JPH01159451A - Manufacture of end combustion type rocket motor by direct filling system - Google Patents

Manufacture of end combustion type rocket motor by direct filling system

Info

Publication number
JPH01159451A
JPH01159451A JP31611387A JP31611387A JPH01159451A JP H01159451 A JPH01159451 A JP H01159451A JP 31611387 A JP31611387 A JP 31611387A JP 31611387 A JP31611387 A JP 31611387A JP H01159451 A JPH01159451 A JP H01159451A
Authority
JP
Japan
Prior art keywords
insulator
propellant
motor case
motor
rocket motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31611387A
Other languages
Japanese (ja)
Other versions
JPH03500B2 (en
Inventor
Akira Yokoyama
横山 章
Tsuneo Miyamoto
宮本 凡生
Nobuo Fukazawa
深沢 信男
Toshiyuki Anami
阿南 敏行
Hideo Funayama
船山 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRUMAGAWA RUBBER KK
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Asahi Chemical Industry Co Ltd
Original Assignee
IRUMAGAWA RUBBER KK
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRUMAGAWA RUBBER KK, Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency, Asahi Chemical Industry Co Ltd filed Critical IRUMAGAWA RUBBER KK
Priority to JP31611387A priority Critical patent/JPH01159451A/en
Publication of JPH01159451A publication Critical patent/JPH01159451A/en
Publication of JPH03500B2 publication Critical patent/JPH03500B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulating Bodies (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To keep off any deflection in a propellant based on a difference between a motor case and a thermal expansion characteristic of this propellant by inserting a deformable insulator, installing an angular projection on an inner surface in the axial direction, into the motor case, and making it partially contact with the case at a projection back part. CONSTITUTION:In an end combustion type rocket motor, a deformable insulator 8, formed with an angular projection 9 describing a smooth cirve on the inner surface in the axial direction of the rocket motor, is inserted into a motor case 1. Then, this insulator 8 is made partially contact with the motor case 1 at a projection back part, and a propellant is filled up in this insulator 8. The said projection 9 is installed for easing an concentrated stress when this concentrated stress due to contraction of the propellant has occurred in a bonded part terminal between the motor case 1 and the insulator 8, and bottom length (b) of this projection 9 should be larger than bonding line length (a) in the circumferential direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は直填方式により製造される端面燃焼型ロケット
モータの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing an end-burning rocket motor manufactured by a direct loading method.

[従来の技術] ロケットモータは一般に第6.7図に示すごとくモータ
ケース1に推進薬2を入れ、イグナイタ5により推進薬
表面に着火させ、その燃焼ガスがノズル4から噴出する
ことにより所定の推力を得ている。この推力は単位時間
にノズルから出るガスの量で決まるが、このガス量は推
進薬が単位時間に燃焼する量に等しく、推力のコントロ
ールは推進薬の燃焼量、すなわち燃焼面積と燃焼速度の
積をコントロールすることによっている。従って大きい
推力を得るには、燃焼面積と燃焼速度の積の大きい設バ
1とする必要がある。燃焼面積の増大をはかるには一般
に内面燃焼型とよばれる形状、すなわち第6図に示すご
とく推進薬2中央部に穴を設け、その穴の表面積が大ぎ
くできるような形状としている。しかし、この場合穴が
不可欠であるため、推進薬の充填率はどうしても低下す
ることは避けられず、約88%が限度である。この点を
改良するため近年燃焼速度が大きい推進薬を作り、中に
穴を設けないで端面から燃焼させる、いわゆる第7図に
示すような端面燃焼型のロケットモータが研究されてい
る。この端面燃焼型のロケットモータでは充填率は90
%以上にすることができるが、推進薬とモータケースの
熱膨張係数が異なり、且つ密に充@されるため、特に低
温では熱応力によりクラックを発生し、ロケットモータ
が燃焼時に爆発することがあるのでこの熱応力を緩和し
なければならない。
[Prior Art] In general, a rocket motor has a propellant 2 placed in a motor case 1 as shown in FIG. It's gaining thrust. This thrust is determined by the amount of gas emitted from the nozzle per unit time, which is equal to the amount of propellant burned per unit time, and the thrust is controlled by the amount of propellant burned, that is, the product of the burning area and burning speed. By controlling the Therefore, in order to obtain a large thrust, it is necessary to install the bar 1 with a large product of combustion area and combustion speed. In order to increase the combustion area, the shape is generally called an internal combustion type, that is, a hole is provided in the center of the propellant 2, as shown in FIG. 6, and the surface area of the hole is increased. However, in this case, since the holes are essential, the propellant filling rate inevitably decreases, and is limited to about 88%. In order to improve this point, in recent years research has been carried out on so-called end-burning type rocket motors, as shown in Figure 7, in which a propellant with a high burning speed is made and the propellant is burnt from the end face without providing a hole in the propellant. In this end-burning rocket motor, the filling rate is 90.
% or more, but because the thermal expansion coefficients of the propellant and motor case are different and they are packed tightly, cracks may occur due to thermal stress, especially at low temperatures, and the rocket motor may explode during combustion. Therefore, this thermal stress must be alleviated.

このためモータケースと推進薬を全く接着しない方式で
いわゆるフリースタンド方式、すなわち側面レストリク
タフを貼った推進薬を別に製作し、後にモータケースに
組み込む方法がとられていた。通常、第7図に示すごと
く、モータケース1はその両端又は片端にねじ等により
後部又は前部の鏡板3.6を取付けるため、内面突起部
を設ける必要がある。
For this reason, a so-called free-standing method was used in which the motor case and propellant were not glued together at all, in other words, the propellant with side restrictive toughness was separately manufactured and later assembled into the motor case. Normally, as shown in FIG. 7, the motor case 1 needs to have an inner surface protrusion at both ends or one end thereof to attach a rear or front mirror plate 3.6 with screws or the like.

この突起部があるとこの突起部より小さい径の推進薬し
か入らず、ロケットモータに隙間の多いものができ推進
薬を多く充填することができない。それを改良するため
インシュレータを直接モータケースに接着し、推進薬を
後から注型、硬化させる、いわゆる直填方式をこの端面
燃焼型ロケットモータに適応することが検討されたが、
モータケースと推進薬の熱膨張特性が異なるため低温時
には熱応力によりモータケースと推進薬に剥離が生じ燃
焼において異常が発生していた。さらに推進薬をモータ
ケースに組み込む際、推進薬条長が長い場合、推進薬が
たわみ推進薬に欠陥部が生じたり、側面に凹凸がある場
合、組み込みが困難な場合も発生し手直し等が必要であ
った。
If this protrusion exists, only a propellant with a diameter smaller than the protrusion can enter, and the rocket motor will have many gaps, making it impossible to fill it with a large amount of propellant. In order to improve this, it was considered to apply the so-called direct loading method to this edge-burning rocket motor, in which the insulator is directly glued to the motor case and the propellant is poured and hardened afterwards.
Because the thermal expansion characteristics of the motor case and the propellant are different, at low temperatures, thermal stress causes separation between the motor case and the propellant, resulting in combustion abnormalities. Furthermore, when assembling the propellant into the motor case, if the propellant length is long, the propellant may deflect and cause defects in the propellant, or if there are irregularities on the sides, it may be difficult to assemble the propellant, which may require modification. Met.

[発明が解決しようとする問題点] 本発明はモータケースと推進薬の熱膨張特性の差に基づ
く推進薬のたわみを防止し、かつ、推進薬の充填率が大
きい端面燃焼型ロケットモータを提供しようとするもの
である。
[Problems to be Solved by the Invention] The present invention provides an end-burning rocket motor that prevents deflection of the propellant due to the difference in thermal expansion characteristics between the motor case and the propellant, and has a large propellant filling rate. This is what I am trying to do.

[問題点を解決するための手段] すなわち、本発明は、端面燃焼型ロケットモータにおい
て、内面になめらかな曲線を描く山形の突起をロケット
モータの機軸方向に有する変形可能なインシュレータを
モーターケース内に挿入し、上記突起背面部において、
部分的にモータケースと接着し、このインシュレータ内
部に推進薬を充填することを特徴とする直填方式による
端面燃焼型ロケットモータの製造方法に関するものであ
る。
[Means for Solving the Problems] That is, the present invention provides an edge-burning rocket motor in which a deformable insulator having a chevron-shaped protrusion drawing a smooth curve on the inner surface in the direction of the axis of the rocket motor is placed inside the motor case. Insert it, and at the back of the protrusion,
The present invention relates to a method for manufacturing an edge-burning rocket motor using a direct loading method, which is characterized by partially adhering to a motor case and filling the inside of this insulator with propellant.

本発明におけるインシュレータはロケットモータの機軸
方向に部分的に接着するが、モータケースとインシュレ
ータの接着は推進薬に非対称な力が加わることを避ける
ため均等にした方が好ましい。その接着箇所は第1図に
示すごとく1つ及び複数であっても良く、好まし−くは
応力を分散させることから複数が良く、更に好ましくは
第2−a、3−a図に示すごとく推進薬の収縮位置を対
向させないため、奇数が良い。また、円周に対する接着
比率は、ロケットモータに加わる加速度に対し推進薬が
十分保持できる様にする必要があるが、モータケースと
推進薬の熱膨張係数が異なるため低温にした時には、接
着界面に非常に大ぎな応力が加わるので、接着部面積の
割合は50%以下が好ましい。また、未接着部に燃焼ガ
スが侵入できる構成とする必要がある。また、モータケ
ースの保護のためインシュレータ材をモータケース内側
に全面接着したモータケースに、さらに本発明インシュ
レータを接着しても良い。また、インシュレータの突起
部9はモータケースとインシュレータの接着部端末に推
進薬の収縮による集中応力が発生するので、その集中応
力を緩和させるために設けるものであり、第2−b図に
示す如く、その突起部9の底部長すは円周方向における
接着線長aより大きくする必要がある。また、突起は例
えば第1〜3−b図に示すごとく1つ又は複数であって
も良い。この時、構成する円弧の半径r1〜r3が小さ
いと、そこに応力が集中し、2mm未満では応力が非常
に大きいので、半径としては2mm以上が好ましい。ま
た、上限は突起の高さC及び推進薬の充填率により選択
することができる・このインシュレータ接着部の材質は
特に限定されないが、熱応力緩和のため自由に変形する
必要がありプラスチックやゴム製が好ましい。また、端
面燃焼型ロケットモータは特に後部鏡板側では長時間高
温燃焼ガスによるアブレーションをうけるのでこれに耐
える材質が好ましい。例えば炭酸マグネシウム等の減熱
剤、アスベスト等の耐熱剤を充填剤として含むプラスチ
ック、ゴム等を接着部に用いる方法がある。
Although the insulator in the present invention is partially bonded in the axial direction of the rocket motor, it is preferable that the bonding between the motor case and the insulator be uniform to avoid applying an asymmetrical force to the propellant. The number of bonding points may be one or more as shown in Figure 1, preferably multiple to disperse stress, and more preferably as shown in Figures 2-a and 3-a. Odd numbers are good because the propellant contraction positions are not opposed to each other. In addition, the adhesive ratio to the circumference must be such that the propellant can be held sufficiently against the acceleration applied to the rocket motor, but since the thermal expansion coefficients of the motor case and the propellant are different, when the temperature is lowered, the adhesive interface Since a very large stress is applied, it is preferable that the ratio of the bonded area is 50% or less. Further, it is necessary to adopt a structure that allows combustion gas to enter the unbonded portion. Further, the insulator of the present invention may be further bonded to a motor case in which an insulator material is bonded to the entire inside of the motor case to protect the motor case. In addition, the protrusion 9 of the insulator is provided to relieve the concentrated stress that occurs at the end of the bond between the motor case and the insulator due to contraction of the propellant, as shown in Figure 2-b. , the bottom length of the projection 9 needs to be larger than the adhesive line length a in the circumferential direction. Furthermore, the number of protrusions may be one or more as shown in Figures 1 to 3-b, for example. At this time, if the radii r1 to r3 of the constituent arcs are small, stress will be concentrated there, and if the radius is less than 2 mm, the stress will be very large, so the radius is preferably 2 mm or more. In addition, the upper limit can be selected depending on the height C of the protrusion and the filling rate of the propellant.The material of this insulator bonding part is not particularly limited, but it must be able to deform freely to relieve thermal stress, so it may be made of plastic or rubber. is preferred. In addition, since the edge-burning type rocket motor is subject to ablation by high-temperature combustion gas for a long period of time, especially on the rear end plate side, it is preferable to use a material that can withstand this ablation. For example, there is a method of using plastic, rubber, or the like containing a heat reducing agent such as magnesium carbonate or a heat resisting agent such as asbestos as a filler for the adhesive portion.

このインシュレータを製作する場合、金型が一般的に使
われる。このような充填剤を含むインシュレータは流動
性が低いため目標とする突起部の形状を作ることが難し
い場合がある。この場合、この突起部はインシュレータ
の役割はないので流動性の高いゴムに変えても良い。ま
た、インシュレータの厚みは燃焼火炎温度、ガス流速、
燃焼時間等により決める必要がある。端面燃焼型ロケッ
トモータの場合、後部鏡板側のインシュレータは前部鏡
板側に比べ火炎にさらされる時間が長いので厚くし、前
部鏡板側から後部鏡板側へ匂配をもたせ、充填率を高め
ることができる。このインシュレータをモータケースに
部分的に接着する方法として、インシュレータ又はモー
タケースの非接着部分に離型材を使い接着部分に接着剤
を塗布し、エアーバック等により加圧し接着する方法が
ある。
When manufacturing this insulator, a mold is generally used. Since an insulator containing such a filler has low fluidity, it may be difficult to form a target protrusion shape. In this case, since this protrusion does not play the role of an insulator, it may be replaced with highly fluid rubber. In addition, the thickness of the insulator depends on the combustion flame temperature, gas flow rate,
It is necessary to decide based on combustion time, etc. In the case of an end-burning rocket motor, the insulator on the rear head plate side is exposed to flame for a longer time than the front head plate side, so it should be made thicker, and the insulator should be made thicker to provide scent from the front head plate side to the rear head plate side to increase the filling rate. Can be done. As a method of partially adhering this insulator to the motor case, there is a method of applying a release material to the non-adhered parts of the insulator or motor case, applying adhesive to the adhering parts, and applying pressure with an air bag or the like to adhere the parts.

本発明の特徴は部分的に機軸方向にモータケースとイン
シュレータを接着し、且つ集中応力により推進薬にクラ
ックが入ることを防止することであり、接着していない
部分については特にその構成に制限はなく、例えば第4
−a図のごとく硬質のFRPII等も使用してよい。
The feature of the present invention is that the motor case and the insulator are partially bonded in the axial direction, and the propellant is prevented from cracking due to concentrated stress, and there are no particular restrictions on the structure of the parts that are not bonded. For example, the fourth
Hard FRPII or the like may also be used as shown in figure -a.

また、推進薬としては一般的に直填に供せられる推進薬
であれば良い。例えばCTPB系、HTPB系等コンポ
ジット推進薬、ダブルベース推進薬、コンポジットダブ
ルベース推進薬等がある。
Further, the propellant may be any propellant that can be generally used for direct loading. Examples include composite propellants such as CTPB series and HTPB series, double base propellants, and composite double base propellants.

[実施例] 以下、実施例によって本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 使用した材料及び供試体の試験条件は次の通りである。Example 1 The materials used and test conditions for the specimen are as follows.

まず、モータケースは外径216mm、内径200mm
とし、インシュレータは第5図に示すような全長120
0mm、厚みは前部鏡板  ・側で1mm、後部鏡板側
で3.5mmとし、第2−aおよび2−b図に示す突起
部構造とした。
First, the motor case has an outer diameter of 216 mm and an inner diameter of 200 mm.
The total length of the insulator is 120 mm as shown in Figure 5.
The thickness was 1 mm on the front end plate side and 3.5 mm on the rear end plate side, and the protrusion structure was as shown in Figures 2-a and 2-b.

インシュレータの材質はEPDM系(エチレンプロピレ
ン系ゴム)とした。また、モータケースとインシュレー
タとの接着剤はウレタン系接着剤とした。モータケース
とインシュレータの接着線長aは1箇所につき13mm
とし、突起部はその高ざCを7mm、山部の半径r1を
7mm、すそ部の半径r2を45mmで、底辺長すを2
6mmとした。
The material of the insulator was EPDM (ethylene propylene rubber). Furthermore, the adhesive between the motor case and the insulator was a urethane adhesive. The length a of the adhesive line between the motor case and insulator is 13 mm at each location.
The protrusion has a height C of 7 mm, a peak radius r1 of 7 mm, a base radius r2 of 45 mm, and a base length of 2.
It was set to 6 mm.

推進薬はバインダ13%、過塩素酸アンモニウム70%
、アルミニウム粉17%のHTPB系コンポジット推進
薬とした。
Propellant: 13% binder, 70% ammonium perchlorate
, an HTPB-based composite propellant containing 17% aluminum powder.

この供試体に一30″C〜40’Cの範囲でMIL−3
TD−810Gに準じ温度サイクルを3サイクル、次に
一30℃においてM I L−8TD−810の条件に
準じた低温(騒動を各々負荷させた。さらに−30’C
において燃焼試験を実施した。
MIL-3 was applied to this specimen in the range of -30''C to 40'C.
3 cycles of temperature cycles according to TD-810G, then low temperature (turbulence) according to the conditions of MI L-8TD-810 at -30°C.
A combustion test was conducted.

実施例2 使用した材料及び供試体の試験条件は実施例1と同様と
し、インシュレータの横断面を第3−a図、第3−b図
の如くし、接着線長aを1箇所につき20mmとし、突
起部はその高さCを5mm、山部及びすそ部の半径r1
、r2を5mm、rxを5mmで、底辺長すを4omm
とした。
Example 2 The materials used and test conditions for the specimen were the same as in Example 1, the cross section of the insulator was as shown in Figures 3-a and 3-b, and the adhesive line length a was 20 mm at each location. , the height C of the protrusion is 5 mm, and the radius r1 of the peak and base.
, r2 is 5mm, rx is 5mm, base length is 4om
And so.

実施例3 実施例2と同様とした。但しインシュレータの接着部は
接着線長aを1箇所につき52mmとし突起部の底辺長
すを72mmとした。
Example 3 Same as Example 2. However, the adhesive line length a of the insulator was 52 mm at each location, and the base length of the protrusion was 72 mm.

比較例1〜3 比較例1.2はモータケースとインシュレータを全面接
着したもので、比較例2については実施例1と同様の突
起部を設けた。比較例3は突起部を設けず、モータケー
スとインシュレータの接着部aを実施例1と同様とした
Comparative Examples 1 to 3 In Comparative Examples 1 and 2, the motor case and the insulator were bonded over the entire surface, and in Comparative Example 2, the same protrusion as in Example 1 was provided. In Comparative Example 3, no protrusion was provided, and the adhesive portion a between the motor case and the insulator was the same as in Example 1.

以上の例について試験の結果を表1に示す。Table 1 shows the test results for the above examples.

表1 1:はぼ全長に渡り1/3周〜172周、インシュレー
タ と推進薬にクラックが認められた。
Table 1 1: Cracks were observed in the insulator and propellant from 1/3 to 172 laps over the entire length of the propeller.

[発明の効果] 本発明の直噴方式による端面燃焼ロケットモータは次に
示すような効果をもつことが判った。
[Effects of the Invention] It has been found that the direct injection type end-face combustion rocket motor of the present invention has the following effects.

1)推進薬の充填率を高めることが可能である。本実施
例においては従来の方式では約86%であったのに対し
、本発明の方式では約96%であった。
1) It is possible to increase the propellant filling rate. In this embodiment, the ratio was approximately 86% in the conventional method, whereas it was approximately 96% in the method of the present invention.

2)このように充填率の高いロケットモータでは熱応力
が大きく、温度サイクルでは本発明以外の比較例はクラ
ックが入り使いものにならなかったが、本発明品は全く
欠陥が見られず従来品の充填率を約10%も向上できる
ことが判った。
2) A rocket motor with such a high filling rate has large thermal stress, and comparative examples other than those of the present invention cracked during temperature cycling and were unusable, but the product of the present invention had no defects and was superior to conventional products. It was found that the filling rate could be improved by about 10%.

3)温度サイクルで比較例についてはクラックが入った
ので、本発明品についてのみ熱応力の最も厳しい低温に
於て撮動を加えたが、この結果も全く異常が見られず良
好であることが判明した。
3) Since cracks appeared in the comparative example during temperature cycling, we photographed only the inventive product at low temperatures, where the thermal stress is the most severe, and the results were also good with no abnormalities observed. found.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4−b図は本発明のインシュレータ横断
面図であり、第5図はその縦断面図である。 第6.7図はそれぞれ従来の内面燃焼型及び端面燃焼ロ
ケットモータの概略図である。 1・・・モータケース又はインシュレータ材付きモータ
ケース、 2・・・推進薬、3・・・後部鏡板、4・・・ノズル、
5・・・イグナイタ、6・・・前部鏡板、7・・・側面
レストリフタ、 8・・・インシュレータ、9・・・突起部、10・・・
モータケースとインシュレータの接着部分、 11・・・FRPo 特許出願人 防衛庁技術研究本部長 (ほか2名)
1 to 4-b are cross-sectional views of the insulator of the present invention, and FIG. 5 is a vertical cross-sectional view thereof. Figures 6.7 are schematic diagrams of conventional internal combustion and edge combustion rocket motors, respectively. 1... Motor case or motor case with insulator material, 2... Propellant, 3... Rear head plate, 4... Nozzle,
5... Igniter, 6... Front end plate, 7... Side rest lifter, 8... Insulator, 9... Projection, 10...
Adhesive part between motor case and insulator, 11...FRPo Patent applicant Director of Technology Research Headquarters, Agency of Defense (and 2 others)

Claims (1)

【特許請求の範囲】 端面燃焼型ロケットモータにおいて、内面 になめらかな曲線を描く山形の突起をロケットモータの
機軸方向に有する変形可能なインシュレータをモーター
ケース内に挿入し、上記突起背面部において、部分的に
モータケースと接着し、このインシュレータ内部に推進
薬を充填することを特徴とする直填方式による端面燃焼
型ロケットモータの製造方法。
[Claims] In an edge-burning rocket motor, a deformable insulator having a chevron-shaped protrusion drawing a smooth curve on the inner surface in the axial direction of the rocket motor is inserted into the motor case, and a portion A method for manufacturing an edge-burning rocket motor using a direct loading method, which is characterized by adhesively bonding the insulator to a motor case and filling the inside of the insulator with propellant.
JP31611387A 1987-12-16 1987-12-16 Manufacture of end combustion type rocket motor by direct filling system Granted JPH01159451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31611387A JPH01159451A (en) 1987-12-16 1987-12-16 Manufacture of end combustion type rocket motor by direct filling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31611387A JPH01159451A (en) 1987-12-16 1987-12-16 Manufacture of end combustion type rocket motor by direct filling system

Publications (2)

Publication Number Publication Date
JPH01159451A true JPH01159451A (en) 1989-06-22
JPH03500B2 JPH03500B2 (en) 1991-01-08

Family

ID=18073394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31611387A Granted JPH01159451A (en) 1987-12-16 1987-12-16 Manufacture of end combustion type rocket motor by direct filling system

Country Status (1)

Country Link
JP (1) JPH01159451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138796A (en) * 2005-11-17 2007-06-07 Ihi Aerospace Co Ltd Solid propellant for end burning and method for manufacturing the same
JP2019152174A (en) * 2018-03-06 2019-09-12 日油株式会社 Sticking method for insulator, and jig

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138796A (en) * 2005-11-17 2007-06-07 Ihi Aerospace Co Ltd Solid propellant for end burning and method for manufacturing the same
JP2019152174A (en) * 2018-03-06 2019-09-12 日油株式会社 Sticking method for insulator, and jig

Also Published As

Publication number Publication date
JPH03500B2 (en) 1991-01-08

Similar Documents

Publication Publication Date Title
US5675966A (en) Solid propellant dual pulse rocket motor loaded case and ignition system and method of manufacture
US3316718A (en) Honeycomb structured propellant for rocket motors
US3017748A (en) Combination liquid and solid propellant spin-stabilized rocket motor
US20210108598A1 (en) Hybrid rocket motor with integral oxidizer tank
US4590860A (en) Constant pressure end burning gas generator
US10654762B2 (en) Additive manufactured combustible element with fuel and oxidizer
US2995091A (en) Reinforced propellant grains and rocket motors containing same
CA1147593A (en) Model rocket propulsion system including a solid propellant grain with a cylindrical burning port adjacent the throat section of a nozzle
US3144829A (en) Solid propellant charge
JPH01159451A (en) Manufacture of end combustion type rocket motor by direct filling system
US3128706A (en) Monopropellent grains
US4104878A (en) Pressure resistant member
US4574699A (en) Extendible wafer igniter with perforations adjacent the foot portion
US3946557A (en) Rocket motor construction
US3215028A (en) Means and method for restricting a solid propellant
CN113882969B (en) Free-loading type single-chamber double-pushing solid small rocket structure
US3017744A (en) Propellant grain and rocket motor
JPH0442538B2 (en)
JP2003502572A (en) Thrust chamber of drive mechanism used for artificial satellites and space vehicles
US3202730A (en) Process for making propellant charges
US3023572A (en) Multiple thrust propellant charge
US3077734A (en) Solid-propellant rocket motor
JPH0788806B2 (en) Rocket engine combustion chamber and method for assembling the same
CN116220944B (en) Solid engine and rocket
RU2190113C2 (en) Bonder charge

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term