JPH053277B2 - - Google Patents

Info

Publication number
JPH053277B2
JPH053277B2 JP62302584A JP30258487A JPH053277B2 JP H053277 B2 JPH053277 B2 JP H053277B2 JP 62302584 A JP62302584 A JP 62302584A JP 30258487 A JP30258487 A JP 30258487A JP H053277 B2 JPH053277 B2 JP H053277B2
Authority
JP
Japan
Prior art keywords
methane
medium
bacteria
added
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62302584A
Other languages
Japanese (ja)
Other versions
JPH01144984A (en
Inventor
Genshi Suzuki
Daruton Hawaado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP30258487A priority Critical patent/JPH01144984A/en
Priority to CA 583389 priority patent/CA1322734C/en
Priority to DE19883850056 priority patent/DE3850056T2/en
Priority to EP19880119872 priority patent/EP0318914B1/en
Publication of JPH01144984A publication Critical patent/JPH01144984A/en
Publication of JPH053277B2 publication Critical patent/JPH053277B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は酸化物の製造方法に関し、詳しくはメ
タン資化性菌の共酸化能を利用して酸化物を製造
するにあたり、反応系に炭酸ガスおよび/または
無機炭酸塩を添加して共酸化能を向上させること
を特徴とする酸化物の製造方法に関する。 [従来の技術、発明が解決しようとする問題点] メタン資化性菌の有するメタン酸化酵素(メタ
ンモノオキシゲナーゼ)はアルカン、アルケン、
環式化合物等を酸化して相応する酸化物に変換す
る能力を有することが知られている(特公昭58−
31198号)。 しかし、該メタン資化性菌の共酸化能を利用し
て酸化物を製造する場合、該酸化能が低下しやす
く、長時間にわたり安定的に目的とする酸化物を
得ることができなかつた。 [問題点を解決するための手段] そこで本発明者らは、メタン資化性菌の共酸化
能を高める方法について検討を重ねた結果、反応
液中の炭酸イオン濃度を制御することによつて該
メタン資化性菌の共酸化能を高めることができる
ことを見出し、かかる知見に基いて本発明を完成
したのである。 すなわち本発明は、電子供与体の存在下、アル
カン、アルケンもしくは環状化合物にメチロコツ
カス属、メチロモナス属、メチロシヌス属メチロ
シスチス属および、メチロバクテリウム属の中か
ら選ばれた少なくとも1種のメタン資化性菌を接
触させて、原料に相応する酸化物であるアルコー
ル、エポキサイドもしくは環状アルコールを製造
するにあたり、反応系に炭酸ガスおよび/または
無機炭酸塩を加えることを特徴とする酸化物の製
造方法を提供するものである。 本発明において原料として用いるアルカンとし
てはメタン、エタン、プロパン、ブタン、ヘキサ
ン、オクタンなどがあり、アルケンとしてはエチ
レン、プロピレン、ブテン類などがある。また、
環状化合物としてはシクロヘキサンなどの脂環式
化合物:ベンゼン、トルエンなどの芳香族化合物
が挙げられる。 これら原料から誘導される酸化物は、前述した
ように、アルカンからアルコール;アルケンから
エポキサイド;環状化合物から環状アルコールで
ある。 本発明に使用できるメタン資化性菌としては、
たとえばメチロエツカス・カプスラツス
(Methylococcus capsulatus)NCIB 11132など
のメチロコツカス属細菌、メチロモナス・アルバ
ス(Methylomonas albus)NCIB 11123などの
メチロモナス属細菌、メチロシヌス・スポリウム
(Methylosinus sporium)NCIB 11126などのメ
チロシヌス属細菌、メチロシスチス・パルバス
(Methylocystis parvus)NCIB 11129などのメ
チロシスチス属細菌、メチロバクテリウム・オル
ガノフイラム(Methylobacterium
organophilum)ATCC27886などのメチロバクテ
リウム属細菌などを挙げることができる。 上記メタン資化性菌を培養するために用いる倍
地としては該細菌が十分に増殖しうるものであれ
ばよく、通常は炭系源としてメタン、メタノール
などを用いる。また、窒素源としては塩化アンモ
ニウム、硝酸カリウム、硝酸アンモニウムなど常
用のものを使用すればよい。その他にリン酸、カ
ルシウム塩、マグネシウム塩および微量の無機塩
(第2銅塩、第1鉄塩、コバルト塩など)等を適
宜加える。好適な倍地としてホイツテンベリー等
の倍地(J.Gen.Microbiol.、61、205〜208頁、
1970年)がある。倍地を入れた培養容器の空間は
メタンと酸素含有ガス(空気など)との混合ガス
にて置換し、該ガスと接触している培地にメタン
資化性菌を接種する。 本発明に用いるメタン資化性菌は好気性細菌で
あり、その培養は20〜50℃にて好気的条件下に回
分培養もしくは連続培養を行なえばよい。 培養物はそのまま前記原料の酸化反応に使用す
ることができるが、遠心分離等の操作により固液
分離して得た微生物菌体を用いることが好まし
い。さらに、リン酸緩衝液等の適当な溶液で洗浄
し、該溶液に懸濁した微生物菌体は一層好適であ
る。そのほか、微生物菌体破砕物、同抽出物等の
メタン酸化酵素を含むものを使用したり、微生物
菌体を常法により固定化したもの等を使用するこ
ともできる。ここで、破砕処理は常法により行な
えばよく、たとえば微生物菌体を超音波、フレン
チプレスなどにより破砕する方法がある。また、
抽出処理は前記破砕処理をしたのち遠心分離を行
ない可溶性抽出物を得る方法などを採用すること
ができる。 上記メタン資化性菌を原料と接触させるにあた
り、電子供与体を存在させることが必要である。
ここで電子供与体としてはメチルアルコール、エ
チルアルコールなどの低級アルコール;ホルムア
ルデヒド、アセトアルデヒド、プロピオンアルデ
ヒドなどの低級アルデヒド;ギ酸もしくはギ酸ナ
トリウムなどのギ酸塩類;メタン;水素;
NADH2;NADPH2などがある。これらは単独
であるいは組合せて用いる。 上記原料とメタン資化性菌を接触させて酸化物
を得るにあたり、反応系に炭酸ガスおよび/また
は無機炭酸塩を加えることが必要である。炭酸ガ
スを用いる場合、空気:炭酸ガス=1:0.1〜
0.75(容量比)の混合ガスとして用いることが好
ましい。さらに、炭酸ガスを加えると反応液のPH
が低下するため、水酸化カリウム、水酸化ナトリ
ウム、アンモニア等の塩基性物質で中和してPH
5.5〜9.0の範囲で使用すべきである。また、無機
炭酸塩としては、たとえば炭酸カリウム、炭酸ナ
トリウム、重炭酸ナトリウム、炭酸アンモニウム
などがあり、1〜140ミリモル/、好ましくは
1〜130ミリモル/の割合で添加する。最適添
加量は菌株により多少異なる。 なお、上記原料とメタン資化性菌との反応は、
使用する微生物の種類等によつても異なるが、一
般的にはPH5.5〜9.0、温度15〜60℃、好ましくは
20〜50℃の条件で目的とする酸化物が効率よく得
られるように設定すればよい。 この反応により、前述した如く、原料に相応す
るアルコール、エポキサイド、環状アルコールが
得られる。これら生成物は相分離、抽出、蒸留、
吸着等の公知の手法を適用して分離、採取するこ
とができる。 [実施例] 次に、実施例により本発明を詳しく説明する。 実施例 1 下記の培地(1)8を10容ジヤーフアーメンタ
ーに仕込み、120℃で20分間殺菌したのち冷却し
た。一方、別個に120℃で20分殺菌した下記の培
地(2)85mlを該培地(1)に加えた。 同様に培地(1)50mlずつ500ml容マイヤーフラス
コに入れ、120℃で20分間殺菌後、別殺菌した培
地(2)0.5mlを加えたものにメチロコツカス・カプ
スラツスNCIB 11132を1白金耳接種した。その
後、ゴム栓で密栓し、50mlのメタンを加えて45℃
で3日間振とう培養した。 このフラスコ培養液8本を種菌として前記ジヤ
ーフアーメンターに無菌的に仕込んだ後、メタ
ン:空気=1:4(容量比)の混合ガスを毎分4
の割合で供給し、3日間培養した。菌濃度が
1.5mg/mlに達した後、培地(1)と培地(2)を100:
1.5の割合で混合した培地にさらにCuSO4・5H2O
を1mg/の割合で加えて調製した培地を無菌フ
イルターで除菌しながら1.6/時間の割合で供
給して連続的に培養した。 培地(1) 硫酸マグネシウム・7水塩 1.0g 硝酸カリウム 1.0g 塩化カルシウム 50 mg NaMoO4 1 〃 FeSO4・7H2O 500 μg ZnSO4・7H2O 400 μg H3BO4 15 〃 CoCl2・6H2O 50 〃 MnCl2・4H2O 20 〃 NiCl2・6H2O 10 〃 CuSO4・5H2O 200 〃 EDTA 250 〃 蒸留水 1 培地(2) Na2HPO4・12H2O 43g KH2PO4 15.6g Fe−EDTA 240mg 蒸留水 1 PH 6.8 上記した方法にしたがつて連続培養したメチロ
コツカス・カプスラツスNCIB 11132株の培養液
20mlを遠心分離し、5mMパイプスバツフアー
(PH6.8、CuSO4・5H2O 10μMを含む)に菌濃度
が0.5mg/mlとなるように懸濁した。 この懸濁液1mlを7ml容のマイヤーフラスコに
入れ、さらに重炭酸ナトリウムを種々の濃度とな
るように加えてゴム栓し、次いで、プロピレン2
mlを加え、45℃で300rpmにて30秒間振とう撹拌
した後、直ちにメタノールを1mMとなるように
加えて45℃で3分間振とう撹拌し、生成したプロ
ピレンオキサイドをガスクロマトグラフイーにて
定量した。結果を第1表に示す。 第1表 重炭酸ナトリウム プロピレンオキサイド 添加量 生成量(m mol/) (n mol/ml) 0 410 5 542 12 603 24 645 50 698 120 668 140 590 実施例 2 実施例1に示した培養方法にしたがつて連続培
養したメチロコツカス・カプスラツス
NCIB11132の培養液400mlを遠心分離して得た菌
体を新しい培地(前記培地(1)と培地(2)を100:1.5
の割合で混合したものにCuSO4・5H2Oを1mg/
の割合で加えて調製したもの)に菌濃度が1
mg/mlとなるように懸濁した。 この懸濁液400mlを1容ジヤーフアーメンタ
ーに入れ、空気を毎分80mlの割合で供給した。温
度を45℃に保ち種々の流量で炭酸ガスを30分間供
給すると共に4M水酸化カリウムでPH6.8に調節し
た。炭酸ガス供給30分後、プロピレン320ml/分、
メタノール120μmol/分の割合で15分間供給し、
プロピレンオキサイドを生産せしめた。ガス中お
よび反応液中に生成したプロピレンオキサイド量
をガスクロマトグラフイーにて定量した。結果を
第2表に示す。 第2表 プロピレンオキサイド 炭酸ガス供給量 生成量(ml/分) (m mol/l) 0 1.10 8 1.59 30 1.98 60 1.67 実施例 3、4 前記培地(1)と培地(2)を100:1.5の割合で混合し
た培地にさらにCuSO4・5H2Oを0.3mg/の割合
で加えた培地を、あらかじめ乾熱殺菌した2.5
容のマイヤーフラスコに無菌フイルターを通して
250ml仕込んだ。 同じ培地を500ml容のマイヤーフラスコに50ml
仕込み、メチロモナス、アルバス NCIB 11123
およびメチロシヌス・スポリウム NCIB 11126
をそれぞれ1白金耳接種し、メタン50mlを加えた
後、ブチルゴム栓で密栓した。次いで、30℃で3
日間振とう培養したものを殺菌とし、上記2.5
容のマイヤーフラスコに仕込んだ。さらに、メタ
ン500mlを加え、シリコンゴム栓をした後、30℃
で24時間振とう培養した。 その後、菌体を遠心分離により集め、CuSO4
5H2O 0.5mg/を含む4mMリン酸バツフアー
(PH6.8)で2回洗浄した。さらに、菌濃度が0.5
mg/mlとなるように同一バツフアーに懸濁した。 この懸濁液1mlを7ml容のマイヤーフラスコに
入れ、さらに重炭酸ナトリウムを種々の濃度とな
るように加えてゴム栓をし、直ちにプロピレン2
mlを加えた。この懸濁液を45℃、300rpmで30秒
間振とう撹拌した後、直ちにメタノールを1mM
となるように加え、45℃で3分間振とう撹拌し、
生成したプロピレンオキサイドをガスクロマトグ
ラフイーにて定量した。 結果を第4表に示す。
[Industrial Application Field] The present invention relates to a method for producing oxides, and more specifically, in producing oxides by utilizing the co-oxidation ability of methane-assimilating bacteria, carbon dioxide and/or inorganic carbonates are added to the reaction system. The present invention relates to a method for producing an oxide, characterized in that the co-oxidation ability is improved by adding. [Prior art and problems to be solved by the invention] Methane oxidase (methane monooxygenase) possessed by methane-assimilating bacteria can produce alkanes, alkenes,
It is known that it has the ability to oxidize cyclic compounds and convert them into corresponding oxides (Special Publication No. 1983-
31198). However, when producing oxides using the co-oxidation ability of the methane-assimilating bacteria, the oxidation ability tends to decrease, making it impossible to stably obtain the desired oxide over a long period of time. [Means for Solving the Problems] Therefore, the present inventors have repeatedly investigated ways to increase the co-oxidation ability of methane-assimilating bacteria, and have found that by controlling the carbonate ion concentration in the reaction solution. It was discovered that the co-oxidation ability of the methane-assimilating bacteria could be increased, and the present invention was completed based on this knowledge. That is, the present invention provides an alkane, an alkene, or a cyclic compound in which at least one species selected from the genus Methylococcus, Methylomonas, Methylocinus, Methylocystis, and Methylobacterium has methane-assimilating properties. Provided is a method for producing an oxide, which comprises adding carbon dioxide gas and/or an inorganic carbonate to the reaction system when bringing bacteria into contact with each other to produce alcohol, epoxide, or cyclic alcohol that is an oxide corresponding to a raw material. It is something to do. Alkanes used as raw materials in the present invention include methane, ethane, propane, butane, hexane, and octane, and alkenes include ethylene, propylene, butenes, and the like. Also,
Examples of the cyclic compound include alicyclic compounds such as cyclohexane, and aromatic compounds such as benzene and toluene. As mentioned above, the oxides derived from these raw materials are alcohols from alkanes; epoxides from alkenes; and cyclic alcohols from cyclic compounds. Methane-assimilating bacteria that can be used in the present invention include:
For example, Methylococcus bacteria such as Methylococcus capsulatus NCIB 11132, Methylomonas bacteria such as Methylomonas albus NCIB 11123, Methylocinus bacteria such as Methylosinus sporium NCIB 11126, Methylocystis parbus ( Methylocystis bacteria such as NCIB 11129 (Methylocystis parvus), Methylobacterium organophyllum (Methylobacterium
Examples include Methylobacterium bacteria such as (organophilum) ATCC27886. The medium used for culturing the above-mentioned methane-assimilating bacteria may be any medium as long as the bacteria can sufficiently proliferate, and methane, methanol, etc. are usually used as the charcoal source. In addition, commonly used nitrogen sources such as ammonium chloride, potassium nitrate, and ammonium nitrate may be used. In addition, phosphoric acid, calcium salts, magnesium salts, trace amounts of inorganic salts (cupric salts, ferrous salts, cobalt salts, etc.), etc. are added as appropriate. As a suitable medium, whittenberry medium (J.Gen.Microbiol., 61 , pp. 205-208,
1970). The space in the culture container containing the medium is replaced with a mixed gas of methane and oxygen-containing gas (air, etc.), and the medium in contact with the gas is inoculated with methane-assimilating bacteria. The methane-assimilating bacteria used in the present invention are aerobic bacteria, and may be cultured by batch culture or continuous culture at 20 to 50°C under aerobic conditions. Although the culture can be used as it is in the oxidation reaction of the raw material, it is preferable to use microbial cells obtained by solid-liquid separation by an operation such as centrifugation. Furthermore, microbial cells washed with a suitable solution such as a phosphate buffer and suspended in the solution are more suitable. In addition, it is also possible to use materials containing methane oxidase, such as crushed microbial cells and extracts thereof, or those obtained by immobilizing microbial cells by a conventional method. Here, the crushing treatment may be carried out by a conventional method, such as a method in which microbial cells are crushed by ultrasonic waves, a French press, or the like. Also,
For the extraction treatment, a method such as the above-mentioned crushing treatment followed by centrifugation to obtain a soluble extract can be adopted. When bringing the methane-assimilating bacteria into contact with the raw material, it is necessary to have an electron donor present.
Here, electron donors include lower alcohols such as methyl alcohol and ethyl alcohol; lower aldehydes such as formaldehyde, acetaldehyde, and propionaldehyde; formic acid or formate salts such as sodium formate; methane; hydrogen;
NADH 2 ; NADPH 2 , etc. These may be used alone or in combination. In order to obtain an oxide by bringing the above-mentioned raw material into contact with methane-assimilating bacteria, it is necessary to add carbon dioxide gas and/or inorganic carbonate to the reaction system. When using carbon dioxide gas, air: carbon dioxide gas = 1:0.1 ~
It is preferable to use it as a mixed gas of 0.75 (volume ratio). Furthermore, when carbon dioxide is added, the pH of the reaction solution increases.
The pH decreases, so neutralize it with basic substances such as potassium hydroxide, sodium hydroxide, ammonia, etc.
Should be used in the range 5.5 to 9.0. Examples of inorganic carbonates include potassium carbonate, sodium carbonate, sodium bicarbonate, and ammonium carbonate, which are added at a rate of 1 to 140 mmol/, preferably 1 to 130 mmol/. The optimal amount to add varies somewhat depending on the strain. The reaction between the above raw materials and methane-assimilating bacteria is as follows:
Although it varies depending on the type of microorganism used, generally the pH is 5.5 to 9.0, the temperature is 15 to 60℃, preferably
The temperature may be set so that the desired oxide can be obtained efficiently under conditions of 20 to 50°C. Through this reaction, as described above, alcohols, epoxides, and cyclic alcohols corresponding to the raw materials are obtained. These products can be phase separated, extracted, distilled,
It can be separated and collected by applying known techniques such as adsorption. [Example] Next, the present invention will be explained in detail with reference to Examples. Example 1 The following medium (1) 8 was placed in a 10 volume jar fermenter, sterilized at 120°C for 20 minutes, and then cooled. On the other hand, 85 ml of the following medium (2), which had been separately sterilized at 120°C for 20 minutes, was added to the medium (1). Similarly, 50 ml of the medium (1) was placed in a 500 ml Mayer flask, sterilized at 120°C for 20 minutes, and 0.5 ml of the separately sterilized medium (2) was added, followed by inoculation of one platinum loop of Methylococcus capsulatus NCIB 11132. After that, seal it tightly with a rubber stopper, add 50ml of methane, and raise the temperature to 45°C.
The cells were cultured with shaking for 3 days. After aseptically charging these 8 flask culture fluids into the jar fermenter as seed bacteria, a mixed gas of methane:air = 1:4 (volume ratio) was added at 4/min.
and cultured for 3 days. Bacteria concentration
After reaching 1.5 mg/ml, mix medium (1) and medium (2) to 100:
Add CuSO 4 5H 2 O to the mixed medium at a ratio of 1.5
A medium prepared by adding 1 mg/h of the culture medium was supplied at a rate of 1.6/h while sterilizing the cells using a sterile filter, and cultured continuously. Medium (1) Magnesium sulfate/heptahydrate 1.0g Potassium nitrate 1.0g Calcium chloride 50 mg NaMoO 4 1 〃 FeSO 4・7H 2 O 500 μg ZnSO 4・7H 2 O 400 μg H 3 BO 4 15 〃 CoCl 2・6H 2 O 50 〃 MnCl 2・4H 2 O 20 〃 NiCl 2・6H 2 O 10 〃 CuSO 4・5H 2 O 200 〃 EDTA 250 〃 Distilled water 1 Medium (2) Na 2 HPO 4・12H 2 O 43g KH 2 PO 4 15.6g Fe-EDTA 240mg Distilled water 1 PH 6.8 Culture solution of Methylococcus capsulatus NCIB 11132 strain continuously cultured according to the above method
20ml was centrifuged and suspended in 5mM pipe buffer (PH6.8, containing 10μM of CuSO 4 .5H 2 O) to a bacterial concentration of 0.5mg/ml. 1 ml of this suspension was placed in a 7 ml Mayer flask, sodium bicarbonate was added to it at various concentrations, the rubber stopper was sealed, and then 2 ml of propylene was added.
ml and stirred at 45°C for 30 seconds at 300 rpm. Immediately added methanol to 1mM and stirred at 45°C for 3 minutes. Propylene oxide was quantified by gas chromatography. . The results are shown in Table 1. Table 1 Sodium bicarbonate Amount of propylene oxide added Amount produced (m mol/) (n mol/ml) 0 410 5 542 12 603 24 645 50 698 120 668 140 590 Example 2 The culture method shown in Example 1 was used. Methylococcus capsulatus continuously cultured
The cells obtained by centrifuging 400 ml of NCIB11132 culture solution were added to a new medium (the above medium (1) and medium (2) were mixed at 100:1.5).
Add 1 mg/CuSO 4 5H 2 O to the mixture at the ratio of
(prepared by adding at a ratio of
It was suspended at mg/ml. 400 ml of this suspension was placed in a 1 volume jar fermenter, and air was supplied at a rate of 80 ml per minute. The temperature was maintained at 45°C, carbon dioxide gas was supplied at various flow rates for 30 minutes, and the pH was adjusted to 6.8 with 4M potassium hydroxide. After 30 minutes of carbon dioxide gas supply, propylene 320ml/min,
Supply methanol at a rate of 120 μmol/min for 15 minutes,
Propylene oxide was produced. The amount of propylene oxide produced in the gas and reaction solution was determined by gas chromatography. The results are shown in Table 2. Table 2 Propylene oxide carbon dioxide supply amount Production amount (ml/min) (m mol/l) 0 1.10 8 1.59 30 1.98 60 1.67 Examples 3 and 4 The above medium (1) and medium (2) were mixed in a ratio of 100:1.5. A medium prepared by adding CuSO 4 .5H 2 O at a ratio of 0.3 mg/2.5 to a mixed medium at a ratio of 2.5
Pass it through a sterile filter into a Meyer flask.
I prepared 250ml. Add 50 ml of the same medium to a 500 ml Meyer flask.
Preparation, Methylomonas, albus NCIB 11123
and Metylocinus sporium NCIB 11126
One platinum loop of each was inoculated, 50 ml of methane was added, and the tubes were sealed with butyl rubber stoppers. Then, at 30℃
Sterilize the cultured product with shaking for 1 day, and sterilize it.
I put it in a Mayer flask. Furthermore, after adding 500ml of methane and sealing with a silicone rubber stopper, the temperature was raised to 30°C.
The cells were cultured with shaking for 24 hours. Thereafter, the bacterial cells were collected by centrifugation and treated with CuSO4 .
It was washed twice with 4mM phosphate buffer (PH6.8) containing 0.5mg/ 5H2O . In addition, the bacterial concentration is 0.5
It was suspended in the same buffer at mg/ml. Pour 1 ml of this suspension into a 7 ml Mayer flask, add sodium bicarbonate at various concentrations, seal with a rubber stopper, and immediately add 2 ml of propylene.
Added ml. After stirring this suspension at 45℃ and 300 rpm for 30 seconds, methanol was immediately added to 1mM.
Add so that
The produced propylene oxide was quantified by gas chromatography. The results are shown in Table 4.

【表】 実施例 5 実施例1において、培地中の硫酸マグネシウム
濃度を3.0g/にしたことおよび培養温度を33
℃にしたこと以外は、実施例1と同様の方法でメ
チロシスチス・パルバス NCIB 11129を連続培
養した。 次いで、菌体を遠心分離により集め、実施例3
および4と同様の方法で重炭酸ナトリウムの添加
効果を調べた。結果を第5表に示す。 第5表 重炭酸ナトリウム プロピレンオキサイド 添加量 生成量(m mol/l) (n mol/ml) 0 515 1 540 2 731 3 720 5 703 7 684 12 695 24 626 120 251 [発明の効果] メタン資化性菌の共酸化能を利用してアルカン
等の原料から相応する酸化物を製造するにあた
り、反応系に安価な炭酸源を加えることにより、
菌体の活性を高め、単位菌体当りの目的酸化物の
生産量を向上させることができる。 この方法は、有用物質の製造に利用されるほ
か、廃水処理等の分野にも適用される。
[Table] Example 5 In Example 1, the concentration of magnesium sulfate in the medium was set to 3.0 g/
Methylocystis parvus NCIB 11129 was continuously cultured in the same manner as in Example 1, except that the temperature was changed to .degree. Next, the bacterial cells were collected by centrifugation, and Example 3
The effect of adding sodium bicarbonate was investigated in the same manner as in 4. The results are shown in Table 5. Table 5 Sodium bicarbonate Amount of propylene oxide added Amount produced (m mol/l) (n mol/ml) 0 515 1 540 2 731 3 720 5 703 7 684 12 695 24 626 120 251 [Effects of the invention] Methane utilization When producing the corresponding oxide from raw materials such as alkanes using the co-oxidation ability of sex bacteria, by adding an inexpensive carbonate source to the reaction system,
It is possible to increase the activity of the microbial cells and improve the production amount of the target oxide per unit of microbial cells. In addition to being used to produce useful substances, this method is also applied to fields such as wastewater treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 電子供与体の存在下、アルカン、アルケンも
しくは環状化合物にメチロコツカス属、メチロモ
ナス属、メチロシヌス属、メチロシスチス属およ
びメチロバクテリウム属の中から選ばれた少なく
とも1種のメタン資化性菌を接触させて、原料に
相応する酸化物であるアルコール、エポキサイド
もしくは環状アルコールを製造するにあたり、反
応系に炭酸ガスおよび/または無機炭酸塩を加え
ることを特徴とする酸化物の製造方法。
1. In the presence of an electron donor, at least one methane-assimilating bacterium selected from the genus Methylococcus, Methylomonas, Methylocinus, Methylocystis, and Methylobacterium is brought into contact with an alkane, alkene, or a cyclic compound. A method for producing an oxide, which comprises adding carbon dioxide gas and/or an inorganic carbonate to a reaction system when producing alcohol, epoxide, or cyclic alcohol, which is an oxide corresponding to a raw material.
JP30258487A 1987-11-30 1987-11-30 Production of oxide Granted JPH01144984A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30258487A JPH01144984A (en) 1987-11-30 1987-11-30 Production of oxide
CA 583389 CA1322734C (en) 1987-11-30 1988-11-17 Method for regenerating deactivated microorganisms
DE19883850056 DE3850056T2 (en) 1987-11-30 1988-11-29 Process for the regeneration of deactivated microorganisms.
EP19880119872 EP0318914B1 (en) 1987-11-30 1988-11-29 Method for regenerating deactivated microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30258487A JPH01144984A (en) 1987-11-30 1987-11-30 Production of oxide

Publications (2)

Publication Number Publication Date
JPH01144984A JPH01144984A (en) 1989-06-07
JPH053277B2 true JPH053277B2 (en) 1993-01-14

Family

ID=17910738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30258487A Granted JPH01144984A (en) 1987-11-30 1987-11-30 Production of oxide

Country Status (1)

Country Link
JP (1) JPH01144984A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847494A (en) * 1977-07-04 1983-03-19 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Production of oxide by bacteria
JPS5948088A (en) * 1982-06-28 1984-03-19 エクソン・リサ−チ・アンド・エンヂニアリング・コムパニ− Microbiological oxidation of alkane, vinyl compound and secondary alcohol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847494A (en) * 1977-07-04 1983-03-19 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Production of oxide by bacteria
JPS5948088A (en) * 1982-06-28 1984-03-19 エクソン・リサ−チ・アンド・エンヂニアリング・コムパニ− Microbiological oxidation of alkane, vinyl compound and secondary alcohol

Also Published As

Publication number Publication date
JPH01144984A (en) 1989-06-07

Similar Documents

Publication Publication Date Title
CN104822824A (en) Genetically engineered microorganisms for biological oxidation of hydrocarbons
US4348476A (en) Production of epoxides such as propylene oxide using packed catalytic bed containing moist resting cells exhibiting oxygenase activity
De Bont et al. Ethylene oxide production by immobilized Mycobacterium Py1 in a gas-solid bioreactor
JPS5847494A (en) Production of oxide by bacteria
US4250259A (en) Microbiological production of ketones from C3 -C6 secondary alcohols
US5013665A (en) Method for regenerating deactivated microorganisms
CA1148488A (en) Epoxidation of lower alpha-olefins
Imai et al. Microbial oxidation of hydrocarbons and related compounds by whole-cell suspensions of the methane-oxidizing bacterium H-2
JPH053277B2 (en)
CA1183091A (en) Microbiological oxidations
Wang et al. Regio‐and Stereoselective Allylic Hydroxylation of d‐Limonene to (+)‐trans‐Carveol with Cellulosimicrobium cellulans EB‐8‐4
EP0098138A2 (en) Microbial cells and the use thereof to produce oxidation products
Schreiber et al. Transformation of tetralin by whole cells of Pseudomonas stutzeri AS39
Hou Other applied aspects of methylotrophs
US4268630A (en) Microbiological production of ketones from C3 -C6 alkanes
JPH053279B2 (en)
JPH01117795A (en) Production of organic oxide
JPH0588105B2 (en)
JPH0475755B2 (en)
JPH02295488A (en) Production of oxide and/or aldehydes
CA1322734C (en) Method for regenerating deactivated microorganisms
JPH053278B2 (en)
CA1175766A (en) Continuous bio-reactor (heterogeneous catalysis) especially adapted for the production of epoxides such as propylene oxide
Kovalenko Selective oxidation of gaseous hydrocarbons by bacterial cells
SU1752767A1 (en) Strain of bacteria rhodococcus erythropolis - a producer of eropxydizing mono-oxygenase

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees