous production of oxide

Info

Publication number
JPH01160491A
JPH01160491A JP31983487A JP31983487A JPH01160491A JP H01160491 A JPH01160491 A JP H01160491A JP 31983487 A JP31983487 A JP 31983487A JP 31983487 A JP31983487 A JP 31983487A JP H01160491 A JPH01160491 A JP H01160491A
Authority
JP
Japan
Prior art keywords
methane
oxide
tank
reaction tank
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31983487A
Other languages
Japanese (ja)
Other versions
JPH053279B2 (en
Inventor
Genshi Suzuki
源士 鈴木
Daruton Hawaado
ハワード・ダルトン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP31983487A priority Critical patent/JPH01160491A/en
Priority to CA 583389 priority patent/CA1322734C/en
Priority to DE19883850056 priority patent/DE3850056T2/en
Priority to EP19880119872 priority patent/EP0318914B1/en
Publication of JPH01160491A publication Critical patent/JPH01160491A/en
Publication of JPH053279B2 publication Critical patent/JPH053279B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain an oxide in high efficiency while regenerating microorganism in a short time, by adding benzoic acids to a reaction tank and a regeneration tank, contacting a methane-assimilating strain with an alkane, etc., in the presence of an electron donor, regenerating the microorganism having lowered activity in a regeneration tank and returning the activated microorganism to the reaction tank. CONSTITUTION:An oxide is produced by contacting an alkane, alkene or a cyclic compound with a methane-assimilation strain in a reaction tank in the presence of an electron donor, removing the produced oxide from the system, regenerating the methane-assimilation strain having lowered methane-oxidizing capability in a regeneration tank to recover the methane-oxidizing capability and returning the recovered strain to the reaction tank. In the above process, benzoic acid or its metal salt is added to the reaction tank and/or the regeneration tank to enable the continuous production of the oxide. The amount of the benzoic acid or its metal salt is preferably 0.1-8mmol/l.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は酸化物の連続的製法に関し、詳しくはメタン資
化性菌の共酸化能を利用して酸化物を連続的に製造する
にあたり、反応系に安息香酸もしくはその金属塩を添加
してメタン酸化能の低下した菌体の再生を促進して効率
よく酸化物を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for continuously producing oxides, and more specifically, in continuously producing oxides by utilizing the co-oxidation ability of methane-assimilating bacteria, This invention relates to a method for efficiently producing oxides by adding benzoic acid or its metal salt to a reaction system to promote regeneration of bacterial cells with reduced methane oxidizing ability.

〔従来の技術、発明が解決しようとする問題点]メタン
資化性菌の有するメタン酸化酵素(メタンモノオキシゲ
ナーゼ)はアルカン、アルケン。
[Prior art and problems to be solved by the invention] Methane oxidase (methane monooxygenase) possessed by methane-assimilating bacteria converts alkanes and alkenes.

環式化合物等を酸化して相応する酸化物に変換する能力
を有することが知られている(特公昭58−31198
号)。
It is known that it has the ability to oxidize cyclic compounds and convert them into corresponding oxides (Japanese Patent Publication No. 58-31198
issue).

しかし、該メタン資化性菌を用いて酸化物を製造する場
合、生成した酸化物が反応を阻害したり、微生物や微生
物由来の酵素を失活させるため、該酸化物を系外に速や
かに除く必要がある。このような場合に用いられる装置
として、種々の膜を用いた反応器や抽出装置を組合せた
反応器が開発されている。ところが、これら装置を利用
しても微生物菌体や酵素の失活が避けられない場合が多
い。
However, when producing oxides using methane-assimilating bacteria, the oxides produced inhibit the reaction or deactivate microorganisms and enzymes derived from microorganisms, so the oxides must be immediately removed from the system. need to be removed. As devices used in such cases, reactors using various membranes and reactors combined with extraction devices have been developed. However, even with the use of these devices, deactivation of microbial cells and enzymes is often unavoidable.

その上、本発明の如く酸素を添加して反応を行う場合は
、本来的に長期運転が困難である。
Moreover, when the reaction is carried out by adding oxygen as in the present invention, long-term operation is inherently difficult.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者らは、メタン資化性菌を用いて酸化物を
製造する場合、生成した酸化物を系外に除くと共に活性
の低下した菌体ないし酵素を再生することによって長期
間にわたり酸化物を安定的に製造する方法を開発すべく
検討を重ねた。その過程で、失活した菌体が再生を開始
するまでの時間は該菌体がどのような条件下で失活した
かということに大きく影響され、目的物を速い速度で生
産して失活した菌体はど再生開始までに時間を要するこ
とが判明した。そこで、失活した菌体の再生を迅速に行
なう方法について研究し、反応系に安息香酸を加えるこ
とが有効であることを見出した。ところで、前述したよ
うに、メタン資化性菌は環式化合物を酸化する能力を有
しているが、安息香酸は酸化されず、共酸化反応を妨害
しないという事実を見出した。本発明はこれら知見に基
いて完成されたりのである。
Therefore, when producing oxides using methane-assimilating bacteria, the present inventors removed the generated oxides from the system and regenerated the bacterial cells or enzymes with reduced activity, thereby producing oxides over a long period of time. We conducted repeated studies to develop a method for stably producing . During this process, the time it takes for the deactivated bacterial cells to start regenerating is greatly influenced by the conditions under which the bacterial cells were deactivated. It was found that it took some time for the bacterial cells to start regenerating. Therefore, we conducted research on a method for rapidly regenerating deactivated bacterial cells and found that adding benzoic acid to the reaction system was effective. By the way, as mentioned above, although methane assimilating bacteria have the ability to oxidize cyclic compounds, it has been found that benzoic acid is not oxidized and does not interfere with the co-oxidation reaction. The present invention was completed based on these findings.

すなわち本発明は、反応槽において電子供与体の存在下
、アルカン、アルケンもしくは環状化合物にメタン資化
性菌を接触させて酸化物を製造すると共に、生成しん酸
化物を系外へ除去し、かつメタン酸化能の低下したメタ
ン資化性菌を再生槽において再生して該メタン酸化能を
回復させたのち反応槽に戻して酸化物の製造に供するこ
とからなる酸化物の連続的製法において、反応槽および
/または再生槽に安息香酸またはその金属塩を添加する
ことを特徴とする酸化物の連続的製法である。
That is, the present invention produces an oxide by bringing a methane-assimilating bacterium into contact with an alkane, alkene, or a cyclic compound in the presence of an electron donor in a reaction tank, and also removes the produced phosphorus oxide from the system. In a continuous method for producing oxides, the methane assimilating bacteria whose methane oxidation ability has decreased are regenerated in a regeneration tank to recover the methane oxidation ability, and then returned to the reaction tank for use in the production of oxides. This is a continuous method for producing oxides characterized by adding benzoic acid or its metal salt to a tank and/or a regeneration tank.

本発明において原料として用いるアルカンとしてはメタ
ン、エタン、プロパン、ブタン、ヘキサン、オクタンな
どがあり、アルケンとしてはエチレン、プロピレン、ブ
テン類などがある。また、環状化合物としてはシクロヘ
キサンなどの脂環式化合物;ベンゼン、トルエンなどの
芳香族化合物が挙げられる。
Alkanes used as raw materials in the present invention include methane, ethane, propane, butane, hexane, and octane, and alkenes include ethylene, propylene, butenes, and the like. Examples of the cyclic compound include alicyclic compounds such as cyclohexane; aromatic compounds such as benzene and toluene.

これら原料から誘導される酸化物は、アルカンからアル
コール;アルケンからエポキサイド;環状化合物から環
状アルコールである。
Oxides derived from these raw materials include alcohols from alkanes; epoxides from alkenes; and cyclic alcohols from cyclic compounds.

本発明に使用できるメタン資化性菌としては、たとえば
メチロコッカス・カプスラツス(Meth 1ococ
cus姐匹11閃) N CI B 11132などの
メチロコッカス属細菌、メチロモナス・アジレ(Met
h lomonas al旦吐NCIB 11124な
どのメチロモナス属細菌、メチロモナス・トリコスポリ
ウム」郵す山狙植皿trichos oriGm)NC
IB 11131などのメチロシヌス属細菌、メチロシ
スチス・パルバム」1打釦91n月遍rom)NCIB
11129などのメチロシスチス属細菌、メチロバクタ
ー・カプスラタ■旦打圏埴1肛り〃且■頃)NCIB1
1128などのメチロバクター属細菌などを挙げること
ができる。
Examples of methane-assimilating bacteria that can be used in the present invention include Methylococcus capsulatus (Meth 1ococcus).
Methylococcus bacteria such as NCI B 11132, Methylomonas ajire (Met
Bacteria of the genus Methylomonas, such as Methylomonas trichosporium (NCIB 11124), Trichos oriGm) NC
Methylocinus bacteria such as IB 11131, Methylocystis parvum (1 button 91n monthly ROM) NCIB
Methylocystis bacteria such as 11129, Methylobacter capsulata (around 1 anal opening) NCIB1
Examples include Methylobacter bacteria such as 1128.

上記メタン資化性菌を培養するために用いる培地として
は該細菌が十分に増殖しうるちのであればよく、通常は
炭素源としてメタン、メタノールなどを用いる。また、
窒素源としては塩化アンモニウム、硝酸カリウム、硝酸
アンモニウムなど常用のものを使用すればよい。その他
にリン酸、カルシウム塩、マグネシウム塩および微量の
無機塩(第2銅塩、第1鉄塩、コバルト塩など)等を適
宜加える。好適な培地としてホイツテンベリー等の培地
(J、 Gen、 Microbiol、、 61.2
05〜208頁、1970年)がある。培地を入れた培
養容器の空間はメタンと酸素含有ガス(空気など)との
混合ガスにて置換し、該ガスと接触している培地にメタ
ン資化性菌を接種する。
The medium used for culturing the methane-assimilating bacteria may be any medium that allows the bacteria to sufficiently proliferate, and methane, methanol, etc. are usually used as the carbon source. Also,
As the nitrogen source, commonly used nitrogen sources such as ammonium chloride, potassium nitrate, and ammonium nitrate may be used. In addition, phosphoric acid, calcium salts, magnesium salts, trace amounts of inorganic salts (cupric salts, ferrous salts, cobalt salts, etc.), etc. are added as appropriate. A suitable medium is a medium such as Whittenberry (J, Gen, Microbiol, 61.2).
05-208, 1970). The space in the culture container containing the culture medium is replaced with a mixed gas of methane and oxygen-containing gas (such as air), and the culture medium in contact with the gas is inoculated with methane-assimilating bacteria.

本発明に用いるメタン資化性菌は好気性細菌であり、そ
の培養は20〜50°Cにて好気的条件下に回分培養も
しくは連続培養を行なえばよい。
The methane-assimilating bacteria used in the present invention are aerobic bacteria, and may be cultured by batch culture or continuous culture at 20 to 50°C under aerobic conditions.

培養物はそのまま前記原料の酸化反応に使用することが
できるが、遠心分離等の操作により固液分離して得た微
生物菌体を用いることもできる。
Although the culture can be used as it is in the oxidation reaction of the raw material, it is also possible to use microbial cells obtained by solid-liquid separation by operations such as centrifugation.

さらに、リン酸緩衝液等の適当な溶液で洗浄し、該溶液
に懸濁した微生物菌体を用いてもよい。そのほか、微生
物菌体を常法により固定化したもの等を使用することも
できる。
Furthermore, microbial cells washed with a suitable solution such as a phosphate buffer and suspended in the solution may be used. In addition, microbial cells immobilized by conventional methods can also be used.

反応槽において、上記メタン資化性菌を原料と接触させ
るにあたり、電子供与体を存在させることが必要である
。ここで電子供与体としてはメチルアルコール、エチル
アルコールなどの低級アルコール;ホルムアルデヒド、
アセトアルデヒド。
When bringing the methane-assimilating bacteria into contact with the raw material in the reaction tank, it is necessary to have an electron donor present. Here, as the electron donor, lower alcohols such as methyl alcohol and ethyl alcohol; formaldehyde,
Acetaldehyde.

プロピオンアルデヒドなどの低級アルデヒド;ギ酸もし
くはギ酸ナトリウムなどのギ酸塩類;メタン;水素;N
ADHz  ;NADPHzなどがある。
Lower aldehydes such as propionaldehyde; Formic acid or formate salts such as sodium formate; Methane; Hydrogen; N
There are ADHz and NADPHz.

これらは単独であるいは組合せて用いる。These may be used alone or in combination.

反応条件は使用する微生物1反応槽等の種類によっても
異なるが、−船釣にはpns、5〜9,0、好ましくは
6.0〜8.5、温度15〜60″C2好ましくは20
〜50°Cである。なお、本発明では失活菌体の再生を
迅速に行うため、反応系に安息香酸またはその金属塩(
たとえばアルカリ金属塩。
The reaction conditions vary depending on the type of microorganism 1 reaction tank used, etc.;
~50°C. In addition, in the present invention, in order to rapidly regenerate inactivated bacterial cells, benzoic acid or its metal salt (
For example, alkali metal salts.

アルカリ土類金属塩)を加える。その添加時期は任意で
あり、たとえば反応槽への原料等の添加時。
alkaline earth metal salts). The addition timing is arbitrary, for example, when adding raw materials to the reaction tank.

反応開始時9反応中の適宜時期、再生時などのいずれの
時期であってもよい。また、安息香酸またはその金属塩
の添加量は0.1〜8rnmol/f、好生成した酸化
物は反応槽より速やかに除去する必要があり、たとえば
スクラバー、抽出塔、膜分離装置などの性成物回収装置
に菌体を含む反応混合物の一部を導入して酸化物を除去
する。酸化物を除去した反応混合物はその一部もしくは
全部を再び反応槽に返送する。
It may be at any time such as the start of the reaction, an appropriate time during the reaction, or the time of regeneration. In addition, the amount of benzoic acid or its metal salt added is 0.1 to 8 rnmol/f, and the well-produced oxide must be quickly removed from the reaction tank. A portion of the reaction mixture containing bacterial cells is introduced into a substance recovery device to remove oxides. Part or all of the reaction mixture from which oxides have been removed is returned to the reaction tank.

一方、メタン酸化能の低下したメタン資化性菌を再生す
るため、反応槽より該菌体を含む反応混合物の一部を抜
出して再生槽に送り、ここで該菌体のメタン酸化能を回
復させる。再生槽には炭素源としてメタン、メタノール
、ホルムアルデヒドなどの物質を含み、窒素源としてガ
ス状窒素、硝a、 硝酸L アンモニア、アンモニウム
塩、ペプトン、カザミノ酸、酵母エキス、L−グルタミ
ン。
On the other hand, in order to regenerate methane assimilating bacteria whose methane oxidation ability has decreased, a part of the reaction mixture containing the bacteria is extracted from the reaction tank and sent to the regeneration tank, where the methane oxidation ability of the bacteria is restored. let The regeneration tank contains substances such as methane, methanol, and formaldehyde as carbon sources, and gaseous nitrogen, nitric acid, L-ammonium nitrate, ammonium salts, peptone, casamino acids, yeast extract, and L-glutamine as nitrogen sources.

L−アスパラギンなどの物質を含み、さらに硫黄源とし
て硫酸、硫酸塩、硫化水素、硫化ナトリウム、ハイドロ
サルファイド、水硫化ソーダなどの物質を含有する再生
液が充填されており、この液体に酸素(通常は空気)を
供給しながら所定時間再生操作を行なう。なお、再生槽
への炭素源供給量はlO〜600nlIlol/ll1
in・■菌体、好ましくは30〜400 n mol/
m1n−■菌体が適当であり、窒素源供給量は1 n 
mol/min・■菌体以上、好ましくは2〜500 
n mol/min・mg菌体が、硫黄源供給量は0.
02n mol/min・■菌体以上、好ましくは0.
1〜150n mol/min・■菌体がそれぞれ適当
である。
A regenerating liquid containing substances such as L-asparagine and sulfur sources such as sulfuric acid, sulfates, hydrogen sulfide, sodium sulfide, hydrosulfide, and sodium hydrogen sulfide is charged, and this liquid is filled with oxygen (usually The regeneration operation is performed for a predetermined period of time while supplying air). In addition, the amount of carbon source supplied to the regeneration tank is 1O~600nlIlol/ll1
in・■ bacterial cells, preferably 30 to 400 n mol/
m1n-■ bacterial cells are appropriate, and the nitrogen source supply amount is 1 n
mol/min・■ bacterial cells or more, preferably 2 to 500
n mol/min・mg bacterial cells, but the amount of sulfur source supplied is 0.
0.2 n mol/min・■ bacterial cells or more, preferably 0.02 n mol/min.
1 to 150 nmol/min.2 bacterial cells are appropriate.

炭素源、窒素源、硫黄源の添加量が少ない場合には、再
生が遅れ、過剰に加えてもそれ以上の効果はなく、時に
は再生を阻害することもある。供給方法は前述のごとく
、一定時間当り一定の割合で加えることが好ましいが、
数時間分まとめて一時添加することもできる。−時添加
する場合には、連続供給する場合の添加量に見合った量
を加えればよい。炭素源、窒素源、硫黄源のほか、リン
酸。
If the amount of the carbon source, nitrogen source, or sulfur source added is small, regeneration will be delayed, and if they are added in excess, there will be no further effect, and sometimes regeneration may be inhibited. As for the feeding method, as mentioned above, it is preferable to add at a certain rate per certain period of time,
It is also possible to temporarily add several hours at a time. - When adding at times, it is sufficient to add an amount commensurate with the amount added in the case of continuous feeding. carbon, nitrogen, and sulfur sources, as well as phosphoric acid.

マグネシウム、微量金属を充分に加えれば、再生と同時
に菌体を増殖させることもできる。また、酸素量が不十
分であると再生が遅れる。再生は15〜60°Cの温度
、pH5,5〜9.0の条件で行なうことが好ましい。
By adding sufficient amounts of magnesium and trace metals, it is possible to simultaneously reproduce and multiply bacterial cells. Furthermore, if the amount of oxygen is insufficient, regeneration will be delayed. Preferably, the regeneration is carried out at a temperature of 15 to 60°C and a pH of 5.5 to 9.0.

このようにして再生したメタン資化性菌は再び反応槽に
返送して酸化物の製造に供する。
The methane-assimilating bacteria thus regenerated are returned to the reaction tank and used for producing oxides.

本発明によれば、使用した原料に相応するアルコール、
エポキサイド、環状アルコールが得られる。これら生成
物は前述の回収装置を用いて分離、採取される。
According to the invention, alcohol corresponding to the raw materials used;
Epoxide and cyclic alcohol are obtained. These products are separated and collected using the recovery device described above.

〔実施例〕〔Example〕

次に、本発明を実施例により詳しく説明する。 Next, the present invention will be explained in detail with reference to examples.

なお、実施例等に用いるメタン資化性菌は以下の方法に
より培養した。
In addition, the methane-assimilating bacteria used in Examples etc. were cultured by the following method.

第1表に示した培地と第2表に示した培地を100:1
の割合で混合した培地81をlO2容のジャーファーメ
ンタ−に無菌フィルターを通して仕込んだ。
The medium shown in Table 1 and the medium shown in Table 2 were mixed at a ratio of 100:1.
The mixed medium 81 was charged into a 1O2 jar fermentor through a sterile filter.

茅上表 硫酸マグネシウム・1水塩1.0g 硝酸カリウム           1.0g塩化カル
シウム          50■NaMo0a   
           1mgFeSO4’7Hz0 
      500μg男11刃m ZnSO4’7HzO400,czg H3B0.                 15H
gCoCfg・6HzO−50Hg MnCj!z・41(zo           20
HgNiCft・6 H,010Hg CuSO4−5Hz0         200μ、g
EDTA                 250H
g蒸留水               11NazH
PO,・12Hz0     43gKH,Po、  
          15.6gF e−EDTA  
        240mg蒸留水         
      11(pH6,8) 次に、第1表に示す培地50dを500成容のマイヤー
フラスコに入れたものを8本用意し、120°Cで20
分間殺菌した後、第2表に示す培地を120°Cで20
分間殺菌したものを0.5 d加え、ここにメタン資化
性菌を1白金耳接種した。ここにメタンSodを加えた
後、ゴム栓で密栓し、45°Cで3日間振とう培養した
。培養終了後のフラスコ培養液8本分を種菌とし、これ
を前記ジャーファーメンタ−に無菌的に仕込み、メタン
−空気混合ガス(メタン:空気=1 : 4)を毎分4
!の割合で供給し、3日間培養した。菌濃度が0.5■
/戚に達した後、第1表および第2表に示した培地を1
00:1.5の割合で混合した培地にさらにCu5O,
・5H,0をlx/lの割合で加えた培地を無菌フィル
ターで除菌しながら1.6ffi/時間の割合で供給し
て連続的に培養した。
Calcium chloride 1.0g Potassium nitrate 1.0g Calcium chloride 50■NaMo0a
1mgFeSO4'7Hz0
500μg Male 11 blades m ZnSO4'7HzO400, czg H3B0. 15H
gCoCfg・6HzO-50Hg MnCj! z・41(zo 20
HgNiCft・6H,010Hg CuSO4-5Hz0 200μ, g
EDTA 250H
g Distilled water 11NazH
PO,・12Hz0 43gKH,Po,
15.6gF e-EDTA
240mg distilled water
11 (pH 6, 8) Next, prepare 8 Meyer flasks containing 50 d of the medium shown in Table 1 and incubate at 120°C for 20 ml.
After sterilizing for minutes, the culture medium shown in Table 2 was heated at 120°C for 20 minutes.
0.5 d of sterilized material was added, and one platinum loop of methane-assimilating bacteria was inoculated thereto. After adding methane Sod, the mixture was sealed with a rubber stopper and cultured with shaking at 45°C for 3 days. After culturing, 8 flask culture fluids were used as seed bacteria, which were aseptically charged into the jar fermenter, and methane-air mixed gas (methane:air = 1:4) was added at a rate of 4 minutes per minute.
! and cultured for 3 days. Bacteria concentration is 0.5■
/ after reaching 10% of the culture medium shown in Tables 1 and 2.
Further, Cu5O,
- A culture medium to which 5H,0 was added at a rate of lx/l was supplied at a rate of 1.6ffi/hour while being sterilized with a sterile filter, and cultured continuously.

実施例1〜6および比較例1〜3 メタン資化性菌の培養方法に従って連続培養したメチロ
コッカス・カプスラツスNCIB 11132の培養液
200dを遠心分離して菌体を集め、第3表に示す反応
再生液に菌濃度1mg/In1となるように懸濁した。
Examples 1 to 6 and Comparative Examples 1 to 3 200 d of culture solution of Methylococcus capsulatus NCIB 11132, which was continuously cultured according to the method for culturing methane-assimilating bacteria, was centrifuged to collect bacterial cells, and the reaction regenerated solution shown in Table 3 was obtained. The cells were suspended at a bacterial concentration of 1 mg/In1.

この懸濁液400dを11.容のジャーファーメンタ−
に仕込み、空気を毎分100 mlの割合で供給しなが
ら45℃に昇温した。次いで第4表に示す量の安息香酸
ナトリウムを加え、10分間攪拌した後、プロピレン3
20 IR1/winおよびメタノール350n mo
l/min・■菌体を30分間供給してプロピレンオキ
サイドを生産せしめた。
11.400 d of this suspension. Yong's Jarfa Mentor
The temperature was raised to 45° C. while supplying air at a rate of 100 ml per minute. Next, sodium benzoate in the amount shown in Table 4 was added, and after stirring for 10 minutes, propylene 3
20 IR1/win and methanol 350n mo
Propylene oxide was produced by supplying l/min·■ bacterial cells for 30 minutes.

30分後にプロピレンおよびメタノールの供給を停止し
、空気3.2 l/minの割合で供給して反応液中に
残存するプロピレンオキサイドを水中から除いた。15
分後に空気流量を35 d/1IIinまで下げ、温度
が45°Cであることを確認した後、メタン120 m
/winの割合で供給し、菌体の再生操作を開始した。
After 30 minutes, the supply of propylene and methanol was stopped, and air was supplied at a rate of 3.2 l/min to remove propylene oxide remaining in the reaction solution from the water. 15
After a few minutes, the air flow rate was reduced to 35 d/1IIin, and after checking that the temperature was 45°C, 120 m of methane was added.
/win, and the regeneration operation of the bacterial cells was started.

その後、逐時菌体の活性を測定し、菌体が再生を開始す
るまでの時間を測定した。この結果を第4表に示す。
Thereafter, the activity of the bacterial cells was measured sequentially, and the time until the bacterial cells started to reproduce was measured. The results are shown in Table 4.

3   、・  ′) 硫酸マグネシウム・7水塩     1.0g硝酸カリ
ウム           1.0g塩化カルシウム 
        100■N a M OOa    
         1 mgFeSOn・7HzO50
0Hg ZnSOa’IHz0       400Hg遍】邊
昼!盛ム H3B0.              15HgCo
C1z−6HzO50Hg MnC1z・4 HzO20u g NiCl、z・6H2010Hg CuSOa・5H20500Hg EDTA               250HgN
azHPO<・12 Hz 0     645mgK
H2P 04            234mgFe
−EDTA            3.6mg蒸留水
               11(ptl 6.8
 ) なお、菌体の活性の測定は以下に示す方法で行なった。
3,・') Magnesium sulfate heptahydrate 1.0g Potassium nitrate 1.0g Calcium chloride
100 ■ N a M OOa
1 mgFeSOn・7HzO50
0Hg ZnSOa'IHz0 400Hg range] Bye noon! Seimu H3B0. 15HgCo
C1z-6HzO50Hg MnC1z・4 HzO20u g NiCl,z・6H2010Hg CuSOa・5H20500Hg EDTA 250HgN
azHPO<・12 Hz 0 645mgK
H2P 04 234mgFe
-EDTA 3.6 mg Distilled water 11 (ptl 6.8
) The activity of the bacterial cells was measured by the method shown below.

菌体を0.5■/dの濃度ノごなやように5mMパイプ
スバッファーに懸濁したちの1 rnlを7威容のマイ
ヤーフラスコに入れ、ここにプロピレン2 mllを加
えてゴム栓で密栓後、45°Cで30秒間、毎分30.
0回転で”振とう攪拌した。次いで、メタノールを1m
Mとなるように加え、さらに3分間振とう培養した後、
ガスクロマトグラフィーにて生成したプロピレンオキサ
イドの量を定量し、菌体1 mgあたり1分間に生成し
たプロピレンオキサイドの量で示した。
Cells were suspended in 5mM Pipes buffer at a concentration of 0.5μ/d, then 1ml was placed in a 7-capacity Mayer flask, 2ml of propylene was added thereto, and the flask was sealed with a rubber stopper. 30 seconds per minute at 45°C.
Shake and stir at 0 rotations. Next, add methanol to 1 m
M, and after further shaking culture for 3 minutes,
The amount of propylene oxide produced was determined by gas chromatography and expressed as the amount of propylene oxide produced per minute per 1 mg of bacterial cells.

実施例7〜10および比較例4.5 実施例1において、プロピレンの代りに1−ブテンを用
いたこと、および反応停止後ブチレンオキサイド除去の
ために毎分42の空気を30分間供給したこと以外は、
実施例1と同様の操作を行なった。この結果を第5表に
示す。
Examples 7 to 10 and Comparative Example 4.5 Example 1 except that 1-butene was used instead of propylene and that air was supplied at 42/min for 30 minutes to remove butylene oxide after the reaction was stopped. teeth,
The same operation as in Example 1 was performed. The results are shown in Table 5.

実施例11−13および比較例6,7 実施例1において、安息香酸ナトリウムの代りに安息香
酸を添加し、0.5 M苛性カリでpHを7.0に調整
したこと以外は、実施例1と同様の操作を行なった。こ
の結果を第6表に示す。
Examples 11-13 and Comparative Examples 6 and 7 Example 1 except that benzoic acid was added instead of sodium benzoate and the pH was adjusted to 7.0 with 0.5 M caustic potassium. A similar operation was performed. The results are shown in Table 6.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、メタン酸化能の低下した菌体の再生を
短時間で開始することができるので、再生に必要なエネ
ルギーが少なくてすむ上に少量の菌体を有効に活用して
目的とする酸化物を連続的に製造することができる。
According to the present invention, the regeneration of bacterial cells with reduced methane oxidation ability can be started in a short time, so the energy required for regeneration is small and a small amount of bacterial cells can be used effectively to achieve the desired purpose. oxides can be produced continuously.

従って、本発明は化学工業2発酵工業、廃水処理などの
分野に有用なものである。
Therefore, the present invention is useful in fields such as chemical industry, fermentation industry, and wastewater treatment.

Claims (3)

【特許請求の範囲】[Claims] (1)反応槽において電子供与体の存在下、アルカン、
アルケンもしくは環状化合物にメタン資化性菌を接触さ
せて酸化物を製造すると共に、生成した酸化物を系外へ
除去し、かつメタン酸化能の低下したメタン資化性菌を
再生槽において再生して該メタン酸化能を回復させたの
ち反応槽に戻して酸化物の製造に供することからなる酸
化物の連続的製法において、反応槽および/または再生
槽に安息香酸またはその金属塩を添加することを特徴と
する酸化物の連続的製法。
(1) In the presence of an electron donor in a reaction tank, an alkane,
Oxides are produced by bringing methane-assimilating bacteria into contact with alkenes or cyclic compounds, and the generated oxides are removed from the system, and the methane-assimilating bacteria whose methane oxidizing ability has decreased are regenerated in a regeneration tank. Adding benzoic acid or its metal salt to the reaction tank and/or regeneration tank in a continuous method for producing an oxide, which involves restoring the methane oxidizing ability by using the oxidation tank and then returning it to the reaction tank for use in the production of the oxide. A continuous production method for oxides characterized by:
(2)安息香酸またはその金属塩を0.1〜8mmol
/lの割合で添加する特許請求の範囲第1項記載の方法
(2) 0.1 to 8 mmol of benzoic acid or its metal salt
2. The method according to claim 1, wherein the addition is carried out in a proportion of 1/1.
(3)メタン資化性菌がメチロコッカス属、メチロモナ
ス属、メチロシヌス属、メチロシスチス属およびメチロ
バクター属の中のいずれかに属するものである特許請求
の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the methane-assimilating bacterium belongs to any one of the genus Methylococcus, genus Methylomonas, genus Methylosinus, genus Methylocystis, and genus Methylobacter.
JP31983487A 1987-11-30 1987-12-17 Continuous production of oxide Granted JPH01160491A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31983487A JPH01160491A (en) 1987-12-17 1987-12-17 Continuous production of oxide
CA 583389 CA1322734C (en) 1987-11-30 1988-11-17 Method for regenerating deactivated microorganisms
DE19883850056 DE3850056T2 (en) 1987-11-30 1988-11-29 Process for the regeneration of deactivated microorganisms.
EP19880119872 EP0318914B1 (en) 1987-11-30 1988-11-29 Method for regenerating deactivated microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31983487A JPH01160491A (en) 1987-12-17 1987-12-17 Continuous production of oxide

Publications (2)

Publication Number Publication Date
JPH01160491A true JPH01160491A (en) 1989-06-23
JPH053279B2 JPH053279B2 (en) 1993-01-14

Family

ID=18114735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31983487A Granted JPH01160491A (en) 1987-11-30 1987-12-17 Continuous production of oxide

Country Status (1)

Country Link
JP (1) JPH01160491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113425681A (en) * 2020-03-19 2021-09-24 北京泰德制药股份有限公司 Emulsion containing amphotericin B

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113425681A (en) * 2020-03-19 2021-09-24 北京泰德制药股份有限公司 Emulsion containing amphotericin B

Also Published As

Publication number Publication date
JPH053279B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
JPH0145356B2 (en)
US4348476A (en) Production of epoxides such as propylene oxide using packed catalytic bed containing moist resting cells exhibiting oxygenase activity
Fergala et al. Behavior of type II methanotrophic bacteria enriched from activated sludge process while utilizing ammonium as a nitrogen source
US5013665A (en) Method for regenerating deactivated microorganisms
US4455373A (en) Microbiological oxidations
JPH01160491A (en) Continuous production of oxide
Kovalenko et al. Epoxidation of propene by microbial cells immobilized on inorhanic supports
JPH01160490A (en) Continuous production of oxide
EP0318914B1 (en) Method for regenerating deactivated microorganisms
CN109988784B (en) Method for catalytically synthesizing pyruvic acid by immobilized glycolic acid oxidase
EP0263403B1 (en) Novel microorganism and method for producing oxygenous compounds with said microorganism
CN111019977B (en) Method for driving methanosarcina methanolica to produce methane
JPH01160479A (en) Reactivation of inactivated microorganism
JP2579595B2 (en) Novel microorganism and method for producing 2,6-naphthalenedicarboxylic acid using the microorganism
JPH01300888A (en) Regeneration of deactivated bacterium
CN1034815C (en) Catalytic oxydation of low carbon hydrocarbon by fixed cells method
JPH053277B2 (en)
JPH01117795A (en) Production of organic oxide
US4824780A (en) Method for producing hydroquinone
GB2081306A (en) Microbiological Oxidations
GB2149783A (en) Microbiological process for the production of aromatic alcohols and aldehydes
JPS61209595A (en) Production of aromatic aldehyde
JPS5847496A (en) Production of hydroquinone
JPH02295488A (en) Production of oxide and/or aldehydes
WO2024015886A2 (en) Process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees