JPH0115841B2 - - Google Patents

Info

Publication number
JPH0115841B2
JPH0115841B2 JP54126388A JP12638879A JPH0115841B2 JP H0115841 B2 JPH0115841 B2 JP H0115841B2 JP 54126388 A JP54126388 A JP 54126388A JP 12638879 A JP12638879 A JP 12638879A JP H0115841 B2 JPH0115841 B2 JP H0115841B2
Authority
JP
Japan
Prior art keywords
lens
focal length
lens component
positive
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54126388A
Other languages
Japanese (ja)
Other versions
JPS5650311A (en
Inventor
Toshiko Shimokura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP12638879A priority Critical patent/JPS5650311A/en
Publication of JPS5650311A publication Critical patent/JPS5650311A/en
Publication of JPH0115841B2 publication Critical patent/JPH0115841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は負の前方レンズ成分と正の後方レン
ズ成分とにより構成される、いわゆる二成分構成
のズームレンズ系であつて、口径比F3.5程度で画
角76゜から46゜に及ぶ変倍比1.7近傍の小型でしかも
簡単な構成を持つ超広角ズーム系の改良に関す
る。 近来、正レンズ先行型の4枚構成の前方負レン
ズ成分を有する2成分構成のズームレンズにおい
て、形状をコンパクトにしたもの或いは構成の簡
単化を狙つたもの等が数多く発表される様になつ
た。しかし、明るく、構成が簡単で、広い画角と
いう要求を充分満足するには至つていない。例え
ば、前後両成分とも4枚構成で、形状が比較的コ
ンパクトであるが、ズーム比は1.8程度であるが、
口径比はF3.5〜F4.5、画角は62゜から35゜と比較的
狭いもの(特開昭52−152250)、前後両成分とも
4枚構成でズーム比2.7、画角76゜〜31゜で広角では
あるが、口径比F3.5〜F4.5であり、形状が大きい
もの(特開昭53−140047)等がある。また、画角
76°包括するズーム比1.7近傍の比較的形状の小型
なものは、レンズ構成が9枚から10枚となつてい
る。(特開昭52−152250特願昭53−152886、同昭
54−43592等) この種のレンズ系においては、形状をコンパク
トにする為には前方負レンズ成分、後方正レンズ
成分共、その屈折力を強くし、同時に各成分の合
成厚を小さくする必要がある。しかし、前方負レ
ンズ成分の屈折力が大きく、しかも構成枚数が少
なく、小型にするとなれば、負レンズ系としての
球面収差、像面湾曲、歪曲収差等の高次収差の発
生が大となる。これによりズーム系を大口径、特
に長焦点側において大口径にし、また、広角にす
ることを困難にするものである。後方正レンズ成
分についても前方負レンズ成分と同様、高次収差
の発生が大となる。 また、前方負レンズ成分の焦点距離がズーム系
の焦点距離領域に対して小であると、後方レンズ
の作用する像倍率(前方負レンズ成分による虚像
aと後方正レンズ成分によつて結像した実像−b
との倍率|b/a|)が大となり、これによつて
ズーム比が同一であつても、後方正レンズ成分と
しての収差補正を困難にする。上述の各ズームレ
ンズが十分の成果をあげることが出来なかつたの
は、このような収差補正上の困難があるためであ
る。 この発明は、正レンズ先行型の前方負レンズ成
分と正、負、正の後方正レンズ成分からなる2成
分構成のズームレンズ系のコンパクト化、構成の
簡素化を計つたもので、前方負レンズ成分は、形
状が小型であつても残留収差が小さくなる様、負
のパワーを打消す正レンズの作用を強くするた
め、レンズL4に対するレンズL1のパワーを比較
的大きく与えた。後方レンズ成分は負レンズL7
をはさんで前2枚の正レンズL5,L6に対して後
1枚の正レンズL8を出来るだけ対称的に構成し
た。これは後方正レンズ成分における大きな像倍
率の違いによる収差の変化を小さく押えようとし
たものである。 上記のようなこの発明の特徴を具えた広角ズー
ムレンズ系は、 物体側から負の焦点距離を持つ前方レンズ成分
と正の焦点距離を持つ後方レンズ成分とによつて
構成され、前方レンズ成分と後方レンズ成分とが
それぞれ光軸方向に移動することによつて、レン
ズ系全体の焦点距離を変えながら焦点位置を像界
の一定の位置に固定させるズームレンズ系におい
て、前方レンズ成分は、物体側から順次正レンズ
L1、像側に強い凹面を向ける負レンズL2,L3
物体側に凸面を向けた正メニスカスレンズL4
4個の単レンズから成り、後方レンズ成分は、物
体側から順次両凸正レンズL5、物体側に強い凸
面を向けた正メニスカスレンズL6、両凹負レン
ズL7、正レンズL8の4個の単レンズから成る、
前後計8個の単レンズから成り、ズーム系全体の
短焦点側の合成焦点距離をfW、前方負レンズ成分
の焦点距離をfFc、後方正レンズ成分の焦点距離
をfRc、前方レンズ成分のレンズ厚及び空気間隔
の合計をΣdFc、後方レンズ成分のレンズ厚及び空
気間隔の合計をΣdRc、物体側から順次各レンズL1
〜L8の各単体焦点距離をf1〜f8、レンズL5L6の合
成焦点距離をf5,6、レンズL5〜L7のレンズ厚み及
び空気間隔の合計をd9〜12、レンズL8の厚みを
d15、同じくL8の硝子材料のd線における屈折率
をn8としたとき、 1.6<|fFc/fW|<1.8 (1) 0.34<|ΣdFc/fFc|<0.41 (2−1) 1.05<ΣdRc/ΣdFc<1.30 (2−2) 1.8<f1/f4<2.1 (3) 0.75<f5,6/f8<0.95 (4) 0.32<d9〜12/fRc<0.41 (5−1) 0.14<d15/fRc<0.21 (5−2) 1.7<n8 (6) の条件をみたすことを特徴としている。 これらの条件のうち、(1)(2)は形状のコンパクト
化を達成するための基本的条件であり、この発明
の様にズーム比が1.7近傍であつた場合、長焦点
側の合成焦点距離をfTとすると、fW=1とすれば
fT=1.7となる。前述の|b/a|は|合成焦点
距離f/fFc|であるから、(1)によつてfFcが−1.7
近傍とすると 合成焦点距離 |b/a| 短焦点距離 1 1/1.7 長焦点距離 1.7 1.7/1.7 となり、後方正レンズ成分による像倍率は1/1.7
から1の間となる。(1)の下限を越えて1.6より小
さくなると、(2−1)で前方負レンズ成分の厚
さΣdFcを小さく設定したこととの関連で、前方レ
ンズ成分の収差補正が困難な許りか、上述の像倍
率の条件下で、わずか4枚のみとした後方レンズ
成分における収差補正が困難となる。反対に上限
を越えた場合、収差補正は容易であり、更に(2
−2)で後方レンズ成分の厚さΣdRcを比較的小さ
く設定したこととの関連で、全焦点距離を通じて
バツクフオーカスfBを含めた全長は短かくなる
が、短焦点距離側においては所定のfBの確保がむ
ずかしい事になる。更に広角での入射光束を保つ
必要上、レンズ前面の径が大きくなり、コンパク
ト化の障害となる。 条件(2)は前方、後方の各レンズ成分の厚さを規
制するもので、(2−1)は(1)とも関連して形状
を小型にするための必須の条件となる。 (2−1)(2−2)共上限は小型化を達成す
る上での限界値であり、一方下限を越えると収差
補正が困難になるばかりでなく、(2−1)の場
合は広い画角の光束の確保が難しく、(2−2)
の場合は口径をみたす光束の確保が難しくなる。 条件(3)はf1/f4を比較的小さく押え、前方負レ
ンズ成分における正レンズの作用を有効に利用
し、コンパクトで然もかなり大きい負のパワーに
よつて生ずる球面収差、コマ収差、歪曲収差等を
打消そうとするもので、上限はその効果の生ずる
限界値であり、下限を越えてf1が小さくなりすぎ
た場合、広角部分での収斂作用が大きく高次の歪
曲収差の発生が大となつたり、前玉径を大きくす
る必要が生じたりする。 条件(4)(5)(6)は後方レンズ成分に関する条件で、
条件(4)は負レンズL7の前側2個の正レンズL5
L6と後側1個の正レンズL8のパワー比を規制す
るもので、従来公知のものに比して比較的大きな
値となつている。従来のものは前方負レンズ成分
による発散光束を直接受けとめる為、前側の正レ
ンズL5,L6には後側の正レンズに比べて大きな
正のパワーを与え、この為、前述の後方レンズ成
分の像倍率b/aの大きい側、即ち長焦点側は短
焦点側に対して、前側では収斂性のコマ収差、後
側では発散性のコマ収差(両方共像を大きくする
方向)の発生が大きかつた。この傾向は各レンズ
構成が簡単になれば更に顕著になる。 条件(4)はこの弊害を減少させる為、前後の正の
パワーを対称に近くしようとするものである。下
限は、この効果を失なわないための限界値であ
り、上限を越えると負の方向の歪曲収差の発生が
大となる。 条件(5)は後方レンズ成分中の正のパワー部分の
厚みを規制するものであるが、条件(4)と同様な効
果を得るため(5−2)の値を公知のものに比
し、また(5−1)の値に対しても比較的大きく
設定している。(5−1)(5−2)共、下限をこ
えると球面収差の曲がりが大となり、所定の口径
が得られなくなる。(5−1)の上限をこえると
(2)で設定した小さな後方レンズ系の全厚みに対す
る比率が大となり、先に(4)で述べた正の作用の不
均衡を起す。(5−2))の上限をこえると、負の
歪曲収差の発生が大となる。 条件(6)は(4)(5)の条件によつて正の作用が大きく
なるレンズL8に大きな屈折率を与え、L8におけ
る収斂性の高次収差の発生を抑えようとするもの
で、限界以下では前記諸条件の下では1枚のみの
正レンズでは目的を達することは出来なくなる。 次にこの発明のズームレンズ系の実施例を示
す。 実施例 1
This invention is a so-called two-component zoom lens system consisting of a negative front lens component and a positive rear lens component, and has an aperture ratio of about F3.5 and a variable magnification angle of view ranging from 76° to 46°. This paper relates to the improvement of an ultra-wide-angle zoom system that is compact and has a simple configuration with a ratio of around 1.7. In recent years, many zoom lenses with a two-component configuration that have a positive lens-first four-element front negative lens component have been announced with a more compact shape or a simpler configuration. . However, the requirements for brightness, simple construction, and wide angle of view have not yet been fully satisfied. For example, both the front and rear components are composed of four elements, and the shape is relatively compact, but the zoom ratio is about 1.8.
The aperture ratio is F3.5 to F4.5, the angle of view is relatively narrow from 62° to 35° (Japanese Patent Application Laid-open No. 52-152250), and both the front and rear components have 4 elements, the zoom ratio is 2.7, and the angle of view is 76°. Although it has a wide angle of 31 degrees, it has an aperture ratio of F3.5 to F4.5 and is large in size (Japanese Patent Laid-Open No. 140047/1983). Also, the angle of view
A relatively small lens with a zoom ratio of around 1.7 that covers 76 degrees has a lens configuration of 9 to 10 elements. (Japanese Unexamined Patent Publication No. 52-152250, Patent Application No. 53-152886, same
54-43592, etc.) In this type of lens system, in order to make the shape compact, it is necessary to strengthen the refractive power of both the front negative lens component and the rear positive lens component, and at the same time reduce the combined thickness of each component. be. However, if the front negative lens component has a large refractive power and has a small number of components, and is made smaller, the occurrence of higher-order aberrations such as spherical aberration, field curvature, and distortion becomes large as a negative lens system. This makes it difficult to make the zoom system have a large aperture, especially on the long focal length side, and to make it wide-angle. Similarly to the front negative lens component, higher-order aberrations occur significantly in the rear positive lens component. In addition, if the focal length of the front negative lens component is small relative to the focal length range of the zoom system, the image magnification applied by the rear lens (virtual image a by the front negative lens component and image formed by the rear positive lens component) Real image-b
The magnification |b/a|) becomes large, which makes it difficult to correct aberrations as a rear positive lens component even if the zoom ratio is the same. The reason why each of the zoom lenses described above has not been able to achieve sufficient results is because of such difficulties in correcting aberrations. This invention aims to make a two-component zoom lens system compact and simple in construction, consisting of a front negative lens component preceded by a positive lens and a rear positive lens component of positive, negative, positive. In order to strengthen the effect of the positive lens that cancels out the negative power, the power of the lens L1 is given to be relatively large relative to the lens L4 so that the residual aberration is small even if the shape is small. The rear lens component is a negative lens L 7
The rear positive lens L8 is constructed as symmetrically as possible with respect to the front two positive lenses L5 and L6 . This is an attempt to suppress changes in aberration due to large differences in image magnification in the rear positive lens component. A wide-angle zoom lens system having the features of the present invention as described above is composed of a front lens component having a negative focal length from the object side and a rear lens component having a positive focal length. In a zoom lens system, the focal position is fixed at a constant position in the image field while changing the focal length of the entire lens system by moving the rear lens components in the optical axis direction. Positive lens sequentially from
L 1 , negative lenses L 2 , L 3 with strong concave surfaces facing the image side,
It consists of four single lenses, a positive meniscus lens L 4 with a convex surface facing the object side, and the rear lens component consists of a biconvex positive lens L 5 sequentially from the object side, and a positive meniscus lens L 6 with a strong convex surface facing the object side. , consisting of four single lenses: a biconcave negative lens L 7 and a positive lens L 8 .
It consists of a total of eight single lenses at the front and rear, and the combined focal length of the entire zoom system on the short focal length side is f W , the focal length of the front negative lens component is f Fc , the focal length of the rear positive lens component is f Rc , and the front lens component Σd Fc is the sum of the lens thickness and air distance of the rear lens component, Σd Rc is the sum of the lens thickness and air distance of the rear lens component, and each lens L 1 sequentially from the object side.
The individual focal length of ~ L8 is f1 ~ f8 , the composite focal length of lens L5L6 is f5,6 , the sum of the lens thickness and air gap of lenses L5 ~ L7 is d9 ~12 , Thickness of lens L 8
d 15 , and when n 8 is the refractive index at the d-line of the glass material of L 8 , 1.6<|f Fc /f W |<1.8 (1) 0.34<|Σd Fc /f Fc |<0.41 (2- 1) 1.05<Σd Rc /Σd Fc <1.30 (2-2) 1.8<f 1 /f 4 <2.1 (3) 0.75<f 5,6 /f 8 <0.95 (4) 0.32<d 9〜12 /f It is characterized by satisfying the following conditions: Rc <0.41 (5-1) 0.14<d 15 /f Rc <0.21 (5-2) 1.7<n 8 (6). Among these conditions, (1) and (2) are the basic conditions for achieving a compact shape, and when the zoom ratio is around 1.7 as in this invention, the composite focal length on the long focal length side Let f T be f W = 1, then
f T =1.7. The above |b/a| is |synthetic focal length f/f Fc |, so by (1), f Fc is −1.7
If it is close, the combined focal length is |b/a| Short focal length 1 1/1.7 Long focal length 1.7 1.7/1.7, and the image magnification due to the rear positive lens component is 1/1.7
and 1. If the lower limit of (1) is exceeded and becomes smaller than 1.6, it may be difficult to correct the aberration of the front lens component due to the fact that the thickness Σd Fc of the front negative lens component was set small in (2-1). Under the above-described image magnification conditions, it becomes difficult to correct aberrations in the rear lens component with only four lenses. On the other hand, when the upper limit is exceeded, aberration correction is easy and (2
In relation to setting the thickness Σd Rc of the rear lens component relatively small in -2), the total length including the back focus f B becomes shorter over the entire focal length, but at the short focal length side, the predetermined f Securing B will be difficult. Furthermore, the diameter of the front surface of the lens becomes large due to the need to maintain the incident light beam at a wide angle, which becomes an obstacle to compactness. Condition (2) regulates the thickness of each front and rear lens component, and (2-1) is also related to (1) and is an essential condition for making the shape compact. (2-1) (2-2) Both upper limits are the limit values for achieving miniaturization; on the other hand, exceeding the lower limit not only makes it difficult to correct aberrations, but also widens the range in the case of (2-1). It is difficult to secure the luminous flux at the viewing angle, (2-2)
In this case, it becomes difficult to secure a luminous flux that fills the aperture. Condition (3) is to keep f 1 / f 4 relatively small, effectively utilize the action of the positive lens in the front negative lens component, and eliminate spherical aberration and coma aberration caused by the compact yet quite large negative power. This is intended to cancel distortion, etc., and the upper limit is the limit value at which this effect occurs; if f 1 becomes too small beyond the lower limit, the convergence effect in the wide-angle area is large and high-order distortion occurs. becomes larger, or it becomes necessary to increase the diameter of the front lens. Conditions (4), (5), and (6) are conditions regarding the rear lens component.
Condition (4) is the two positive lenses L 5 in front of the negative lens L 7 ,
It regulates the power ratio between L 6 and the single positive lens L 8 on the rear side, and has a relatively large value compared to conventionally known ones. The conventional type directly receives the diverging light beam from the front negative lens component, so the front positive lenses L 5 and L 6 are given larger positive power than the rear positive lens, and for this reason, the aforementioned rear lens component On the side where the image magnification b/a is larger, that is, on the long focus side, convergent coma aberration occurs on the front side, and divergent coma aberration occurs on the rear side (both in the direction of increasing the image). It was big. This tendency becomes even more noticeable as each lens configuration becomes simpler. Condition (4) attempts to make the front and rear positive powers nearly symmetrical in order to reduce this adverse effect. The lower limit is a limit value for not losing this effect, and if the upper limit is exceeded, distortion in the negative direction will increase. Condition (5) regulates the thickness of the positive power portion in the rear lens component, but in order to obtain the same effect as condition (4), compare the value of (5-2) with the known one. Furthermore, the value of (5-1) is also set relatively large. For both (5-1) and (5-2), when the lower limit is exceeded, the curvature of the spherical aberration becomes large, making it impossible to obtain a predetermined aperture. If the upper limit of (5-1) is exceeded,
The ratio of the small rear lens system set in (2) to the total thickness becomes large, causing the imbalance in the positive effects described above in (4). When the upper limit of (5-2)) is exceeded, the occurrence of negative distortion becomes large. Condition (6) is intended to give a large refractive index to lens L 8 , which has a large positive effect under conditions (4) and (5), and to suppress the occurrence of convergent higher-order aberrations in L 8 . , below the limit, the purpose cannot be achieved with only one positive lens under the above conditions. Next, an embodiment of the zoom lens system of the present invention will be shown. Example 1

【表】【table】

【表】 実施例 2【table】 Example 2

【表】 実施例 3【table】 Example 3

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例のレンズ構成図、第2図は
第2、第3実施例のレンズ構成図、第3図ないし
第5図はそれぞれ第1ないし第3実施例の収差曲
線図である。
Figure 1 is a lens configuration diagram of the first embodiment, Figure 2 is a lens configuration diagram of the second and third embodiments, and Figures 3 to 5 are aberration curve diagrams of the first to third embodiments, respectively. be.

Claims (1)

【特許請求の範囲】 1 物体側から負の焦点距離を持つ前方レンズ成
分と正の焦点距離を持つ後方レンズ成分とによつ
て構成され、前方レンズ成分と後方レンズ成分と
がそれぞれ光軸方向に移動することによつて、レ
ンズ系全体の焦点距離を変えながら焦点位置を像
界の一定の位置に固定させるズームレンズ系にお
いて、前方レンズ成分は、物体側から順次正レン
ズL1、像側に強い凹面を向ける負レンズL2,L3
物体側に凸面を向けた正メニスカスレンズL4
4個の単レンズから成り、後方レンズ成分は、物
体側から順次両凸正レンズL5、物体側に強い凸
面を向けた正メニスカスレンズL6、両凹負レン
ズL7、正レンズL8の4個の単レンズから成る、
前後計8個の単レンズから成り、ズーム系全体の
短焦点側の合成焦点距離をfW、前方負レンズ成分
の焦点距離をfFc、後方正レンズ成分の焦点距離
をfRc、前方レンズ成分のレンズ厚及び空気間隔
の合計をΣdFc、後方レンズ成分のレンズ厚及び空
気間隔の合計をΣdRc物体側から順次各レンズL1
L8の各単体焦点距離をf1〜f8、レンズL5L6の合成
焦点距離をf5,6、レンズL5〜L7のレンズ厚み及び
空気間隔の合計をd9〜12、レンズL8の厚みをd15
同じくL8の硝子材料のd線における屈折率をn8
したとき、 1.6<|fFc/fW|<1.8 (1) 0.34<|ΣdFc/fFc|<0.41 (2−1) 1.05<ΣdRc/ΣdFc<1.30 (2−2) 1.8<f1/f4<2.1 (3) 0.75<f5.6/f8<0.95 (4) 0.32<d9〜12/fRc<0.41 (5−1) 0.14<d15/fRc<0.21 (5−2) 1.7<n8 (6) の条件をみたすことを特徴とする広角ズームレン
ズ系。
[Claims] 1. Consisting of a front lens component having a negative focal length from the object side and a rear lens component having a positive focal length, the front lens component and the rear lens component each extend in the optical axis direction. In a zoom lens system that fixes the focal position at a fixed position in the image field while changing the focal length of the entire lens system by moving, the front lens component is sequentially moved from the object side to the positive lens L 1 and then to the image side. Negative lenses L 2 , L 3 with strong concave surfaces,
It consists of four single lenses, a positive meniscus lens L 4 with a convex surface facing the object side, and the rear lens component consists of a biconvex positive lens L 5 sequentially from the object side, and a positive meniscus lens L 6 with a strong convex surface facing the object side. , consisting of four single lenses: a biconcave negative lens L 7 and a positive lens L 8 .
It consists of a total of eight single lenses at the front and rear, and the combined focal length of the entire zoom system on the short focal length side is f W , the focal length of the front negative lens component is f Fc , the focal length of the rear positive lens component is f Rc , and the front lens component The sum of the lens thickness and air distance of the rear lens component is Σd Fc , and the sum of the lens thickness and air distance of the rear lens component is Σd Rc for each lens sequentially from the object side L 1 ~
Each individual focal length of L 8 is f 1 - f 8 , the combined focal length of lens L 5 L 6 is f 5,6 , the sum of the lens thickness and air distance of lenses L 5 - L 7 is d 9 - 12 , lens The thickness of L 8 is d 15 ,
Similarly, when the refractive index at the d-line of the glass material with L 8 is n 8 , 1.6<|f Fc /f W |<1.8 (1) 0.34<|Σd Fc /f Fc |<0.41 (2-1) 1.05 <Σd Rc /Σd Fc <1.30 (2-2) 1.8<f 1 /f 4 <2.1 (3) 0.75<f 5.6 /f 8 <0.95 (4) 0.32<d 9~12 /f Rc <0.41 (5 -1) A wide-angle zoom lens system characterized by satisfying the following conditions: 0.14<d 15 /f Rc <0.21 (5-2) 1.7<n 8 (6).
JP12638879A 1979-10-02 1979-10-02 Wide-angle zoom lens system Granted JPS5650311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12638879A JPS5650311A (en) 1979-10-02 1979-10-02 Wide-angle zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12638879A JPS5650311A (en) 1979-10-02 1979-10-02 Wide-angle zoom lens system

Publications (2)

Publication Number Publication Date
JPS5650311A JPS5650311A (en) 1981-05-07
JPH0115841B2 true JPH0115841B2 (en) 1989-03-20

Family

ID=14933898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12638879A Granted JPS5650311A (en) 1979-10-02 1979-10-02 Wide-angle zoom lens system

Country Status (1)

Country Link
JP (1) JPS5650311A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832843U (en) * 1981-08-27 1983-03-03 久留米 忠彦 handrail equipment
JPS6055311A (en) * 1983-09-06 1985-03-30 Asahi Optical Co Ltd Zoom lens
JPH0621898B2 (en) * 1984-11-09 1994-03-23 キヤノン株式会社 Shooting optics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254456A (en) * 1975-10-29 1977-05-02 Nippon Chemical Ind Wide angle zoom lens syste
JPS53135658A (en) * 1977-04-30 1978-11-27 Asahi Optical Co Ltd Zoom lens including ultraawide lens
JPS53140047A (en) * 1977-05-13 1978-12-06 Asahi Optical Co Ltd Big zoom ratio lens including wide angle lens
JPS5415733A (en) * 1977-06-10 1979-02-05 Asahi Optical Co Ltd Lowwmagnification variableeangleelens system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254456A (en) * 1975-10-29 1977-05-02 Nippon Chemical Ind Wide angle zoom lens syste
JPS53135658A (en) * 1977-04-30 1978-11-27 Asahi Optical Co Ltd Zoom lens including ultraawide lens
JPS53140047A (en) * 1977-05-13 1978-12-06 Asahi Optical Co Ltd Big zoom ratio lens including wide angle lens
JPS5415733A (en) * 1977-06-10 1979-02-05 Asahi Optical Co Ltd Lowwmagnification variableeangleelens system

Also Published As

Publication number Publication date
JPS5650311A (en) 1981-05-07

Similar Documents

Publication Publication Date Title
JPH0245163B2 (en)
JPS6154202B2 (en)
JPS6151771B2 (en)
JP4187311B2 (en) Medium telephoto lens
JPS6113206B2 (en)
JPS6134125B2 (en)
JP3964533B2 (en) Medium telephoto lens
US4676607A (en) Behind stop lens
JPH0443245B2 (en)
JPH0713704B2 (en) Wide-angle lens
JPS5820009B2 (en) Large-diameter ultra-wide-angle photographic lens
JPS6155089B2 (en)
JPS6128973B2 (en)
JPH0115841B2 (en)
JP2677269B2 (en) High magnification zoom lens including wide angle range
JPH0244042B2 (en)
US4550987A (en) Small size telephoto lens
JPS58126512A (en) Large-aperture telephoto lens
JP3500473B2 (en) Wide-angle lens
JPH0574806B2 (en)
JPH0718972B2 (en) Large aperture ratio photographic lens
JPS636848B2 (en)
JPH0119123B2 (en)
JPS62143011A (en) Lens system for short range photographing
JPS6363881B2 (en)